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Let us consider a 2-nd order linear homogeneous differential equation having
the form
') + q@) y(@) = 0, )

where the function ¢(t)e C{*~%, I =(—o0, + ), neN, n > 1, ¢(t) > 0 for
V (¢ €I), oscillatory in the sense of [2], i.e. to every ¢ € I there exist infinitely many
zeros of its arbitrary nontrivial solution lying both to the left and to the right of
the point ¢.

Iterating it n-times (see for instance [1]) leads to an n-th order linear homogene-
ous differential equation (more briefly to an n-t4 order iterated differential equa-
tion). Let us write it generally in the form

n—1
y1) +k=20 a1 (D YD) =0, (n)

where ay,,(t) = a4 1[q(t), ¢'(@), ..., g ()], whose basis is formed by the
ordered n-tuples of functions

[u*~2(8), w~2(t) v(2), ..., v~ LK) OX(2), ..., u(t) v 23(2), v TN(B)], (B)
k=0,1,2,...,n — 1, linearly independent on the interval I. Denoting

y1(t) = W 71(), yo(2) = W T2@) 0(@), ..., mi1) =
= KO TN, ., Yoo i (B) = u(t) 0 T3(E), yo(t) = 0T 1(0),

i.e. generally
»(@) =uw K)o ), k=0,1,2,...,n—1,
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the equation (n) may be written in the form
y1(0) y2(0) e 2D AU » y(®)
1 2100 T 7€) NP () RIS /A ) I A )]
w[yl(t): LEREY yn(t)]

i)

R O T O W s ) W S OB ()

IR OBk O N O J S (N ()|
where
yi®)  y() oonD) - Yal®)
yi) v D v
wlyi(®), - ya(0] =1 ... +0

RO g O NS e O IR A O
YR YETIW) ey e YT

in the interval I is the Wronskian of the basis (B) relating to the differential equa-
tion (n).

Thus we have for the coefficients g, ,(t), k = 0,1,2,...,n — 1; neN, n > 1,
occuring in the equation (n):

i@ oy (D e Ya(®)
| 1 yi(®) ya(t) o Yil(®) e Yal®)
a(t) = —
w[yl(t)’ LR yn(t)] y(ln~2)(t) y(n—Z)(t) yin—Z)(t) . (n 2)(t)
DA O IR L O N2 () N ‘")(t)
w [y (), .-, ya(0)] _
R O ) I
PGS 71 NS (O B O I
n yie)y  oya®) o oya(®)
w[yl(t)a ey yn(t)] (n l)(t) y(n l)(t) l((n-—l)(t) B (n—l)(t)
(l")(t) IO BT () B S ()

wlyi(®), ..., ya(0)]
wlyi(), -, ya(]°

Because of (1) it is necessary to write throughout our discussion —q(¢) u(t) or
—q(t) v(2) instead of u"(z) or v"(t) respectively.

Hence, every nontrivial solution of the iterated differential equation of the n-th
order (n) is of the form

y(t) = Cu" " HE) + Cu* () o(t) + ... + Ca i) vt TE) + ...

= (-1
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o F Cuoqu(@) 0" + Co" (D) = }n: Cu" (0 v' (1), @
i=1

where C;eR, i=1,2,...,n(neN,n>1)and ¥ C; > 0.
i=1

Since the differential equation (n) is of the n-th order, any arbitrary zero of its
nontrivial oscillatory solution y(t) is of multiplicity v = n — 1 at most. In what
follows we will understand under a solution both of the differential equation (1)
and the differential equation (n) nontrivial solution only.

Oscillatory solutions of the differential equation (n)

For the oscillatority of the solution y(¢) of the differential equation (n) of an
arbitrary order n € N, n > 1, among whose zeros ¢* € I are such that y(t*) = u(t*)
or v(t*), the sufficient concition is that it should be either of the form

() = Co*7H(t) + Cou A1) v(t) + ... + Cuoqu(?) 0" 73(1) =

=nilciu"—i(t)vi_‘(t),
i=1

1
Y Ci>0,n>1,

i=1
or
23(t) = Cou* " 2(t) v(t) + Cau" 3() v (t) + ... + Cooqu(®) "~ 2(t) +

+ C" () =Y Cut i) o' (),
i=2
Y Cl>0,n>1
i=2

Thereby between the zeros of any osci'latory solution of the form !y(z) or 2y(f)
of the differential equation (n) there always belong the zeros of the function u(t)
or v(t). Because of the symmetry of the both functions u(t), v(¢) occuring in the
general solution (2) of the differential equation \n) we shall restrict our study to
zeros of oscillatory solutions of (n) being of the form

n—1
¥(t) =.;Ciu"~i(t) o' 7 l(),

1
C:>0,n>1,
1

n

I

i.e. to such solutions among whose zeros there always belong all zeros of the
function u(t).

Remark: Let the function f(t)e C{™, I = (—o0, +0), ne N; if f(t,) =0
holds for the point t €1, and ¢, is a simple zero of the function f(), then it holds
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also f™(to) = 0 for every n € N, and the point ¢, is an n-tuple zero of the function
f™(), i.e. it holds

f’(to) =f”(t0) = .. =f(n_1)(to) =0, f(n)(to) # 0.
In particular it holds: If the solution y(z) of (n) is expressible in the form
y() = u5(t) y*@), 1= k<n-1; k,neN, n> 1, where u(z) is a nontrivial
oscillatory solution of (1) having all zeros simple, and all functions u(z), y*(t)

are k-fold continuous differentiable in I = (— o0, + o) and if it holds that u(¢,) =
= 0, y*(¢,) # 0 at apoint ¢, €1, then 7, is a k-tuple zero of the oscillatory solution

»(t) of (n).

