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THE F I R S T CONJUGATE POINT OF SOLUTION 
OF THE N-th ORDER ITERATED 

D I F F E R E N T I A L EQUATION 

V L A D I M Í R VLČEK 
(Received March 30,1981) 

Dedicated to Prof. Miroslav Laitoch on his 60th birthday 

Let us consider a 2-nd order linear homogeneous differential equation having 
the form 

y"(t) + g(t)y(t) = o, (l) 

where the function q(t)e c£n"~2/, I = (— oo, +oo), n e N, n > 1, q(t) > 0 for 
V (t e I), oscillatory in the sense of [2], i.e. to every t el there exist infinitely many 
zeros of its arbitrary nontrivial solution lying both to the left and to the right of 
the point t. 

Iterating it n-times (see for instance [1]) leads to an n-th order linear homogene­
ous differential equation (more briefly to an n-th order iterated differential equa­
tion). Let us write it generally in the form 

yn)(0+niak+1(0/k)(0 = 0, (n) 
k = 0 

where ak+i(t) = ak + l\jq(t), q'(t), ..., #(n~2)(t)], whose basis is formed by the 
ordered n-tuples of functions 

[u«-l(t), u»-2(t)v(t), ..., i f - 1 - ^ / ) ! ^* ) , ..., u(t)v«~2(t\ v*-\t)l (B) 

k = 0, 1, 2, ..., n — 1, linearly independent on the interval I. Denoting 

yt(t) = u«-\t),y2(t) = W-2(t)v(t), ...,yk(t) = 

= .."-"(Ot^-HO. . . . ,> . - t (0 = «(t)fn"2(t),>'„(t) = fn_1(t), 

i.e. generally 
yk(t) = u"-k(t)vk-\t), k = 0, 1,2, . . . ,n - 1, 
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the equation (n) may be written in the form 

y.(0 y2(t) ... yk(0 ... y„(0 y(0 

yi(t) y'2(t) - yk(0 ••• y„(0 y'(0 i 
w[Уi(0>-,У„(0] 

yin_1)(0 yin _ 1 )(0 - yk

n_1)(0 - „n_1)(0 ( n _ 1 )(0 

yin)(0 y(2n)(0 - yk

n)(0 - y„n)(0 y(n)(0 

o, 

where 

w Ы O , - , y „ ( 0 ] 

УiO) y2(0 - yk(0 ••• y„(0 

УІO) y2(0 - yk(0 - y„(o 

y Г 2 ) ( 0 y Г 2 ) ( 0 - У Г 2 ) 0 ) - y Г 2 ) ( 0 

yi n _ 1 ) 0) y Г " ( 0 - y k

n " 1 ) 0) - УІn_1)(0 

ФO 

in the interval I is the Wronskian of the basis (B) relating to the differential equa­
tion (n). 

Thus we have for the coefficients ak + 1(t), k = 0, 1, 2, ..., n — 1; n e N, n > 1, 
occuring in the equation (n): 

«„(o = 

Уi(0 У2(0 •• yk(0 • •• У„(0 

1 Уi(0 

УГ2\ 

У'г(t) • 

.0 У Г 2 ) 0 ) • 

•• yk(0 • 

•• У Г 2 ) 0 ) • 

.. y;(o 

w[Уl(t), ... , y„0)] 

Уi(0 

УГ2\ 

У'г(t) • 

.0 У Г 2 ) 0 ) • 

•• yk(0 • 

•• У Г 2 ) 0 ) • - y„n_2)(0 

yin)(0 У(2n)(t) • •• yk

n)(0 • •• y„n)(0 

w'[y i(0, - y„(0] a.(Ù = 

(-l)n 

ЧУi(0>---У„(0] 

w[Уi(0, -,У„(0] 

УІ(0 У'г(t) - Уk(0 - У„(0 

y'í(0 У2O) - yk(0 - y„(0 

yin _ 1 )(0 y(2n_1)(0 - yk

n _ 1 )(0 - y„п_1)(0 

yin)(0 У П O - УÍa\t) ... yín\t) 

lП*Oi(0,-,y„(0] 
(-1)" 

w[yi(0,-,y„(0] 

Because of (1) it is necessary to write throughout our discussion —q(t)u(t) or 
— q(t) v(t) instead of u"(t) or v"(t) respectively. 

Hence, every nontrivial solution of the iterated differential equation of the n-th 
order (n) is of the form 

y(t) = ClU

a-l(t) + C2u
n-2(t)v(t) + ... + C^-KÚv1-1^) + 



... + cn_lM(0t;n-2(0 + Cav
n-\t) = £ cy-\t)vl-\i), (2) 

i = l 
n 

where Cx eR, i = 1, 2, ..., n(rceN, n > 1) and £ C? > 0. 
i = i 

Since the differential equation (n) is of the n-t/z order, any arbitrary zero of its 
nontrivial oscillatory solution y(t) is of multiplicity v = n — 1 at most. In what 
follows we will understand under a solution both of the differential equation (1) 
and the differential equation (n) nontrivial solution only. 

Oscillatory solutions of the differential equation (n) 

For the oscillatority of the solution y(t) of the differential equation (n) of an 
arbitrary order n e N, n > 1, among whose zeros t* e I are such that y(t*) = u(t*) 
or v(l*), the sufficient condition is that it should be either of the form 

xy(t) = ClU*-\t) + C2u
n~2(t)v(t) + ... + Cn_ lW(r>n"2(0 = 

=Vciu
n-i(o^i-1(0, 

i = l 

£ C? > 0, n > 1, 
i = l 

or 
2y(t) = C2iT-2(t)v{t) + C3u"'\t)v2(t) + ... + Cn-Xt)vn-2(t) + 

+ Cnt;
n-1(0 = ic i«

n- i(0f i"1(t) 

£ C\ > 0, n > 1. 
i = 2 

2 

2 

2 , Thereby between the zeros of any oscilatory solution of the form 1y(t) or 2y(t) 
of the differential equation (n) there always belong the zeros of the function u(t) 
or v(t). Because of the symmetry of the both functions u(t), v(t) occuring in the 
general solution (2) of the differential equation (n) we shall restrict our study to 
zeros of oscillatory solutions of (n) being of the form 

n = l 

y(t) = YJCiu
n'i(t)vi-i(t), 

i = l 

£ c? > 0, n > 1, 
i = l 

i.e. to such solutions among whose zeros there always belong all zeros of the 
function w(t). 

Remark: Let the function f(t)eCjn), I = (-co, +oo), n e N ; if f(t0) = 0 
holds for the point t0 e I, and t0 is a simple zero of the functional), then it holds 
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also fa(t0) = 0 for every n e N, and the point t0 is an n-tuple zero of the function 
fn(t\ i.e. it holds 

f(t0) =f"(t0) = -. -r-^Kto) = °> f(n)0o) 9* 0. 

In part icular it holds : If the solution y(t) of (n) is expressible in the form 
y(t) = u\t)y*(t\ l ^ k ^ n - 1 ; k, n e N , n > l , where u(t) is a nontrivial 
oscillatory solution of (1) having all zeros simple, and all -functions u(t\ y*(t) 
are k-fold continuous differentiate in I = (-co, + oo) and if it holds that u(t0) = 
= 0, y*^) 7- 0 at a point t0 e I, then t0 is a k-tuple zero of the oscillatory solution 
y(t)of(n). 

Lemma 1. Let t0 e l = ( — oo, + oo) be an arbitrary firmly chosen point. Then 
any oscillatory solution y(t) of the differential equation (n) vanishing at t0 has 
the form 

XO^Zc^-xo^-^), c ^ + o , 
i = l 

exactly if t0 is a simple zero of the solution y(t); 

J(0 = Eciu
n-i(o«i-1(0, cn_2*o, 

i = l 

exactly if t0 is a double zero of the solution y(t); 

y(t)= C,u«-X(t\ Ct ^ 0 

exactly if t0 is an (n - l)-tuple zero of the solution y(t), i.e. generally: for V [k e N 
1 = k ^ n - l ; n e N , n > 1] 

n-k 

= 1 
i = l 

KO^Іc^-ЧO^-Ҷo. cn_k*o, 

exactly if t0 is a k-tuple zero of the solution y(t), where \u(t), v(tf\ is such a basis 
of the differential equation (1) that u(t0) = 0. 

Proof: According to what was said in the introduction, every solution y(t) 
n 

of (n) has the form (2), where C,eR, i=l,2 n; n e N , X Q2 > ° a n ( * 
n = l 

[u(t)9 v(t)] denotes a basis of an oscillatory differential equation (1). Let t0 e I = 
= (— oo, + oo) be an arbitrary zero of the solution y(t) of (n) and [u(t), v(t)~] be 
a basis of an oscillatory differential equation (1) such that 

u(t0) = v'(t0) = 0, (P) 

[so that u'(t0) ^ 0, v(t0) ^ 0; hence the point t0 is a simple zero of the function w(0]« 
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Then the system of all solutions y(t) of (n) vanishing at t0 are exactly of the form 

Xt)=n_ci«
n-i(t).i-1(t), 

i = l 

n - 1 

where Cx e R, i = 1, 2, ..., n - 1 (n _ N, n > 1), ]T C? > 0, are arbitrary con-
i=- l 

stants. 
1. Let Cn_t # 0, so that 

y(t) = Qu11-1^) + C2u
n~2(t)v(t) + C3un"3(t)v2(t) + ... + 

+ Ciw
n~i(0t)i""1(0 + ... + Cn_2u

2(0t>n~3(0 + 

+ ctt^u(t)vn'2(t) = uwz C^-^oy-1©. 
i = l 

Since 

y'(t) = Ct(n - l)„n-2(0«'(0 + C2[(n - 2) „n"3(0 W(t) v(t) + «n-2(0*/(0] + 
+ C3[(n - 3)«n-4(0t,'(t)v2(0 + 2w n - 3 (0K tM0] + 
+ ... + Cs[(n - i)„n- i-1(0_'(0t ' i-1(t) + ^" ' (OO - l)vl-2(t)v'(t)~\ + 
... + Cn_2[2«(0 u'(t) vn~3(t) + u2(t) (n - 3) . n " 4 (0 f'(0] + 
+ Ca^\u'(t)vD-l(t) + M(0(n - 2) . n - 3 (0» ' (0] = 
= M(0{Ci(n - l)«n-3(0M'(0 + C2[(n-2)M

n-4(0_'(t)f(t)+"n-3(t)»'(t)] + 
+ ... + Ci[(n - i ) t ,n- i-2(0t . ' (0» i-1(0 + "n- i-1(0(i - l)f i_2(0t ' '(t)] + 
+ ... + Cn_2[2„'(0f"-3(0 + «(0(n - 3)v°-*(t)v'(t)] + 
+ Cn^(n - 2)vD-*(t)v'(t)} + Cn_lU'(t)vD-2(t) 

and by assumption (P) y(t0) = 0 holds, whereby y'(t0) = Cn_j«'(r0) -n-2(t0) ?- 0» 
the point t0 is a simple zero of the solution y(t) of (n). 

2. Let Cn_. = 0, Cn_2 # 0, so that 

y(t) = Cit/""1^) + c2_n-2(0t>(0 + ••• + C iM
n- i(0t' i-1(0 + ••• 

... + cn_3„30K-4(0 + cn_2„
2(0-n-3(0 = 

= „2(oVciu
n-i-2(Ot;i-1(0. 

i = l 

Since 
y'(t) = Cx(n - \)un-2(t)u'(t) + C2[(n - 2)uD-\t)u'(t)v(t) + uD~2(t)v'(t)] + 

+ ... + C;[(n - O M " - 1 - 1 ^ ) " ^ ) ^ - 1 ^ ) + «n"'(0(i - l)v[-2(t)v'(t)] + 

+ ... + Cn_3[3M
2(0_'(0»"-4(0 + "3(t)(n - 4) .n-5(0z/(0] + 

+ Cn_2[2«(0_'(0t'n-3(0 + "2(0(n - 3)va-\t)v'(t)] = 
= H(0 { Cx (n - 1) un - \t) u'(t) + C2 [(n - 2) u" ~ \t) u'(t) v(t) + wn " 3(0 v'(t)] + 
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+ ... + C;[(n -i)_n- i-2(0M'(t)f i-1(0 + "n" i"1(0(i - l)vl-2(t)v'(t)] + 
+ ... + Cn_3[3»(0H'(0t>n~4(0 + «2(t)(n - 4)t)n-5(0f'(0] + 
+ Cn_2[2«'(0»n"3(0 + «(0(n - 3)vn-*(t)v'(t)]}, 

y"(t) = C.(n - 1) [(n - 2)un~3(t)u'2(t) + un~2(t)u"(t)] + 

+ C2{(n - 2) [(n - 3) M
n- 4(0« ' 2(0-(0 + «n"3(0""(t)p(t) + 

+ _n-3(0«'(0- '(0] + (n - 2)Hn-3(0«'(0f'(t) + Kn-2(0»"(0} + 
+ ... + Ci{(n -i)[(n - i - 1) M " " 1 " ^ ) "'*(/) t>!_1(0 + «n- i"1(0x 

xw'xo^-^t) + «n-i-1(0"'(0(i - l)-1_2(0f'(0] + 
+ (i - 1) [(n - i) wn-i-1(0 u'(t) vl~2(t) v'(t) + u"-^) 0 - 2) vl-3(t)x 
xv'2(t) + ^-'(Ov'-^Ov'Xty]} + ... + Cn„2{2[u'2(t)vn-3(t) + 
+ u{t)u"(t)vn-3(t) + u(i)u'(t)(n - 3)vn-\t)v'(ty] + 

+ (n - 3) [2u(t)u'(t)vn-\t)v'(t) + «2(0(n - 4) i;n-5(0i>'2(0 + 

+ «2(Ot;n-4(Of"(0]} = 
= u(t) {Cx(n - 1) [(n - 2)„ n - 4 (0« ' 2 (0 + «n-3(0«"(t)] + 
+ C2{(n - 2) [(n - 3) un~5(t) u'2(t) v(t) + un~A(t) u"(t) v(t) + 

+ un-\t)u'(t)v'(t)] + (n - 2)«n-4(0«'(Ot>'(0 + un-3(t)v"(t)} + 

+ ... + Ci{(n -i)[(n - i - l )« n- i- 3(0« ' 2(0 t ' i" 1(0 + 
+ un-i-2(t)u"(t)vi-\t) + un-l-2(t)u'(t)(\ - \)vl-\t)v'(t)] + 

+ (i - l)[(n - \)un-i-2(t)u'(t)vi-2(t)v'(t) + un-'l-\t)(i - 2)vl~3(t)x 

xv'2(t) + H 0 - 1 - 1 ^ ) ^ " 2 ^ ) ^ ) ] } + - + 
+ Cn_2{2[«"(0»n-3(t) + »'(t)(n - 3)vn-\t)v'(t)\ + 
+ (n - 3) [2M'(0 f°-4(t) v'(t) + u(t) (n - 4) vn'5(t) v'2(t) + 

+ «(0fn"4(tK(t)]}} + 2Cn_2«'2(0vn-3(0, 

so that by assumption (P) y(t0) = y'(t0) = 0 holds, while y"(t0) = 
= 2Ca.2u'2(t0) vn~3(t0) ¥= 0, the point t0 is a double zero of the solu­
tion >(0 of (n). 

( n - 1) Let Cn_! = Cn_2 = ... = C3 = C2 = 0, C, # 0, so that y(t) = 
= ct*-\t). 

Since 

y'(t) = Cx(n - l )_ n - 2 (0_ ' (0 , 

y"(t) , = Ct(n - 1) «n-3(0 [(n - 2) u'2(t) + u(t) «"(0], 

y'"t) = Cx(n - 1) wn"4(0 {(n-2) (n - 3) «'3(0 + 3(n - 2) u(t) u'(t) x 

x u"(t) + «2(0 u'"(t)}, 
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j , v ( 0 = C.(n - 1) ua'5(t) {(n - 2) (n - 3) (n - 4) u'\t) + 

+ 6(n - 2) (n - 3) u(t) u'2(t) u"(t)+4(n - 2) u2(t) u'(t) u'"(t) + 
+ 3(n - 2) u2(t) u"2(t) + u\t) u™(t)} 

/a~2\t) = ClU(t) {(n - 1) (n - 2) (n - 3) ...2«'n~2(0+(n - 1) (n - 2) x 
x (n - 3) ... 3[n - 3) + (n - 2) +... + 3] u(t) u'a~\t) u"(t) + 
+ ...ua-2(t)u<a-2)(t)}, 

/ » -» ( / ) = Ct{(n - 1)! u'a~l(t) + u(t) {(n - 1)! [(n - 2) + (n - 3) + 

+ ... + 2] M'n-3(r)«"(t) + ... + „n-2(r)u(n"1)(t)}}, 

so that by assumption (P) y(t0) = y'(t0) = ... = yn_2)(to) = 0, while 
/ n _ 1 ) ( to ) = Ct(n - 1)! u"1'1^) # 0, the point t0 is an (n - l>tuple 
zero of the solution y(t) of (n). 