Lemma 1. Let t,el = (—o0, +0o0) be an arbitrary firmiy chosen point. Then
any oscillatory solution p(¢) of the differential equation (n) vanishing at ¢, has
the form

n-1
y@ = Z Ciun_i(t) Ui_l(t)s Cooi 0,
i=1
exactly if ¢4 is a simple zero of the solution y(z);
n—2 . .
Y0 =3 Cu" i)' Te),  Cu#0,
i=1

exactly if ¢, is a double zero of the solution y(¢);

y(t) = Ciu~ (1), C, #0

exactly if ¢, is an (n — 1)-tuple zero of the solution y(¢), i.e. generally: for V [k e N
l1£k=<n-1;neN,n>1]

n—k

y) =Y Cu" (0o TH1),  Co #0,
i=1

exactly if 7, is a k-tuple zero of the solution y(t), where [u(z), v(¢)] is such a basis
of the differential equation (1) that u(z,) = 0.
Proof: According to what was said in the introduction, every solution y(t)

n

of (n) has the form (2), where C;eR, i =1,2,...,n; neN, Y CZ> 0 and
n=1

[u(t), v(¢)] denotes a basis of an oscillatory differential equation (1). Let 7, €I =

= (— o0, + ) be an arbitrary zero of the solution y(¢) of (n) and [u(r), v(¢)] be

a basis of an oscillatory differential equation (1) such that

u(ty) = v'(ty) = 0, P

[sothat u'(t,) # 0,v(to) # O; hence the point ¢, is a simple zero of the function #(t)].
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Then the system of all solutions y(¢) of (n) vanishing at ¢, are exactly of the form

n—1
1) =Y CuTi(0) o' (1),
i=1
n—1
where C;eR,i=1,2,...,n—1 (neN,n > 1), Z C? > 0, are arbitrary con-
i=1

stants.
1. Let C,_, # 0, so that

Y(t) = CyuP (1) + CLu " 2() v(t) + Cyu 3(@) v?*(@t) + ... +
+ Caur i) v ) + ..+ Co_u () v T3() +

n—1 !
+ Caequ() " 3() = u(®) Y, Cu 1) o' (2).
51
Since

Y@ = Cin — Dur X ) u' () + Col(n — 2) w7 3@) u'(t) o(t) + w>~2(t) v'(t)] +
+ C3[(n = 3)u* () w' (1) v*(1) + 20" 3() () v'(1)] +
+ o + Gl =D D)W () V) + wr i)~ Do @) o' (D] +
e Cooo[2u() W' () v 73() + WP (1) (n — 3) T ) V()] +
+ Co [ ") + u(t) (0 — 2" 3@ V()] =
=u){Ci(n — D" 3O u' () + C,[(n — 2 u (&) u' () v(t) +u~3(F) o' ()] +
+..+ Gl — D 2O W (@) o)+ T ) = D) o' ()] +
oot Cooa[20/@) 0" 73() + u(t) (n — 3) " 4(e) V(1)) +
+ Coiin = )3 ()} + Coo ' (t) 0" 2(t)
and by assumption (P) y(t,) = 0 holds, whereby y'(to) = C,_,u'(t,) "~ (t,) # O,
the point #, is a simple zero of the solution y(z) of (n).
2. Let C,_; =0,C,_, # 0, so that

y(t) = Cun 1@ + Cou* 2@ o) + ... + CutTi@) 0 ) + ...
v+ Co (@) ") + Co_ i) vRT3() =
= uz(t)nizciu"“”z(z) o 1(1).
i=1

Since
y(t) = Ci(n — Du* " 2() d'(t) + Col(n — 2) w7 3(t) ' (t) () + u~2(2) v'(t)] +

+ oo 4+ Gln = D D)W@) 0 ) + u, @) G- Dot v'()] +

+ o+ Coo[32(@) w/(0) 074 + WP (n — D" P@) (0] +

+ Cooa[2u) () 0" 73(1) + W2(1) (n = 3) " "H(1) V'(1)] =

=u(){Cy(n— Du" 73 ' () + C,[(n = 2)u~*(O)w' () v(t) + u*~3(t) v’ ()] +
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() =

(n—-1)

92

+.o 4+ Gl = D u" T 2O (@) IO+ U ) (= D) o ) v ()] +
+ ot CusBu@ w'(0) 4 + W) (0 — H " () V(] +

+ Cooa[20/(8) 0°73(1) + u(t) (0 — 3) %) v'(1)]},

Cin — D[ —2)u*3@) u'?(2) + v~ 2(t) w'()] +

+ Co{(n — 2) [(n = 3)u~*() w’2(t) v(t) + w73 u"(t) v(2) +

+ 3OV O)] + (0 = 23O U V() + w2 0" (1)} +

+ o+ CG{n =) [(n —i =D 2O w2 ) + w0 x
xW'(O) V) + wr T D)W@) (- D) 0T ) o' ()] +

+ @G =D =D u@) v ") v'(e) + W) (= 2) v T3() x
x 0 2(t) + w7 ) 01T " ()]} + ...+ Cos 20w () v T30) +

+ u®) W) " "3(1t) + u(t) () (n — 3) "4 v'(1)] +

+ (0 = 3) [u@) w' () ") v'(t) + w?(t) (n — 4) "~ 3@) v'2(t) +

+ w2 ") v (1)]} =

=u() {Ci(n — D [(n — 2)u"~*@) u2@) + " 3@) u"(2)] +

+ Co{(n — 2) [(n — ) (@) w(t) v(t) + u>~*() u"(t) v(t) +

+ @O U V] + (= 2wt ) W () v'(E) + Wt T3E) v(8)} +

+ ..+ C{n =D —-1-1) W) W) o) +

+ )W)V T + w2 W (@) (- Do) ()] +

+GE =D =D "2 (@) "2 ') + w7 e — 2) i T3() x
xv'2(t) + W) VT2 ") ]} + .+

+ C, - {2[w"(r) "3 + W) (n = Do) V()] +

+ (= 3) 20 @) "4 @) v'(2) + u®) (n — 4 *73(1) v'3(t) +

+ u(@) " H ) v ()]} + 2C, w3 () vt T3),

so that by assumption (P) y(t,) = »¥'(¢,) = 0 holds, while y“(z,) =
= 2C,_,u'%(ty) v~ 3(t,) # O, the point ¢, is a double zero of the solu-
tion y(t) of (n).

Let C,_;=Co_,=..=C3=C, =0, C;y #0, so that y(t) =
= C,u" " 1(p).

Since

y'(@® = Cy(n — D u""2(@) u'(1),

y(t) + = Cin— Du"73@) [(n — 2) w'(t) + u(t) u'(1)],
=Ci(n-1) urT4(1) {(m=2)(n-3) W3 () +3(n — 2) u(@) u'(¢) x
xu'(t) + u*() u” (1)},

yl//t)



YW(i) =Cin—-Dur @O {n - 2)(n — 3)(n — 4) W) +
+6(n — 2) (n — 3) u(r) w'(e) w'(t) +4(n — 2) w2 (@) ' () u" (1) +
+ 3(n — 2) (1) w"(r) + w3(t) W™ (1)}

YeI() = Cu(t) {(n—1) (@ —2) (n-13)...24" " %()+(n — 1) (n —2) x
x(n—3)...3[n=N+@—=2)+...+3]ult) > *(t)u"(t)+
+ T U (),

Yo = Cfn — DI (0) + u(t) {0 — D! (= 2) + (0 — 3) +
+ o+ 20T U + .+ T U},

so that by assumption (P) y(t,) = y'(t;) = ... = y®~2)(¢,) = 0, while

YO () = Cy(n — D! ™" 1(2y) # 0, the point ¢, is an (r — 1)-tuple
zero of the solution y(¢) of (n).