The necessity of the assumption Cn_k =£ 0 for the oscillatory solution y(t) 
of (n) being of the form 

y(0=OECi"n"i(0t'i"1(t), 
i = l 

n-k 

£ C? > 0, 1 ^ k ^ n - 1, n e N, n > 1, to be vanishing with the function uk(0 
i = l 

at a k-tuple zero t0 e I is obvious [for, according to assumption that the point 
t0 e I is a k-tuple zero of y(t) and Cn_k = 0, by the assumption 

n -k 

I c? > 0, 
i = l 

and with respect to the above part of the proof, we should be led to a contradiction 
to the fact that the multiplicity of t0 e I of y(t) of (n) is k]. 

k 

Corollary of Lemma 1.: Any oscillatory solution y(t) = ]T Ciu
n~l(t)vi~l(t) of 

i = l 

the iterated differential equation of the n-th order (n), n e N, n > 1, possessing 
a zero of multiplicity v = n — k, k = I, 2, ..., n — 1, at t0 e I, where w(f0) = 0, 
may be just written in the form 

y(t) = ^'-(mC^'Kt) 4- C2u
k"2(0K0 + ... + Ck-!u(0^"2(0 + Ckv

k-A(0] = 

= ^-'(OEC^-XOt;1-1^) = "n"k(0y*(0, 
i = l 

where C{ e R, i = 1, 2, ..., k, Ck ^ 0, i.e. for k > 1 in the form of a product 
of the (n — k)th power of the function u(t) with the solution y*(t) of the iterated 
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differential equation of the k'* order generating the A>parametric system of func­
tions in the form 

y*(t) = C^'Kt) + C2M
k-2(0^(t) + ... + Ck.tu(t)vk~2(t) + 

+ Ckt)
k-1(0 = £Ciu

k-i(t)i>i-1(0, 
i = l 

wherein Ck ^ 0 [so that y*(t0) ^ 0]. 

Conjugate points 

Definition 1.1: Let t 0 e l = (— oo, +oo) be an arbitrary point and y(t) be an 
arbitrary solution of the differential equation (n) vanishing at it [we will write vt0, 
where v = 1, 2, ..., n — 1; n e N, n > 1, denotes the multiplicity of the point t0]. 
Then the first zero of the solution y(t) lying to the right of vt0 will be called the 
first conjugate point on the right to the point % [we indicate it by writing % , 
where ft e {1, 2, . . . ,n — 1} denotes the multiplicity]. 

Since, by the assumption of oscillatority of the differential equation (1), every 
(nontrivial) solution of the form 

y(t) = I1ciu""i(t)fi"1(t). 
i = l 

n ~ l 

£ C? > 0, n > 1, of the differential equation (n) is oscillatory (in the sense 
i = l 

of [2]), we see that the first conjugate point fltx on the right to the point % with an 
appropriate multiplicity fie {1, 2, ..., n — 1} always exists to an arbitrary point 
vt0 e l = ( -co, +oo), v = 1, 2, ..., n — 1; n e N, n > 1, at which the solution y(t) 
v-times vanishes. 

Theorem 1.1. Let lltx denote the first conjugate point from the right to % , 
where v, fie {1, 2, ..., n — 1}, n e N, n > 1. If: 

1. v = n — 1 then ja = n — I, 
2. v = n — 2 then fi = 1, 
3. v = n — 3 then either ^ = l o r / i = 2or/x = n — 3, 

etc. 

Generally: 

if v = n — k, where 1 < k = n — 1 then either \i = 1 or \i = 2 or ... or \i = 
= k— lo r /x = n — k. 

Proof: Let t0el = ( -co , + oo) be an arbitrary firmly chosen point; we chose 
a basis [u(t)y v(t)] of an oscillatory differential equation (1) such that both functions 
u(t), v(t) and their first derivatives u'(t), v'(t) satisfy the condition (P) at the point t0. 
Let y(t) be such a solution of the differential equation (n) that the point t0, at 
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which this solution together with the function u(t) vanishes, is its v-tuple zero 
[we can write vt0, where v = 1, 2, . . . , n — 1]. 

1. Let v = n — I; then, by Corollary of Lemma L, every oscillatory solution 
of (n) vanishing together with its function un~1(t) at the (n — l)-tuple point n~1t09 

is exactly of the form 

y(t) = du"-HO-

where Cx e R — {0} is an arbitrary constant. 

If we denote by Tx the neighbouring zero of the function u(t) lying to the right 
behind the point t0 such that Tx > t0, then 

X'o) = u(t0) = 0, y(Tx) = u(T,) = 0, 

and it holds for all t e(t0, Tx) both u(t) ^ 0 [because of the continuity of the func­
tion u(t), where for all t e(t0, Tx) holds that either u(t) > 0 or u(t) < 0], and y(t) ^ 
7-- 0; so that no zero of the solution y(t)lies on (t0, Tx) for all zeros of y(t) coincide 
with all zeros of the function u(t) and with respect to the form of y(t) being an 
arbitrary non-zero multiple (Cx 7-= 0) of the function un_1(t), they are (n — l)-tuple 
zeros. Thus it holds 

n - l / _ rp 
li ~ 11 

for the first conjugate point from the right to the point n - 1 l 0 , at which the solu­
tion y(t) of the differential equation (n) vanishes. 

2. Let v = n — 2; then, by the Corollary of Lemma L, every oscillatory solu­
tion of the differential equation (n) vanishing together with the function un_2(t) 
at the (n - 2)-tuple point n - 2 l 0 , is exactly of the form 

y(t) = un~2(t)[Cxu(t) + C2v(t)l 

where C, e R, i = 1, 2, C2 ^ 0, are arbitrary constants. If we denote by Tx the 
neighbouring zero of the function u(t) lying to the right behind the point t0, so 
that Tt > t0, then again 

y(t0) = u(t0) = 0, y(Tx) = u(Tx) = 0, 

and u(t) 7̂  0 holds for all t e (t0, Tx) [i.e. either u(t) > 0 or u(t) < 0], while on 
(t0, Fj) there always lies exactly one and namely simple zero t' of each function 
from the double —parametric system 

y*(t, CX,C2) = Q u ( t ) + C2v(t), 

being always uniquely determined by the choice of constants C{ e R , i = 1, 2, 
whereby C2 i£ 0, for every such function j * ( 0 forms together with the function u(t) 
a pair of linearly independent solutions (i.e. a basis) of the differential equation (1), 
whose all (simple) zeros by Sturm separation theorem mutually separate on the 
interval I = (—00, +00) . Specially, if Cx = 0, then the solution y(t) = 
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= C2u
n 2(t)v(t), C2 7-= 0, possesses exactly one (simple) zero t' on (t09 7\), being; 

the zero of the function v(t), i.e. 

y(f) = v(t') = o. 
Hence 

% = f 
for the first conjugate point from the right to the point n _ 2 l 0 at which the solution 
y(t) of (n) together with the function un~2(t) are vanishing. 

3. Let v = n — 3; then, by Corollary of Lemma 1., every oscillatory solution y(t) 
of (n) vanishing together with the function un~3(0 at the (n — 3)-tuple point n ~V 0 

is exactly of the form 

y(t) = Un~\t) [ClU\t) + C2u(t)v(t) + C3^(0], 

where Cx e R, i = 1, 2, 3, C3 ^ 0, are arbitrary constants. If we denote by Tf 

the neighbouring zero of the function u(t) lying on the right of t0, so that Tt > t0, 
then again 

y('o) = "(to) = 0, y(Tt) = u(Tx) = 0, 

whereby u(t) ^ 0 for all t e(t09 Tx) in consequence of the continuity of the func­
tion u(t). Wheather or not some zeros of the solution y(t) of (n) lie on the interval 
(t0, Tt) decides the existence or nonexistence of zeros of the three-parametric 
function system of the form 

y*(t9 C19C29 C3) = Ctu
2(t) + C2u(t)v(t) + C3v

2(l), (3) 

where C{ e R, i = 1,2, 3, C3 ^ 0, are arbitrary constants. 
For these constants there may occur exactly three different possibilities: 
either C2 - 4CtC3 > 0 or C2 - 4CXC3 = 0 or C2 - 4C1C3 < 0, which-by 

the trichotomy law of real numbers — mutually exclude. 
a) If C2 — 4C!C3 > 0, then there exist four real constants D} e R, j = 1, ..., 4, 

such that 
D!D4 - D2D3 # 0, D2D4 * 0 

(consequently it must simultaneously hold D2 + D2 > 0, D2 + D3 > 0, D2 + 
+ D4 > 0, D3 + D4 > 0), whereby (3) may be written in the form 

y*(t9 Di9 ..., D4) = [Dxu(t) + D2v(0] [D3u(t) + D*v(t)l 

so that —with respect to (3) —there hold the following relations among the previous 
constants Cj e R (i = 1, 2, 3) and those newly introduced Dj e R (j = 1, . . . , 4 ) : 

Ct = D!D3, C2 = DiD4 + D2D39 C3 = D2D4-

This yields that indeed 

C\ - 4QC3 = (DXD4 + D2D3)
2 - 4D!D3D2D4 = 

= (D!D4 " D2D3)2 > 0 
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exactly if DXD4 - D2D3 # 0 and besides-in consequence of the assumption that 
C3 7- 0 - a l s o D2D4 # 0. If we denote 

y*(t9Dl9D2) = D,u(0 + D2v(t)9 

y*(t, D3, D4) = D3u(0 + D4v(0, 

then the above established assumptions on constants D} e R (j = 1, ..., 4) mean 
both the double-parametric function systems y*(t9 D1?D2), yt(t9 D3, D4) to be 
on I = ( - c o , + co) linearly independent not only of each other but each of them 
with the function u(t), too. Since the functions y*(t)9 y*2(t) and u(t) denote for any 
(admissible) choice of constants Dj e R (j = V ..., 4) a triple of always two and 
two linearly independent solutions of the oscillatory differential equation (1), 
then every of these solutions possesses simple, mutually separating zeros on I = 
= (—oo, +oo). 

Thus, with respect to the solution y(t) of the differential equation (n) [up to an 
arbitrary non-zero multiplicative constant C e R — {0}] of the form 

y(t) = U*-3(t)y*(t)y*2(t), 

all simple zeros of both functions y*(t)9 y*(0 mutually separate on I = ( — oo, + oo) 
with each other on one hand and together with the (n — 3)-tuple zeros of the 
function un~3(t) on the other hand. Thereby always exactly one (simple) zero both 
of the function y*(t) and of the function y*(t) lies on the interval (t0, Tt), i.e. if we 
denote these zeros of the functions y*(t)9 y*(t) by f* and t**, respectively, then we 
have either 

t0 < t* < l** < Tj 
or 

to < l** <t* <Tt. 

In this case the solution y(t) of the differential equation (n) possesses all its 
(n — 3)-tuple zeros and simple zeros; between any two neighbouring (n — 3)-tuple 
zeros there lie exactly two simple zeros. 

Hence it holds 
1ti = t* or lt1 = t'** 

for the first conjugate point from the right to the point n ~ 3 / 0 , a* which the solu­
tion y(t) of the differential equation (n) vanishes together with the function un~3(t). 

b) If C2 - 4C tC3 = 0, then there exist two real constants Dj e R, j = 1,2,. 
such that D2 ?-• 0 and in this case (3) may be written as 

y*(t9 Dx, D2) = X[Dxu(t) + D2v(l)]2, where X = + 1 , 

so that between the previous constants Ci e R (i = 1, 2, 3) in (3) and those newly 

established constants Dj e R (j = 1, 2), the following relations 

Q = W\9 C2 = 2AD,D2, C3 = W\ 

hold. 
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From this follows that indeed 

C2 - 4C!C3 = (2XD1D2)
2 - AXD\kD\ = 0 

holds and besides, in consequence of the assumption C3 # 0, we have also D2 # 0. 
Denoting 

y\(t9Dl9D2) = DlU(t) + D2v(t)9 

such that 
y*(t9Dl9D2) = Xy*2(t9Dl9D2)9 

then the established assumption on constants Dj e R (j = 1,2) implies that the 
double-parametric system y*(t9 Dx, D2) is with the function u(t) linearly independent 
on I = (— oo, + oo). Since for any (admissible) choice of constants Dj e R (j = 1, 2) 
the functions y*(t) and u(t) denote a couple of linearly independent solutions of the 
oscillatory differential equation (1), then every function y*(t) belonging to a double-
parametric function system y*(t9 Dx, D2) possesses simple zeros mutually separating 
with all (simple) zeros of the function u(t) on I = (— oo, +oo). 

Thus, with respect to the solution y(t) of the differential equation (n) [up to an 
arbitrary non-zero multiplicative constant CeR — {0]] of the form 

j(0 = ""-3(0Ay?2(0 

all double-zeros of the function y*2(t) are mutually separating on I = (— oo, + oo), 
with all (n — 3)-tuple zeros of the function un~3(t). [Specially, if Cl = C2 = 0, 
C3 T~= 0, is true in (3), then the solution of the differential equation (n) is of the form 

y(t)= C3u
n"3(t)v2(t), 

such that (n — 3)-tuple zeros of the function un~3(t) alternate the double zeros of the 
function v2(t) on I = ( - c o , -f-co)]. 

Then exactly one double-zero of the function y*(t9 Dl9 D2) lies on the interval 
(t0 , Tt), i.e. if we denote it by t*, then t* e(t0, T±)9 hence 

t0 < t* < T1. 

In this case the solution y(t) of the differential equation (n) possesses all its 
zeros, both the (n — 3)-tuple zeros and the double zeros. Between each two neigh­
bouring (n — 3)-tuple zeros there always lies exactly one double zero. 

Hence 
2l1 = t* 

holds for the first conjugate point from the right to the point n~"3l0, at which the 
solution y(t) of the differential equation (n) together with the function un™3(t) 
vanishes. 

c) If C2 - 4CXC3 < 0, then there exist four complex constants Dj e K (where K 
denotes a set of all complex numbers), j = V ..., 4, such that 

DXD4 - D2D3 # 0, Dj 96 0 for j = 1, ..., 4, 
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whereby (3) may be written as 

y*(t, Dl9 ..., D4) = [Dxu(0 + D2v(t)] [D3u(t) + D4v(OL 

so that with respect to (3) the relations 

Cx = D!D3, C2 = D!D4 + D2D3, C3 = D2D4 

hold between the real constants Q e R (i = 1, 2, 3) and the complex constants 
^ e K 0 = l , - , 4 ) . 

From this it follows that, indeed, 

C2 ~ 4C!C3 = (D!D4 + D2D3)
2 ~ 4D!D3D2D4 = 

= (D!D4 - D2D3)
2 < 0 

exactly if 
D!D4 ~ D2D3 # 0 

and moreover —in consequence of the assumption that C3 ^ 0 —there must 

D2D4 # 0 
hold. 

Since, according to the inequality C2 — 4CXC3 < 0 there must hold besides 
C3 7̂  0 also Cj 7- 0, which implies also 

D1D3 * 0, 

i.e. D^K- {0},j = 1, . . . , 4 . 
We show the existence of complex constants D} e K — {0}, j = 1, ..., 4, of the 

above properties to correspond to the existence of the four real constants E} e R 
(j = 1, ..., 4) such that 

FXF4 - F2F3 7-O, El + El > 0 and E2
2 + F2 > 0, 

whereby (3) may also be written as 

y*(f,Fx, . . . ,F4) = X{[E,u(t) + F2v(t)]2 + [E3u(t) + F4v(l)]2}, 

where X = + 1 , whence against (3) we see that between the previous constants 
Ci G R (i = 1, 2, 3) and the newly introduced (also real) constants Fj e R (j = 
= I, ..., 4) there must simultaneously hold 

, Cx = X(E2 + F2), C2 = 2^(F!F2 + F3F4), C3 = A(F2 + F2). 