The necessity of the assumption C,_, % 0 for the oscillatory solution y(t)
of (n) being of the form

(0] =n§Cau""i(t) o' (),
i=1

n—k

C}>0,1<k=<n-1,neN,n > I, to be vanishing with the function u*(z)
i=1

at a k-tuple zero t4 €1 is obvious [for, according to assumption that the point
toelis a k-tuple zero of y(¢) and C,_, = 0, by the assumption
n—k
C? >0,

i=1

and with respect to the above part of the proof, we should be led to a contradiction
to the fact that the multiplicity of z, € I of y(t) of (n) is k].

k
Corollary of Lemma 1.: Any oscillatory solution y(t) = Y. Cu"~'(t) v' ~!(t) of
i=1

the iterated differential equation of the n-t4 order (n), ne N, n > 1, possessing
a zero of multiplicity v=mn — k, k = 1,2, ...,n — 1, at t, €I, where u(ty) = 0,
may be just written in the form

¥(t) = 5@ [Cout (1) + Cou " 2(t) v(@) + ... + Cp_u(t) 5" 2(t) + C 51 (1)] =

k
= u""‘(t)_glciu"'i(t) ') = u"TH) yH(0),

where C;eR, i=1,2,...,k, C, #0, i.e. for k > 1 in the form of a product
of the (n — k)" power of the function u(¢) with the solution y*(t) of the iterated
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differential equation of the k™ order generating the k-parametric system of func-
tions in the form

Y¥) = Cod () + Co* () o(t) + ... + C_qu(t) V5~ 24(t) +
+ Ckv""(t) = i Ciu"'i(t) vi"‘(t),
i=1

wherein C, # 0 [so that y*(¢,) # 0].

\
Conjugate points |
Definition 1.1: Let ¢, €I = (— o0, +00) be an arbitrary point and y(¢) be an
arbitrary solution of the differential equation (n) vanishing at it [we will write *z,,
where v=1,2,...,n — 1; ne N, n > 1, denotes the multiplicity of the point #,].
Then the first zero of the solution y(¢) lying to the right of *#, will be called the
first conjugate point on the right to the point “z, [we indicate it by writing “¢,,
where ue {1, 2, ...,n — 1} denotes the multiplicity].
Since, by the assumption of oscillatority of the differential equation (1), every
(nontrivial) solution of the form

n-1
(0 = 3 Cu" (000,

n—1
¥ C? >0, n > 1, of the differential equation (n) is oscillatory (in the sense
i=1

of [2]), we see that the first conjugate point #¢; on the right to the point ¢, with an
appropriate multiplicity g€ {1, 2, ..., n — 1} always exists to an arbitrary point
Yto€l = (=00, +0),v=1,2,...,n — I;ne N,n > 1, at which the solution y(¢)
v-times vanishes.

Theorem 1.1. Let ##, denote the first conjugate point from the right to ‘z,,
where v, pe {1,2,...,n — 1}, ne N, n > 1. If:

l.Lv=n—1thenpy=n—1,

2.v=mn-—2thenu =1,

3.v=n — 3 theneitheruy=1lorgu=2o0rpu=n-—3,
etc.

Generally:

if y=n —k, where 1 <k <n — 1 then either u =1 or py=2or ... or y =
=k—-loru=n-%k.

Proof: Let t, €I = (— o0, + o) be an arbitrary firmly chosen point; we chose
a basis [u(t), v(¢)] of an oscillatory differential equation (1) such that both functions
u(t), v(t) and their first derivatives u'(¢), v'(¢) satisfy the condition (P) at the point #,.
Let y(¢) be such a solution of the differential equation (n) that the point ¢,, at
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which this solution together with the function u(¢) vanishes, is its v-tuple zero
[we can write *t,, where v = 1,2, ...,n — 1].

1. Let v = n — 1; then, by Corollary of Lemma 1., every oscillatory solution
of (n) vanishing together with its function #"~(¢) at the (n — 1)-tuple point ®~!¢,,
is exactly of the form

(1) = Cu (1),

where C; € R — {0} is an arbitrary constant.
If we denote by 7, the neighbouring zero of the function u(¢) lying to the right
behind the point #, such that 7; > ¢,, then

Wto) = u(ty) =0,  y(Ty) = u(Ty) =0,

and it holds for all 7 € (#,, T,) both u(t) # O [because of the continuity of the func-
tion u(t), where for all 7 € (¢4, T,) holds that either u(¢) > 0 or u(t) < 0], and y(¢) #
# 0; so that no zero of the solution y(¢) lies on (¢4, T,) for all zeros of y(¢) coincide
with all zeros of the function u(¢) and with respect to the form of y(¢) being an
arbitrary non-zero multiple (C; # 0) of the function u*~1(t), they are (n — 1)-tuple
zeros. Thus it holds

"y =T,

for the first conjugate point from the right to the point "~ 1¢,, at which the solu-
tion y(t) of the differential equation (n) vanishes.

2. Let v = n — 2; then, by the Corollary of Lemma 1., every oscillatory solu-
tion of the differential equation (n) vanishing together with the function u"~2(z)
at the (n — 2)-tuple point ®~?¢,, is exactly of the form

y(t) = u*72(1) [Cou(r) + Cv(1)],

where C;eR, i = 1,2, C, # 0, are arbitrary constants. If we denote by T, the
neighbouring zero of the function u(t) lying to the right behind the point #,, so
that T, > t,, then again

Wto) = u(ty) = 0, WTy) = u(Ty) =0,

and u(t) # 0 holds for all ¢ € (ty, T,) [i.e. either u(t) > 0 or u(t) < 0], while on
(to, T,) there always lies exactly one and namely simple zero ¢’ of each function
from the double — parametric system

Y, Cy, C3) = Cuu(t) + Cyu(2),

being always uniquely determined by the choice of constants C;eR, i = 1,2,
whereby C, # 0, for every such function y*(¢) forms together with the function u(z)
a pair of linearly independent solutions (i.e. a basis) of the differential equation (1),
whose all (simple) zeros by Sturm separation theorem mutually separate on the
interval I = (—o0, + ). Specially, if C, =0, then the solution y(t) =
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= C,u""2(t) v(t), C, # 0, possesses exactly one (simple) zero ¢’ on (t,, Ty), being
the zero of the function v(?), i.e.

y@) =v@) =0.

t, =1t

Hence

for the first conjugate point from the right to the point "~ 2¢, at which the solution
¥(t) of (n) together with the function 4"~ 2(¢) are vanishing.