Hence, the following equalities 

D!D3 = A(F2 + F3
2), 

DtD4 + D2D3 = 1X(EXE2 + F3F4), 

D2D4 = X(E2 + F2), 
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must simultaneously hold between the complex constants Dj e K — {0},j == 1, , . . , 4 , 
and the new real constants E} eR , j = 1, . . . , 4. From this we obtain relations 

Dx = X(EX + F3i), D2 = A(F2 + F4i), 

D3 = Fx - F3i, D4 = F2 - F4i, 

where i e K is a complex (pure imaginary) unit. Then indeed 

C\ - 4CXC3 = [2X(EXE2 + F3F4)]
2 - 4X(E\ + F2) X(E2 + F2) = 

= 4X2(2EXE2E3E4 - E2E2 - E2
tE

2
4) = 

= -4(EXE4 - F2F3)
2 < 0, 

exactly if F!F4 — F2F3 7- 0 holds and with respect to CXC3 ^ 0 there holds 
moreover 

E2
t + Ff > 0 and F2 + F2 > 0. 

If we denote 

y*(t9El9E2) = Exu(t) + F2v(t), 

y*(t,F3,F4) = F3u(t) + F4v(t), 

then the above assumptions on constants E} e R (j = 1, . . . ,4) imply that both 
double-parametric systems of functions y*(t9 Ex, F2) and y*(t9 F3, F4) are linearly 
independent on I = (—oo, +oo). Since the functions y*(t) and y*(t) form a pair 
of linearly independent solutions of the oscillatory differential equations (1) for 
every (admissible) choice of constants E} e R (j = V . . . ,4 ) , then every of these 
solutions has simple mutually separating zeros on I = ( - c o , +oo). 

From this it especially follows that both functions y*(t) and y*(t) obtained from 
the systems yx(t9 Et, E2) and y2(t9E39E4) by an arbitrary (admissible) choice of 
constants E} e R, j = 1, ..., 4, possess no common zero on I = (— oo, +co). 

Since no zero exists on I = (— oo, + oo) at which both double-parametric 
systems of functions y*(t9 Ex, F2) and y*(t9 F3, F4) would simultaneously vanish, 
then the sum of its squares, i.e. the four-parametric function system 

y*(t9EX9 . . . ,F4) = X{[Exu(t) + F2v(t)]2 + [F3u(0 + F4v(l)]2} 

has no zeros on I = (— oo, +oo). 
Thus, the system y*(t9El9 . . . ,F4) because of its continuity and because of 

X = + l i s either still pos i t ive^ = 1) or still negative (X = — l ) o n I = ( — oo, +oo). 
That is why the solution y(t) of the differential equation (n), being [up to an 

arbitrary nonzero multiplicative constant Ce R — {0}[ of the form 

y(t) = ua-\t)Xy*(t9EX9...9E4)9 

has but (n — 3)-tuple zeros on I = (— oo, + oo) presenting at the same time the 

zeros of the function un~3(0-
[Specially: If in (3) C2 = 0 and sgn Cx = sgn C3 ^ 0 (i.e. simultaneously either 
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C! > 0 and C3 > 0 or Cj < 0 and C3 < 0) holds, then the solution y(t) of the 
differential equation (n) (up to an arbitrary nonzero multiplicative constant 
C G R - {0}), is of the form 

X0 = un"3(0y*(^c1,C3), 

where y*(f9 Cl, C3) = Ctu
2(t) + C3v

2(l) for all Q e R, i = 1,3, fulfilling the above 
assumptions, denotes a double-parametric system of functions on I = (— oo, + oo), 
being either positive (Ct > 0 and C3 > 0) or negative (C1 < 0 and C3 < 0), 
consequently having no zeros here; the only zeros of the solution y(t) of the 
differential equation (n) are thus the (n — 3)-tuple zeros of the function un~3(t) 
only]. 

In this final case the oscillatory solution y(t) of the differential equation (n) has 
no zero on the interval (t0, Tt). Since such a solution y(t) vanishes in the whole 
interval I = (— oo, + oo) exactly at the (n — 3)-tuple zeros of the function un~3(.0, 
it holds: the first conjugate point to the point n"3l0 from the right is exactly the 
neighbouring (n — 3)-tuple zero of the function un"3(t) lying to the right of the 
point n~3i /

0, i.e. 
n~3 '1 = r - -

k) Let (generally) v = n — k, where 1 < k ^ n — 1, n e N, n > 1; then, by the 
Corollary of Lemma 1., every oscillatory solution y(t) of the differential equation (n) 
vanishing together with the function un"k(t) at the (n — k)-tuple zero n~kl0 e I = 
= (— oo, + oo), is exactly of the form 

y(t) = un~k(t) [Ciu^HO + C2u
k"2(lM0 + ... + 

+ Ck_1u(0^k-2(0 + ckvk-1(t)], 

where Q e R, i = \, 2, ..., k, Ck ^ 0, are arbitrary constants (parameters). 
Let US denote by 7\ a neighbouring point of the function u(t) lying on the right 

behind the point t0, so that 7\ > t0; then 

y(>o) = <t0) = 0, y(Tx) - u(Tx) = 0, 

whereby for all t e (t0, Tx) is u(l) ?- 0 true. 
Whether between both points t0, Tx some zeros of the solution y(t) of the 

differential equation (n) are lying or not [i.e. whether for all t e (t0, T{) is y(t) ^ 0 
true] decides the existence or nonexistence of zeros of the k-parametric system of 
functions having the form 

y*(t9 Cl9 ..., Ck) = Ctu
k-l(t) + C2u

k-2(t)v(0 + ... + 

+ Ck_1u(t)vk-2(t)+Ckv
k"1(0, (4) 

always uniquely determined by the choice of all k constants C{ 6 R, i = 1, 2, ..., k, 
Ck ^ 0 . 
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First we see that no zero of the arbitrary function y*(t) obtained from the 
system y*(t, Cl9 ..., Ck) by an arbitrary choice of constants Cx e R, i = 1, 2, ..., 
k — 1, Ck 7̂  0 — so far such a point exists —cannot be simultaneously a zero 
of the function u(t) and reversely [which follows from the assumption that both 
functions u(t), v(t) form a basis of the differential equation (1), from the condition 
Ck ?- 0 — of Lemma 1.—and from the Sturm theorem on mutual separating of all 
zeros of any two oscillatory linearly independent solutions of the differential 
equation (1) or their arbitrary natural power up to including the degree k — 1, 
by which the basis (B) of all solutions y(t) of the differential equation (n) is formed]. 

The k-parametric system of functions y*(t, Cl9 ..., C^ is a homogeneous poly­
nomial of the (k — l)s* degree in the functions u(t) and v(t). 

If we restrict the values of the argument t to an open interval (t0, Tt) only, 
where u(t) # 0 [since for all /e( t 0 , Tt) either u(t) > 0 or u(t) < 0] and because 
of the assumption Ck ^ 0, we can write 

y*(t9cl9...9ck)~ 

-cu*->(*ftmY1+ C*~* fv(t)T\ + °2 V(t) + M 

Denoting 

w « = -ЃŚт a n d
 C І ' ^ % 1 - . i-i,2,...,k-i, 

u(í) Ck 
so that 

y*(t9C{9...9C^l9Ck)= (5) 

= C^'\t)[^'\t) + C[wk~2(t) + C2V"3(0 + ... + C^2w(t) + Q.-J; 

because both functions u(t), v(t) are linearly independent on I = (—oo, +oo) 
according to the assumption, the function w(t) on the interval (t0, Tt) doesnot 
equal to a constant function. 

The question regarding the existence of zeros of the solution y(t) of the differenti­
al equation (n) on the interval (to,^), i.e. the existence of such points t* e (t09 Tt) 
at which u(t*)?-0 but y(t*) = y*(t*, C[, ..., Ck_1? Ck) = 0, reduces to the question 
of the existence of zeros of the functional polynomial of the (k — l)s ' degree in 
the function w(t) having the form 

E C > k - l - J ( l ) , where C0 = 1, (6) 
j = 0 

i.e. practically to the question of solving algebraic equation of the (k — l)st degree 
with constant real coefficients 

wk~'(t) + C[wk~2(t) + C2V~3(t) + ... + C^2w(t) + C ^ i = 0. (7) 
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For our considerations only real solutions of this problem are meaningful, i.e. only 
the existence (and multiplicity) of real roots Ls e R, j e {1, 2, ..., k — 1}, of this 
equation is of interest for us. 

According to the fundamental theorem of algebra there always exists exactly 
k —- 1 (generally complex) constants X} e K, j = 1, 2, ..., k — 1, such that by 
arbitrary firmly chosen coefficients C\ eR (j = 1,2,..., k — 1) for the decompositi­
on of the polynomial (6) we have 

Wk'\t) + Ciwk"2(0 + ... + C._2W(0 + Ck_x = J ! M O - A;], (W) 
j = l 

k - 1 

C[ = -(Ai + ... + A,^) = - £ V 
P = I 

G 2 = /ii/L2 + Ai / i 3 + ... + A j / l k _ j + A 2 / < 3 + A2./l4. + . . . + 

whereby 

+ Ak_2Ak_1 — 2J XpXq, 
p .«= i 
(p<4) 

C 3 = — (/t iA2A3 + . . . + A2A3A4 + . . . + 

k - 1 
+ /k_3Ak_2Ak_1) = — 2̂  ApAgAr, 

.P. 9,r=l 
(p<q<r) 

Ci-i = ( - l ) k _ 1 AtA2 ... Ak_x = ( - l f - ^ n Aj. 
j = i 

In solving equation (7) there may occur the following cases: 
a) equation (7) possesses all roots Aj? j = 1, 2, ..., k — 1, real, simple, different 

from one another 
P) equation (7) possesses all roots X-v j e {1, 2, ..., k — 1} real, multiple, where 

denoting their multiplicities by vl5 ..., vm (vse N, s -= 1, ..., m; m <J k — 1), we 
have 

vx + v2 + ... + vm = k - 1. 

y) Among the roots Aj} j = 1, 2, ..., k — 1, of equation (7) there occurs one 
simple complex (imaginary) root at least. Let us denote if by A- = a + ib, where 
a, be R, b =>-= 0; i is a pure imaginary unit. Then, respecting the coefficients Cj, 
j = 1, 2, ..., k — 1, of the functional polynomial (w) being altogether real, there 
necessarily exists among the remaining k — 2 roots of equation (7) another 
imaginary root, being complex conjugate to the first root k1. If we denote it A2 = 
= AX = a — ib, then the decomposition of the polynomial (w) has the form 

[w(0 - (« + iby] [w(0 -(a- iby]fl [w(0 - Aj], 
j = 3 
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i .e . 

{WO^r + ^ n M O - A j . 
j = 3 

k - 1 

Remark that in case when the polynomial £ [w(t) — Aj] is of odd degree s = 
j = 3 

= k — 3 (SO that the number k e N, k > 3 is even), then it necessarily has at least 
one real root, while in case when its degree s = k — 3 is even (so that the number 
k > 3 is odd), this polynomial need not have any real root. 

S) Among the roots X-v j = 1, 2, ..., k — V of equation (7) occurs at least one 
/ k - 1 \ 

v-multiple { v e N, v _̂  —-— J imaginary root; let us denote it again Xt = a + ib, 
where a, b e R, b ^ 0, i is the pure imaginary unit. Then [respecting again that all 
coefficients Cj, j = 1, 2, ..., k — 1, of the functional polynomial (w) are real] 
there necessarily exists among the remaining k — 1 — v roots of equation (7) 
another imaginary root being complex conjugate to the first v-multiple root Xx 

and namely with the same multiplicity v; if we denote it X2 = Xx = a — ib, then 
the decomposition of the polynomial (w) has the form 

[w(0-(a+ift)]v[w(0-(a-iO)]v J! IXO-Aj], 
j = 2 v + l 

i.e. 

{Mt)-af + b2Y Yi [w(0-A/J. 
j = 2 v + l 

A remark analogous to that of y) would refer to the oddness or evenness of 
k - l 

degree s = k — 2(v + 1) of the polynomial J\ _w(0 ~~ Aj]. 
j = 2 v + l 

Let US remark, that the case a) or y) may be included into the case j5) or S), 
when vl = v2 = ... = vk_t = 1 (i.e. m = k — 1) or v = 1. But for completeness 
of the proof to Theorem 1.1 we must consider the cases a) — 5) in detail and by 
themselves. 

1. In case a) the existence of the k — 1 real numbers X-} e R, X{ # X-} for i, j = 
= I, 2, ..., k — 1, i =£ j , such that there hold k — 1 equations 

w(t) = Xi9 j = 1,2, . . . , k - 1 

denotes the existence of k — 1 mutually different points tf, t2, ..., tk_t lying in the 
interval (t0, Tx) such that 

w('*) = AJf j = 1,2, . . . ,k - 1 

which, with respect to the previous significance of the function w(t) as the quotient 

of functions v(t) and w(t) on the interval (t0, Tt) denotes the existence of k — 1 
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pairs of constants <?ji, c)2 e R, j = 1, 2, ..., k - 1, for which 

cnci2 ~ cj2cn # 0, Oj2 7- 0, i ^ j , 

i , j = 1,2, ...,k- 1 

holds such that the point t* is a simple zero of any of the functions 

yi(0 = cnu(t) + c j2v(0, j = 1, 2, ..., k - 1, 

on the interval (t0, Fx); whereby Xj = - — , j = 1, 2, ..., k - 1. 
C}2 

Thus the system of functions y*(t, Cl9 ..., Ck), cf. (4), occurring by the writing 
of the solution y(t) of the differential equation (n) sub k), may be written as 
2(k — l)-parametric system having the form 

k - l 

y*(t> cll9c12, ..., c k _ l f l , c k - l i 2 ) = I I l>jiw(0 + CJ2^(0] 
j = i 

and the very solution y(t) of (n) is [possibly up to an arbitrary nonzero multiplicative 
constant C e R - {0}] of the torm 

X 0 = t / n - k ( 0 r i [ c j i w ( 0 + c j2v(0]. 
j = l 

Here it holds: any of the functions y-}(t) = cnu(t) + cj2(l), j = 1, 2, ..., k — 1, 
by an arbitrary firm choice of constants cn, c}2 e R, cj2 # 0, always denotes 
a particular solution of the differential equation (1) and besides, any two of these 
solutions are with respect to the condition cnci2 — cj^ii # 0, i # j , i, j = 1, 2, ..., 
k — 1, linearly independent to each other on I = ( —oo, +oo). According to 
Sturm separation theorem, all (simple) zeros of any two linearly independent 
oscillatory solutions of (1) are separating each other, so that on I = (—oo, + oo) 

t* * tf, i # j , 

i, j = 1, 2, ..., k — 1, holds. 
Since any of the functions y}(t), j = 1, 2, ..., k — 1, with respect to the assump­

tion c j2 5̂  0 is linearly independent also of the function u(t) on I = (— oo, +oo), 
then all zeros of any such function mutually separate moreover with all zeros of the 
function u(t). 

Hence it is that even on any open interval (Fn, Fn+1), n = 0, + 1 , + 2 , ..., 
where Fn, Fn + 1 are two neighbouring zeros of the function u(t), there always lie 
exactly k - 1 simple zeros of the system y*(t, Cl9 ..., Ck) of the form (4) [for an 
arbitrary - admissible - choice of constants C} e R, j = 1, 2, ..., k] and thus 
also of the solution y(t) of (n), each of which always belongs to one of the functions 
yj(0-j = V 2, ..., k — V from the system (4) obtained by such a choice of constants 
CjGR. 