3. Letv = n — 3; then, by Corollary of Lemma 1., every oscillatory solution y(t)
of (n) vanishing together with the function "~ 3(¢) at the (n — 3)-tuple point ®~ 3¢,
is exactly of the form

y(@) = u"73() [Cu?(t) + Cu(t) o(t) + C30*(8)],

where C;eR, i =1,2,3, C; # 0, are arbitrary constants. If we denote by T,
the neighbouring zero of the function u(t) lying on the right of #,, so that 7, > ¢,,.

then again
Wto) = u(ty) = 0, WTy) = w(T,) =0,

whereby u(r) # 0 for all € (ty, T,) in consequence of the continuity of the func-
tion u(¢). Wheather or not some zeros of the solution y(¢) of (n) lie on the interval
(to, T,) decides the existence or nonexistence of zeros of the three-parametric
function system of the form

y¥(t, Cy, Cy, C3) = Cu*(t) + Cu(t) v(t) + Civ(1), 3)

where C;eR,i =1, 2,3, C3 # 0, are arbitrary constants.

For these constants there may occur exactly three different possibilities:

either C3 — 4C,C; > 0 or C2 — 4C,C; = 0 or C? — 4C,C; < 0, which—by
the trichotomy law of real numbers —mutually exclude.

a) If C2 — 4C,C, > 0, then there exist four real constants D;jeR,j=1,..,4,

such that
DDy — D,D;y # 0, D,D, #0

(consequently it must simultaneously hold D? + D% > 0, D? + D} > 0, DI +
+ D} > 0, D + DX > 0), whereby (3) may be written in the form

Y*(t, Dy, ..., Dy) = [Dyu(t) + Dyu(t)] [Dyu(t) + Dao(1)],
so that —with respect to (3) —there hold the following relations among the previous
constants C;eR (i = 1, 2, 3) and those newly introduced D;eR (j =1, ..., 4):
C,=D,Dy, C, =DD, + D,D;, C3 =D,D,.
This yields that indeed
C} - 4C,Cy = (D,D, + D,D3)* — 4D,D3D,D, =
= (DD, — D,D;)* >0
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exactly if D, D, — D,D; 5 0 and besides —in consequence of the assumption that
Cs # 0—also D,D, # 0. If we denote

¥i@t, D, D,) = Dyu(t) + D,u(2),
¥3(t, D3, D,) = Dyu(t) + D,o(t),

then the above established assumptions on constants D;eR (j = 1, ..., 4) mean
both the double-parametric function systems yi(z, D, D,), y3(t, D3, D,) to be
onI = (— oo, + o) linearly independent not only of each other but each of them
with the function u(t), too. Since the functions y¥(z), y5(¢) and u(t) denote for any
(admissible) choice of constants D;eR (j = 1, ..., 4) a triple of always two and
two linearly independent solutions of the oscillatory differential equation (1),
then every of these solutions possesses simple, mutually separating zeros on I =
= (— 00, + o0).

Thus, with respect to the solution y(¢) of the differential equation (n) [up to an

arbitrary non-zero multiplicative constant C € R — {0}] of the form
¥(t) = w30 ¥i() y3 ),

all simple zeros of both functions y¥(¢), 3(¢) mutually separate on I = (— 00, + o0)
with each other on one hand and together with the (» — 3)-tuple zeros of the
function u”~3(¢) on the other hand. Thereby always exactly one (simple) zero both
of the function y¥(r) and of the function y3(¢) lies on the interval (¢,, T;), i.e. if we
denote these zeros of the functions y*(¢), y3(¢) by £* and 1**, respectively, then we
have either

to < t¥F < t** < T,
or

to < t¥*¥ <t* < T,.

In this case the solution y(¢) of the differential equation (n) possesses all its
(n — 3)-tuple zeros and simple zeros; between any two neighbouring (» — 3)-tuple
zeros there lie exactly two simple zeros.

Hence it holds

Yt,o=1t*  or = ¥
for the first conjugate point from the right to the point "~ 3¢,, at which the solu-
tion y(¢) of the differential equation (n) vanishes together with the function #"~3(z).

b) If C§ — 4C,C; = 0, then there exist two real constants D;eR, j = 1,2,
such that D, # 0 and in this case (3) may be written as

y*(t, Dy, D,) = A[Du(t) + D,u(1)]?, where 4 = +1,
so that between the previous constants C; € R (i = 1, 2, 3) in (3) and those newly
established constants D; € R (j = 1, 2), the following relations
C, = AD%, C, = 2AD\D,, C; = ADj
hold.
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From this follows that indeed
C? — 4C,Cy = (2D, D,)* — 4ADIAD} = 0

holds and besides, in consequence of the assumption C; # 0, we have also D, 0.

Denoting *
yl(t, D15 DZ) = Dlu(t) + DZ”(’);
such that
y*(t’ Dly DZ) = /1}’1‘2(’, Dls D2)9

then the established assumption on constants D;€ R (j = 1, 2) implies that the
double-parametric system y}(¢, D, , D,)is with the function u(¢)linearly independent
onlI = (—o0, + o). Since for any (admissible) choice of constants D;e R (j = 1, 2)
the functions y(z) and u(¢) denote a couple of linearly independent solutions of the
oscillatory differential equation (1), then every function y%(¢) belonging to a double-
parametric function system y¥(¢, D,, D,) possesses simple zeros mutually separating
with all (simple) zeros of the function u(t) on I = (=00, + c0).

Thus, with respect to the solution y(¢) of the differential equation (n) [up to an
arbitrary non-zero multiplicative constant C € R — {0}] of the form

y(1) = ur73(1) AyYA()

all double-zeros of the function y}%(¢) are mutually separating on I = (— 00, + ),
with all (n — 3)-tuple zeros of the function u"~3(¢). [Specially, if C; = C, = 0,
C; # 0,is true in (3), then the solution of the differential equation (n) is of the form

(1) = Cau=3(1) v*(1),

such that (n — 3)-tuple zeros of the function u™~3(¢) alternate the double zeros of the
function v2(t) on I = (— 0, + 0)].