4b 
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Thus for the first conjugate point from the right to the point n-^t e l = 
= (—00, +00) at which the solution y(t) of the differential equation (n) together 
with the function un_k(l) are vanishing, we have 

- 1 — Tj > 

where t* is the simple zero of a particular solution yfit) of the differential equation 
(1), j = 1, 2, ..., k — 1, being linearly independent of the function u(t) lying in 
(/0, Tt), where Tt denotes the neighbouring zero of the function u(t) lying on the 
right of the point t0. Naturally, we assume the point t * under consideration to be 
the first in the series of all k — I zeros tf, t*, ..., t*_t e (t0, Tt) belonging always 
(one at a time) to any particular function y*(t) = cnu(t) + cj2v(l) from the system 
y*(t, cli9 cl2, ..., ck-iti, ck„12) obtained by an arbitrary (admissible) choice of 
constants cn, cj2 e R (j = 1, 2, ..., k — 1). 

2. In case /?), to the existence m, m e {1, 2, ..., k - 1}, real mutually different 
roots Aj e R, j = 1, 2, ..., m, of equation (7) having multiplicities vl5 v2, ..., vm 

(vs e N, s = 1, 2, ..., m) corresponds the existence m of mutually different points 
^ ^ • • M ^ ^ O J I ) such that 

w(t*) = ylj, j = 1,2, ...,m 

which implies that there exist m pairs of real constants cjx, cj2 e R, cj!ci2 — ci2cn 7* 
7* 0, cj2 7- 0, i 7-j, i,j = 1, 2, ..., m, such that the point t* is a simple zero of 
any from the functions y}(t) = cjjLu(0 + cj2v(t), j = 1, 2, ..., m, and consequently 
vs-multiple, s e {1, 2, ..., m}, zero of the function 

ij(0 = y?(0 

on the interval (t0, Tx); whereby X} = —-^-, j = 1, 2, ..., m. 
CJ2 

Thus, system (4) of the functions y*(t, Cx, ..., Ck) occuring in the writingy(t) 
of the differential equation (n) under k) may be written as a 2m-parametric system 
having the form 

m 

y*(t> cll9cl2,..., cml, cm2) = [ ] \_cnu(t) + cj2v(0]VJ> 

hence, the every solution y(t) of the differential equation (n) is [possibly up to an 
arbitrary nonzero multiplicative constant C e R - {0}] of the form 

m 

y(t)==u»-k(t)Y\[cnu(t) + ci2v(t)T. 
j = i 

Since each two from the total m functions yft) = cnu(t) + cj2v(0> j = 1, 2,..., m, 
are by an arbitrary (firm) choice of constants cn, cj2 e R with, respect to conditions 
£ji<T2 - c j2ca # 0, cj2 ^ 0, i ¥= j , i,j = 1, 2, ..., m, linearly independent (parti-
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cular) solutions of the differential equation (1) to each other, then all zeros 

V l t * , V 2 t * , ...,v»t*G(t0,Ti) 

of the functions Y^(t) are mutually separating in (t0, Pi). 
Next, since every of the m functions yft) is with respect to the assumption cj2 ^ 0, 

= 1,2, ...,m, a solution of the differential equation (1) linearly independent 
of the function u(t), then besides, all zeros of each function y}(t) — and so even 
the function Yj(t) — are separating with all zeros of the function u(t) and so even 
of the function un_k(t). 

Thus, even on an arbitrary open interval (Tn, Fn + i) <- (— oo, +oo), n = 
= 0, + 1, ±2, ..., where Tn,Tn + 1 are two neighbouring zeros of the function u(t)y 

the system y*(t, Cl9 ..., Ck) of (4) [for any - admissible — choice of constants 
Cj e R, j = 1,2, ..., k] and thus also the solution y(t) of (n) has always m mutually 
different zeros with multiplicities vl9 v2, ..., vm every of which belongs always 
to one of the functions Y}(t) from system (4) obtained by such a choice of constants 
Cj e R. 

Consequently, the first conjugate point from the right to the point n"kt0 e I = 
= ( — oo, + oo) at which the solution y(t) of the differential equation (n) together 
with the function un~k(t) are vanishing, is exactly that vs-multiple point v"/*, 
s G {1, 2, ..., m}, from the set of all zeros 

Vlt*, V2t*, ...,Vn7*e(t0, TO 

belonging always (one at a time) to any particular function Yj(t) = [cjiu(l) + cj2v(0]Vj 

from the system y*(t, cll9 c12, ..., cml, cm2) [obtained by an arbitrary - admiss­
ible — choice of constants cn, cj2 e R, j = 1, 2, ..., m] lying the first from the left 
in the interval (t0, Tt)9 i.e. before all other m — 1 zeros of the remaining multi­
plicities. Then we can write 

Vsti = v't*. 

In case k — 1 = vm, where v e N and if vx = v2 = ... = vm = v, then system (4) 
of functions y*(t, Cl9 ..., Ck) and thus also the solution y(t) of the differential 
equation (n) has in (t0, Tt) exactly m mutually different zeros t*9t*, ...,/m with 

= k - 1 is v = _ Z _ V Let the same multiplicity v ífor v̂  + v2 + . •• + V 
\ 

for their arrangement on (t0, Tx) holds: 
t* < t*< .. • <C; 

then the first conjugate point from the right to the point n~*t0 is the point 
yt — t* li — li -

Specially for m = k — 1, where v = 1, we get the case a). 
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Let us remark to the case when the equation (7) has only one (k — l)-multiple 
root X e R, i.e. when m = 1, corresponds the existence exactly of one and namely 
(k — l)-tuple zero t* of the system (4) of functions y*(t, Cl9 ..., Ck) and thus also 
of the solution y(t) of the differential equation (n) on interval (t0, Tt). Hence, the 
first conjugate point from the right to the point n~kt0 then is the point 

k - l 
ř i t t = r 

3. In case y), where among the roots k-v j = 1, 2, ..., k — 1, of equation (7) is 
occurring at least one pair of simple imaginary complex conjugate roots (thus we 
must assume k — 1 = 2, i.e. k > 2), then equation (7) may have k — 1 — 2 = 
= k — 3 real roots at most (with the sum of their multiplicities k — 3 as well). 
Generally: if among the k — 1 roots L} of equation (7) there occur exactly p (p e N) 
simple imaginary complex conjugate pairs of roots (and therefore k — 1 = 2p), 
let us denote them 

Xs = as + ib s , l% = as - ib 9, 

where as, bs e R, bs ?- 0, s = 1,2, ..., p, then the sum of multiplicities of the real 
roots of equation (7) equals to k — 2p — 1. 
Let us distinguish two possibilities: 

ji) k — 1 is an odd number. Thus we may write k = 2(q + 1), where q e N, 
q —̂  p. Then there exists at least one real root of equation (7), for the sum of the 
remaining multiplicities is 2# -h 2 — 2p — 1 = 2(q — p) + 1 [in case of q = p 
is the remaining single real root of equation (7) simple]. Equation (7) has the form 

n (wo - - j 2 + bi} n 1 o(o - AJ]=o. 
s = l j = 2 p + l 

For the existence of m, m e {1, 2, ..., 2(q — p) -f 1}, real, mutually different roots 
/lj e R, j = 1, 2, ..., m, of equation 

2qn rXo-Aj3 = o 
j = 2 p + l 

with the multiplicities v1? v2, ..., vm (VJ e N, j = 1, 2, ..., m) and to them cor­
responding m mutually different points t*, t*, ..., t* 6 (t0, 7\) such that 

w(tj*) = A;, j = 1,2, ...,m 

the considerations are analogous to p). 
The first conjugate point from the right to the point n ~ k t 0 e l = (-co, + co) 

at which the solution y(t) of the differential equation (n) together with the function 
un~k(t) are vanishing, is exactly that vs-multiple point Vst*, s e {I, 2, ..., m}, of the 
set of points 

V W * V2f* V m / * 
I , I , . . . , t , 
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which with respect to their arrangement in the interval (f0, Tt) lies on the left 
from the others as the first of them. 

Specially if q = p9 when equation (7) has exactly one and namely simple real 
root X' eR, to which in (l0, Tt) corresponds one and only one simple zero t* of 
system (4) of functions y*(t9 Cl9 ..., Ck) and thus also the solution y(t) of the 
differential equation (n), the first conjugate point from the right to the point n~kf0 

is exactly the point 
% = t*. 

y2) k — 1 is an even number, such that we may write k = 2q -f 1, where 
q G N, q ^ p. 

If q > p9 then there exists at least one real root of equation (7), for the sum 
of multiplicities of the remaining real roots is 2q 4- 1 — 1 — 2p -= 2(q — p); in 
case of q = p, equation (7) has no (real) solution, i.e. there exists no real root to 
which an existence of at least one point in (t0, Tt) would correspond, at which the 
function w(t) would be vanishing. Equation (7) has the form 

fl{[w(0-a8Y + fes
2} II [w(0-A;] = 0, 

s = l j = 2 p + l 

whereby on the existence of its (real) solution just equation 

n i>(o~^]-=o 
j = 2 p + l 

decides. 
If this equation of the 2(q — p)th degree has m [where m e {1, 2, ..., 2(q — p)}] 

real mutually different roots X\ e R, j = 1,2, ..., m, with multiplicities vr, v2, ... ,vm 
m 

[VJ e N, j = 1, 2, ..., m, whereby £ Vj = 2(q — p)], then to them correspond m 
j = i 

mutually different points 
ti,tL...9lZe(t09T1) 

such that 
w(t*) = A;, j = l,2, ...,m 

[cf. again considerations under /?)]. 
The first conjugate point from the right to the point n ~ k t 0 e l = ( -co, -Fco), 

at which the solution y(t) of the differential equation (n) together with the function 
ull~k(t) are vanishing, is exactly that vs-multiple point VV*, s e {1, 2, ..., m}, from 
the set of points 

v w * v 2 / * v m / * 
i , i , . . . , i , 

which with respect to their arrangement in the interval (t09 Tx) lies on the left 
as the first of them. 

Specially, if a = p, when equation (7) has no real root, the system (4) of functions 

109 



y*(t, Cx, ..., Ck) and thus also the solution y(t) of the differential equation (n) has 
no zero in the open interval (t0, Tt), so that 

ll — i l » 

i.e. the first conjugate point from the right to the point n~kt0 is exactly the first 
(neighbouring) zero of the function u(t) lying on the right of the point t0. 

In this last (special) case system (4) of functions y*(t, Cl9 ..., Ck) has — by any 
choice of parameters Cj e R, j = 1, 2, ..., k. Ck # 0, corresponding to the given 
conditions — no zeros on the whole interval I = (— co, + oo) [so that with respect 
to its continuity on this interval I there hold either still y*(t, Cl9 ..., Ck) > 0 or 
still y*(t, C1? ..., Ck) < 0] and therefore all zeros of solution y(t) of the differential 
equation (n) coincide with those zeros of the function un~k(t) and are throughout 
of multiplicity v = n — k. 

4. In case 8) instead of simple complex conjugate imaginary pairs of roots of 
equation (7) we consider their possibly multiplicities in a manner completely 
analogous to that used in y) including distinguishing two possibilities, where 
8i) k — 1 is an odd number [there always exists at least one real simple or multiple 

root of the corresponding equation (7)] or where 
82) k — 1 is an even number [there need not exist any real solution of the cor­
responding equation (7)]. 

If we assume — in this most general case — that the equation (7) has exactly p 
(p G N) complex (imaginary) mutually different roots 

X% = as + ib s , 

a%, b% e R, bs ?- 0, s = 1, 2, ..., p, with multiplicities vx, ..., vp e N, whereby 
p k — 1 

Iv s = M^A_L 
s = l L 

then between remaining roots of (7) there exist again p complex - and namely 
conjugate — roots 

\ = as - ibs 
p 

with corresponding multiplicities equal v ls ..., vs, for each ]T vs = M also holds. 
s-=t 

Equation (7) is now of the form 

n {[w(o - a9]
2 + biy "n w o - w - o-

5 = 1 j = 2 M + l 

On existence (and multiplicities) of the real roots X\ e R, j e {2M -f 1, ..., k — 1} 
of (7) only equation 

j = 2 M + l 
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decides (with total multiplicity M' = k — 1 — 2M ^ 0 remaining for these roots). 
The next considerations would virtually follow all those under y) [together 

with appealing to the corresponding considerations under /?)], where we should 
get results concerning the existence and multiplicity of the first conjugate point 
from the right to the point n - k r 0 e l = (— oo, -f-oo), at which the solution y(t) 
of the differential equation (n) together with the function un_k(t) are vanishing. 

It turned out that such a point lies in all cases either in an open interval (t0, Tt) 
and is of multiplicity fie {1,2, . . . ,k — 3} at most such that 

l ^ ^ k - l - 2 M < k - l 

always holds; or such a point coincides with the first (neighbouring) zero Tx of the 
function u(t) lying to the right of the point t0 and is of multiplicity ix = n — k. 

By this our Theorem LI is completely prooved. 

REFERENCES 

[1] Z. Hus tý: O iteraci homogennich lineárních diferenciálních rovnic; Sborník VŠZ a ïes. fakulty 
v Brně, č. 4,1956. 

[2] O. Borůvka : Lineare Differentialtransformationen 2. Ordnung; VEB Deutscheг Verlag deг 
Wissenschaften, Berlin, 1967. 

[3] T. L. ShQľmзin:PropertiesofsoľutionsofNthorder linear differentiai equations; Pacific J. Math., 
Vol. 15, No. 3, 1965 

[4] V. Vlček: Conjugate points of solutions of a fourth-order iterated ľinear differentiaľ equation; 
Acta UP Olom., F. R. N., Tom 53, 1977. 

[5] V. V lčеk: On a distribution of zeros of soľutions of a fourth-order iterated ľinear differentiaľ 
equation; Acta UP Olom., F. R. N., Tom 57, 1978. 

Souhrn 

PRVÝ KONJUGOVANÝ BOD Ř E Š E N Í ITEROVANÉ 
D I F E R E N C I Á L N Í ROVNICE N-tého ŘÁDU 

V L A D I M Í R VLČEK 

V práci je studována iterovaná lineární diferenciální rovnice n-tého řádu (n), 
jejímž obecným řešením je homogenní polynom (n — l)-ho stupně s n libovolnými 
(reálnými) koeficienty ve funkcích u(t), v(t), tvořících bázi oscilatorické lineární 
homogenní diferenciální rovnice 2. řádu v Jacobiho tvaru. 

Ke studiu nulových bodů řešení diferenciální rovnice (n) je vybrán systém všech 
jejích oscilatorických řešení, které se spolu s funkcí u(t) anulují v libovolném pevně 
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zvoleném bod t0 є I = ( — 00, + 00); přitom v Lemmě 1 je dokázána nutná a po-
stačující podmínka k tomu, aby t0 byl práv k-násobným (k = 1, 2, ..., n — 1) 
nulovým bodem takového systému řešení dif. rovnice (n). 

Po zavedení pojmu tzv. 1. konjugovaného bodu zprava k bodu t0 pak podstat-
nou část práce tvoří důkaz věty o existenci a všech možných násobnostech takového 
bodu do (n — l)-ho řádu včetn . 

Резюме 

ПЕРВАЯ С О П Р Я Ж Е Н Н А Я ТОЧКА Р Е Ш Е Н И Я 
ИТЕРИРОВАННОГО Д И Ф Ф Е Р Е Н Ц И А Л Ь Н О Г О 

У Р А В Н Е Н И Я л-того П О Р Я Д К А 

В Л А Д И М И Р ВЛЧЕК 

В работе изучается итерированное линейное дифференциальное уравнение 
п-того порядка (п), общим решением котогоро является однородный полином 
(п — 1)-ой степени с п произвольными (существенными) коеффициентами 
в функциях и(1), у({), осуществляющих базис осцилляционного линейного 
однородного дифференциального уравнения 2-го порядка типа Якобы. 

К изучению нулевых точек решений дифференциального уравнения (п) 
избранна система всех таких его колеблющихся решений, которые вместе 
с функцией и(*) аннулируются в любой фиксированно выбранной точке 10 е I = 
= (~оо, +со). При этом предположении в Леме 1. доказывается необходимое 
и достаточное условие для того, чтобы 10 была точно к-насобная (к = 1, 2, ..., 
п — 1) точка такой системы решений дифф. уравнения (п). 

После определения так называемой первой точки сопряженной направо от 
точки /0, главная часть этой работы состоит из доказательства теоремы об 
существовании и всех возможных насобностьях такой точки до (п — 1)-го 
порядка включительно. 

112 


		webmaster@dml.cz
	2012-05-03T19:10:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