Then exactly one double-zero of the function y*(¢, D, D,) lies on the interval
(29, T,), i.e. if we denote it by ¢*, then t* € (¢,, T,), hence

ty <t* < Ty.

In this case the solution y(t) of the differential equation (n) possesses all its
zeros, both the (n — 3)-tuple zeros and the double zeros. Between each two neigh-
bouring (n — 3)-tuple zeros there always lies exactly one double zero.

Hence 5

f = t*
holds for the first conjugate point from the right to the point *~3¢,, at which the
solution y(t) of the differential equation (n) together with the function u"~3(f)
vanishes.

¢) If C; — 4C,C, < 0, then there exist four complex constants D; e K (where K
denotes a set of all complex numbers), j = 1, ..., 4, such that

DD, — D,D; # 0, D;#0 forj=1,..,4,
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whereby (3) may be written as
y*(t, Dy, ..., Dy) = [Dyu(t) + D,o(t)] [Dau(t) + Do(1)],
so that with respect to (3) the relations
C, = D,D,, C, = D,D, + D,D;, C; = D,D,

hold between the real constants C; € R (i = 1, 2, 3) and the complex constants
D;eK(j=1,..,4).
From this it follows that, indeed,
C? —4C,Cy = (D, Dy + D,D;)* — 4D, D3D,D, =
= (DyD4 — D;D3)* <0
exactly if
DD, — D,D; # 0
and moreover —in consequence of the assumption that C; # 0—there must

D,D, # 0
hold.
Since, according to the inequality CZ — 4C,C; < 0 there must hold besides
C; # 0 also C, # 0, which implies also
DD, # 0,
ie. D;eK - {0},j=1,..,4
We show the existence of complex constants D;e K — {0}, j = 1, ..., 4, of the

above properties to correspond to the existence of the four real constants E; € R
(G =1, ..., 4) such that

E\E, - E,E; #0, E? 4+ E?>0 and E3+ E2>0,
whereby (3) may also be written as
V¥, Ey, .., E)) = M[Equ(t) + Exn(1)] + [Esu(t) + Ew(t)]?},

where A = 41, whence against (3) we see that between the previous constants
C;eR (i = 1,2,3) and the newly introduced (also real) constants E;eR (j =
= 1, ..., 4) there must simultaneously hold

C, = ME? + E?), C, = 2ME,E, + E;E,), C; = ME? + ED).
Hence, the following equalities
DDy = ME} + E3),
DDy + D,D; = 2U(E,\E, + E;E,),
D,D, = ME? + ED),
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must simultaneously hold between the compiex constants D; e K — {OLis1,.., 4,
and the new real constants E;eR,j = 1,..., 4. From this we obtain relations

D, = ME, + E4i), D, = AE, + E,i),
D, = E, — Esi, D, = E, — E,i,

where i € K is a complex (pure imaginary) unit. Then indeed

C2 — 4C,C; = [2UE E, + EsE)* — 4ME] + ED ME; + ED) =
= 4)\*(2E,E,E;E, — E2E? — E}ED) =
= —4(E\E, — E2E3)2 <0,

exactly if E\E, — E,E; # 0 holds and with respect to C;C; # O there holds
moreover
E} +E2>0 and EZ+EZ>0.
If we denote
it Ey, Ey) = Equ(t) + Eju(1),
v3(t, Es, E)) = Eju(t) + Euo(t),

then the above assumptions on constants E;eR (j = 1, ..., 4) imply that both
double-parametric systems of functions yi(z, E,, E,) and yi(t, E;, E,) are linearly
independent on I = (— 0, + ). Since the functions y¥(¢) and y%(¢) form a pair
of linearly independent solutions of the oscillatory differential equations (1) for
every (admissible) choice of constants E;eR (; = 1, ..., 4), then every of these
solutions has simple mutually separating zeros on I = (— o0, + o0).

From this it especially follows that both functions y3(z) and y3(¢) obtained from
the systems y,(¢, E;, E,) and y,(t, E5, E,) by an arbitrary (admissible) choice of
constants E;eR, j = 1, ..., 4, possess no common zero on I = (— o0, + ).

Since no zero exists on I = (—o0, +o0) at which both double-parametric
systems of functions y¥(t, E,, E,) and y3(z, E;, E,) would simultaneously vanish,
then the sum of its squares, i.e. the four-parametric function system

V¥t Ey, ..., E)) = M[Equ(t) + Exu()]* + [Esu(t) + Eo(D]*}

has no zeros on I = (— o0, + o).
Thus, the system y*(¢, E,, ..., E,) because of its continuity and because of
A = #*liseitherstill positive (1 = 1) or still negative (A = —1)onI = (— 00, + o0).
That is why the solution y(t) of the differential equation (n), being [up to an
arbitrary nonzero multiplicative constant C € R — {0}[ of the form

y(t) = u*73(t) Ay*(t, Ey, ..., Es),

has but (n — 3)-tuple zeros on I = (— o0, + o) presenting at the same time the
zeros of the function 4®~3(¢).
[Specially: If in (3) C, = 0 and sgn C, = sgn C; # 0 (i.e. simultaneously either
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C,>0and Cy >0 or C; <0 and C; < 0) holds, then the solution y(t) of the
differential equation (n) (up to an arbitrary nonzero multiplicative constant
CeR — {0}), is of the form

y(t) = un~3(t) y*(t’ Cys Cs),

where y*(t, C;, C5) = Cu*(t) + Cyv*(t) for all C; e R,i = 1,3, fulfilling the above
assumptions, denotes a double-parametric system of functions on I = (— o0, + ),
being either positive (C; > 0 and C; > 0) or negative (C; < 0 and C; < 0),
consequently having no zeros here; the only zeros of the solution y(¢) of the
differential equation (n) are thus the (n — 3)-tuple zeros of the function u®~3(¢)
only].

In this final case the oscillatory solution y(t) of the differential equation (n) has
no zero on the interval (¢,, T,). Since such a solution y(¢) vanishes in the whole
interval I = (— oo, + 00) exactly at the (n — 3)-tuple zeros of the function u*~3(¢),
it holds: the first conjugate point to the point *~3¢, from the right is exactly the
neighbouring (n — 3)-tuple zero of the function u*~3(¢) lying to the right of the
point 3¢, i.e.

273 =T,

k) Let (generally) v =n — k, where | <k <n — 1, ne N, n > 1; then, by the
Corollary of Lemma 1., every oscillatory solution y(¢) of the differential equation (n)
vanishing together with the function 4" ~*(¢) at the (n — k)-tuple zero " ¥z, eI =
= (— o0, + ), is exactly of the form

y(@) = ut5@) [Couf () + C* 2(t)v(t) + ... +
+ Cyo (1) 0°72() + C* ()],
where C;eR, i = 1,2, ..., k, C, # 0, are arbitrary constants (parameters).

Let us denote by T, a neighbouring point of the function u(¢) lying on the right
behind the point ¢, so that Ty > ¢,; then

J’(to) = “(to) =0, J’(T1) = u(T,) =0,

whereby for all ¢ € (¢,, T,) is u(t) # O true.

Whether between both points ¢, T, some zeros of the solution y(t) of the
differential equation (n) are lying or not [i.e. whether for all t € (¢o, T;) is y(t) # 0
true] decides the existence or nonexistence of zeros of the k-parametric system of
functions having the form

y*(t, Cy,\ ..y C) = Cou* Y(t) + Couf~2(t) v(t) + ... +
+ Cioqu(t) 0 72(1) + C (1), @

always uniquely determined by the choice of all k constants C; e R,i = 1, 2, ..., k,
C, #0.
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First we see that no zero of the arbitrary function y*(¢} obtained from the
system y*(t, C,, ..., C,) by an arbitrary choice of constants C;eR, i = 1,2, ...,
k — 1, C # 0—so far such a point exists—cannot be simultaneously a zero
of the function y(¢) and reversely [which follows from the assumption that both
functions u(t), v(¢) form a basis of the differential equation (1), from the condition
Cy # 0—of Lemma 1.—and from the Sturm theorem on mutual separating of all
zeros of any two oscillatory linearly independent solutions of the differential
equation (1) or their arbitrary natural power up to including the degree k — 1,
by which the basis (B) of all solutions y(¢) of the differential equation (n) is formed].

The k-parametric system of functions y*(¢, Cy, ..., C,) is a homogeneous poly-
nomial of the (k — 1)” degree in the functions u(¢) and v(¢).

If we restrict the values of the argument ¢ to an open interval (¢,, T;) only,
where u(t) # 0 [since for all ¢ € (¢,, T;) either u(t) > 0 or u(t) < 0] and because
of the assumption C, # 0, we can write

y¥(t, Cys ..., C) =

3 - o) Tt Coey [0(r) T2 c, o) C
= Cuu* ’(t){[u(t)] + Ek‘[u(t)] +.,.+—ém+—c—i}.

Denoting

() . Ceoy
- —— ; = -—l = e 1,
| w(t) o) and C; . i=1,2,...,k
so that
¥, Cl, ..., Ci_y, C) = 5)

= C* ) W) + CwE (1) + Cows~3(t) + ... + CL_w(®) + C{_,1;

because both functions u(t), v(z) are linearly independent on I = (— o0, + )
according to the assumption, the function w(t) on the interval (¢y,, T;) doesnot
equal to a constant function.

The question regarding the existence of zeros of the solution y(¢) of the differenti-
al equation (n) on the interval (t,,T,), i.e. the existence of such points t* e (¢4, T;)
at which u(¢*) = 0 but y(¢*) = y*(t*,C/, ..., Cy -, C) = 0, reduces to the question
of the existence of zeros of the functional polynomial of the (k — 1)* degree in
the function w(¢) having the form

k-

1
) Cw™17i(1),  where Cy=1, (6)

j=0

i.e. practically to the question of solving algebraic equation of the (k — 1)* degree
with constant real coefficients

WETH(E) + CIwWET2() + CowET3(t) + ... + CLo,w(t) + CL_, = 0. @)
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For our considerations only real solutions of this problem arc meaningful, i.e. only
the existence (and multiplicity) of real roots ;€ R, je{1,2, ...,k — 1}, of this
equation is of interest for us.

According to the fundamental theorem of algebra there always exists exactly
k — 1 (generally complex) constants 4, €K, j=1,2,...,k — 1, such that by
arbitrary firmly chosen coefficients C;eR (j = 1,2, ...,k — 1) for the decompositi-

on of the polynomial (6) we have
k-1
W) + CoWE TR + o+ Clo () + Cpey = [T [w(®) — 4], (w)
i=1
whereby

k-1
Ci =—+ . +h)=—=Y4,
p=1

C’z = }.112 + 1113 + ...+ }'llk—l + ;»4213 + 1214 + ...+

k-1
+ Ag2h—y = Z ’{p'lq’
p.q=1
(p<q)
Cy = —(AghAd3 + oo + ApAzds + o +
k-1
tlshe2ho) = — Y Adh,
p.q,r=1
(p<q<r)

’ k-1
Cooy = (=D 244, Ay = (—1)""1jI=Ill,-.

In solving equation (7) there may occur the following cases:

a) equation (7) possesses all roots A;, j = 1,2, ..., k — 1, real, simple, different
from one another

B) equation (7) possesses all roots 4;, j € {1, 2, ..., k — 1} real, multiple, where
denoting their multiplicities by vy, ..., vy (W€ N, s =1, ...,m; m < k — 1), we
have

Vi+ v, + o v =k -1

7) Among the roots 4;, j = 1,2, ...,k — 1, of equation (7) there occurs one
simple complex (imaginary) root at least. Let us denote if by 4; = a + ib, where
a,beR, b # 0; iis a pure imaginary unit. Then, respecting the coefficients Cj,
j=12,...,k — 1, of the functional polynomial (w) being altogether real, there
necessarily exists among the remaining k — 2 roots of equation (7) another
imaginary root, being complex conjugate to the first root 4. If we denote it 1, =

= A, = a — ib, then the decomposition of the polynomial (w) has the form
k-1
[w(t) — (a + ib)] [w(t) — (a — ib)] ]1 [w(®) - 4;],
j=
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k-1
([v) - aT* + 5} TL w0 - 4]
j=
k-1
Remark that in case when the polynomial Y [w(f) — ;] is of odd degree s =
ji=3

= k — 3 (so that the number k € N, k > 3 is even), then it necessarily has at least
one real root, while in case when its degree s = k — 3 is even (so that the number
k > 3 is odd), this polynomial need not have any real root.

0) Among the roots 4;, j = 1, 2, ..., k — 1, of equation (7) occurs at least one

v-multiple (v eEN,v £ — 1 ) imaginary root; let us denote it again 4, = a + ib,

where a, be R, b # 0, i is the pure imaginary unit. Then [respecting again that all
coefficients C;, j = 1,2, ...,k — 1, of the functional polynomial (w) are real]
there necessarily exists among the remaining k¥ — 1 — v roots of equation (7)
another imaginary root being complex conjugate to the first v-multiple root A,
and namely with the same multiplicity v; if we denote it 1, = 4; = a — ib, then
the decomposition of the polynomial (w) has the form
k-1
[w®) — (a +ib)]" [w®) — (a — ib)]“. lz_[ﬂ[w(t) - 4]
J=av
i.e.

{Iw(®) — a]* + bz}”. k]:f [w(t) — 4;].

j=2v+1
A remark analogous to that of y) would refer to the oddness or evenness of

k-1
degree s = k — 2(v + 1) of the polynomial [] [w() — 4;1.

j=2v+1
Let us remark, that the case «) or y) may be included into the case f) or J),
when vy = v, = ... = v._; =1 (i.e. m = k — 1) or v = 1. But for completeness

1
of the proof to Theorem 1.1 we must consider the cases «)—0) in detail and by
themselves.

1. In case a) the existence of the k — 1 real numbers ;e R, 4; # 4, fori, j =
=1,2,...,k = 1, i # ], such that there hold k¥ — 1 equations

wit) =24, j=12,..,k-1

denotes the existence of k — 1 mutually different points ¢¥, ¢, ..., ;" lying in the
interval (¢o, T;) such that

w(t) = 4, =12 ...,k -1
which, with respect to the previous significance of the function w(r) as the quotient
v(t)

—— of functions v(¢) and u(¢) on the interval (¢y, T) denotes the existence of & — 1

u(t)
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pairs of constants ¢ji» ¢z € R, j = 1,2, ...,k — 1, for which

;€2 — CpCiy # 0, ¢ #0, 1 #],
Lj=12..,k-1

holds such that the point t;" is a simple zero of any of the functions

yi(t) = c;ult) + ¢;20(2), i=L2...,k~—1,

on the interval (¢, T,); whereby 4; = — %1—, i=12..,k—-1
2
Thus the system of functions y*(¢, Cy, ..., Cy), cf. (4), occurring by the writing
of the solution y(¢) of the differential equation (n) sub k), may be written as

2(k — 1)-parametric system having the form
k-1
V¥t €15 €1y oy Cm1,15 C=1,2) = _Hl[cnu(t) + ¢j0(1)]
j=

and the very solution y(¢) of (n) is [possibly up to an arbitrary nonzero multiplicative
constant C € R — {0}] of the torm

k-1
o) = urk(t)_ljl [e;iu(®) + cju(n)].

Here it holds: any of the functions y;(t) = ¢ u(t) + ¢;2(t), j = 1,2, ...,k = 1,
by an arbitrary firm choice of constants ¢;;, ¢;; €R, ¢;; # 0, always denotes
a particular solution of the differential equation (1) and besides, any two of these
solutions are with respect to the condition ¢j;¢;, — ¢3¢y # 0,1 #j,1,j = 1,2, ...,
k — 1, linearly independent to each other on I = (—o0, + ). According to
Sturm separation theorem, all (simple) zeros of any two linearly independent
oscillatory solutions of (1) are separating cach other, so that on I = (— o0, + 00)

tf # 1}, i#j,
i,j=1,2,...,k — 1, holds.

Since any of the functions y;(t),j = 1,2, ..., k — 1, with respect to the assump-
tion ¢;, # 0 is linearly independent also of the function u(f) on I = (— o0, + 0),
then all zeros of any such function mutually separatc moreover with all zeros of the
function u(t).

Hence it is that even on any open interval (T,, T,44), n =0, +1, +2, ...,
where T,, T,,, are two neighbouring zsros of the function u(¢), there always lie
exactly k — 1 simple zeros of the system y*(¢, Cy, ..., C) of the form (4) [for an
arbitrary — admissible — choice of constants C;eR,j=1,2,..,k] and thus
also of the solution y(¢) of (n), each of which always belongs to one of the functions

yi),i = 1,2, ...,k — 1, from the system (4) obtained by such a choice of constants -
C;eR.

-
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Thus for the first conjugate point from the right to the point “kpe =
= (=00, +00) at which the solution y(t) of the differential equation (n) together
with the function u®~%(¢) are vanishing, we have

1, = 1t¥,

where t;" is the simple zero of a particular solution y;(¢) of the differential equation
(1), j=1,2,...,k — 1, being linearly independent of the function u(t) lying in
(to, T;), where T, denotes the neighbouring zero of the function u(¢) lying on the
right of the point #,. Naturally, we assume the point t}" under consideration to be
the first in the series of all k — 1 zeros ], 15, ..., ty_, € (to, T;) belonging always
(one at a time) to any particular function y}(¢) = c¢;;u(t) + ¢;,v(¢) from the system
5(t, 115 €125 s Cum1,1> C—1,2) Obtained by an arbitrary (admissible) choice of
constants ¢;;, ¢ €R(G=1,2,...,k — 1).

2. In case f), to the existence m, me {1, 2, ..., k — 1}, real mutually different
roots 4;€R, j=1,2,...,m, of equation (7) having multiplicities vy, vz, .--5 Vm
(v;e N, s = 1,2, ..., m) corresponds the existence m of mutually different points
t¥, 1%, ..., tre(ty, T,) such that

wit) =4, i=12..,m

which implies that there exist m pairs of real constants ¢;;, ¢;; € R, ¢j;¢55 — €526y #
#0, ¢, #0,1#j,1,j =1,2,..., m, such that the point ¢ is a simple zero of
any from the functions y;(t) = ¢;;u(t) + cj;0(t), j = 1,2, ..., m, and consequently
v,-multiple, s € {1, 2, ..., m}, zero of the function

Yi(t) = yi'(0)
on the interval (¢o, T,); whereby A; = ——C—ji,j =1,2,..,m

Thus, system (4) of the functions y*(z, C,, ..., C,) occuring in the writing y(¢)
of the differential equation (n) under k) may be written as a 2m-parametric system
having the form

m
V¥(t, €115 €125 o5 Cmps Cmz) = Hl[cjlu(t) + ¢;o(0)]",
j=

hence, the every solution y(¢) of the differential equation (n) is [possibly up to an
arbitrary nonzero multiplicative constant C € R — {0}] of the form

m
) = “n—k(t)l—[ [e;iu(®) + co]™.
j=1
Since each two from the total m functions y;() = ¢;yu(t) + ¢;0(2), j = 1, 2,..., m,
are by an arbitrary (firm) choice of constants ¢;;, ¢;, € R with respect to conditions

Cj1€iz — €€y # 0, ¢5 #0, 1 #j,1,j = 1,2, ..., m, linearly independent (parti-
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cular) solutions of the differential equation (1) to each other, then all zeros
Vigk VxR e (b, Th)

of the functions Y;(t) are mutually separating in (t,, T,).
Next, since every of the m functions y;(¢) is with respect to the assumption c¢;, # 0,
= 1,2, ..., m, a solution of the differential equation (1) linearly independent
of the function u(t), then besides, all zeros of each function y;(t) — and so even
the function Y;(f) — are separating with all zeros of the function u(¢) and so even
of the function " ~%().

Thus, even on an arbitrary open interval (7,, Ty4,) © (—0, +©0), n =
=0, +1, +2, ..., where T,, T, ., are two neighbouring zeros of the function u(t),
the system y*(, Cy, ..., C,) of (4) [for any — admissible — choice of constants
C;eR,j = 1,2, ..., k] and thus also the solution y(¢) of (n) has always m mutually
different zeros with multiplicities v,, v,, ..., v, every of which belongs always
to one of the functions Y(r) from system (4) obtained by such a choice of constants
CjeR.

Consequently, the first conjugate point from the right to the point *“*t, eI =
= (— o0, + o0) at which the solution y(z) of the differential equation (n) together
with the function u" %(z) are vanishing, is exactly that v-multiple point “*,
se€{l,2,...,m}, from the set of all zeros

ViR Vapk LVt e (L, T)

belonging always (one at a time) to any particular function Yj(t) = [¢;yu(t) + c;,0(1)]"
from the system p*(#, ¢;1, C12, ---» Cm1» Cm2) [Obtained by an arbitrary — admiss-
ible — choice of constants ¢j;, ¢;; €R,j = 1, 2, ..., m] lying the first from the left
in the interval (¢y, T}), i.e. before all other m — 1 zeros of the remaining multi-
plicities. Then we can write

vty = R
Incasek — 1 = vm, whereve Nandifv; = v, = ... =y = v, then system (4)
of functions y*(¢, Cy, ..., C,) and thus also the solution y(¢) of the differential

equation (n) has in (o, T;) exactly m mutually different zeros t;, t3, ... ,tm With

the same multiplicity v {for v, + v, + ... + vy =k — 1 is v = k; 1). Let
for their arrangement on (¢,, 7,) holds:
<ty <...<th;
then the first conjugate point from the right to the point n-¥¢, is the point
=1},

Specially for m = k — 1, where v = 1, we get the case «).
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Let us remark to the case when the equation (7) has only one (k — 1)-multiple
root A€ R, i.e. when m = I, corresponds the existence exactly of one and namely
(k — 1)-tuple zero t* of the system (4) of functions y*(¢, Cy, ..., C,) and thus also
of the solution y(¢) of the differential equation (n) on interval (t,, T,). Hence, the
first conjugate point from the right to the point " ~¥¢, then is the point

k=1 = t*

3. In case y), where among the roots 4;, j = 1,2, ...,k — 1, of equation (7) is
occurring at least one pair of simple imaginary complex conjugate roots (thus we
must assume k — 1 = 2, i.e. k > 2), then equation (7) may have k — 1 — 2 =
= k — 3 real roots at most (with the sum of their multiplicities £ — 3 as well).
Generally: if among the k — 1 roots 1; of equation (7) there occur exactly p (p € N)
simple imaginary complex conjugate pairs of roots (and therefore k — 1 = 2p),
let us denote them

Ay = ag + ib,, 1y = a, — ib,,

S

where a,, b,e R, b, #0, s = 1,2, ..., p, then the sum of multiplicities of the real
roots of equation (7) equals to k — 2p — 1.
Let us distinguish two possibilities:

7,) k — 1 is an odd number. Thus we may write k = 2(g + 1), where q € N,
q = p. Then there exists at least one real root of equation (7), for the sum of the
remaining multiplicities is 29 + 2 —2p — 1 = 2(¢ — p) + 1 [in case of ¢ = p
is the remaining single real root of equation (7) simple]. Equation (7) has the form

P 2q+1
H {Iw(t) —a,)> + b2} I [w —A]1=0.
s=1 j=2p+1
For the existence of m, me {1, 2, ..., 2(q — p) + 1}, real, mutually different roots
A;€R,j =1,2,...,m, of equation
2q+1
[I v -24]=0
j=2p+1
with the multiplicities v, v,, ..., v, (v;e N, j = 1,2, ..., m) and to them cor-

responding m mutually different points ¢}, ¢, ..., t € (t, T1) such that
Wity =24, j=1,2,..,m

the considerations are analogous to f).

The first conjugate point from the right to the point "~ kt0 el = (—o0, +00)
at which the solution y(t) of the differential equation (n) together with the function
"~ ¥(t) are vanishing, is exactly that v-multiple point “r*, s {1, 2, ..., m}, of the

set of points
e S A
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which with respect to their arrangement in the interval (¢,, T,) lies on the left
from the others as the first of them.

Specially if ¢ = p, when equation (7) has exactly one and namely simple real
root A’ € R, to which in (¢,, T,) corresponds one and only one simple zero ¢* of
system (4) of functions y*(t, C,, ..., C,) and thus also the solution y(¢) of the
differential equation (n), the first conjugate point from the right to the point ® ¥z,
is exactly the point

Ly, = t*.

y2) kK — 1 is an even number, such that we may write kK = 2¢g + 1, where
qeN, q = p.

If ¢ > p, then there exists at least one real root of equation (7), for the sum
of multiplicities of the remaining real roots is 29 + 1 — 1 — 2p = 2(¢ — p); in
case of ¢ = p, equation (7) has no (real) solution, i.e. there exists no real root to
which an existence of at least one point in (¢y, 7;) would correspond, at which the
function w(t) would be vanishing. Equation (7) has the form

)4 2q
[T{w® — a.* + b7} [wn — A1 =0,
s=1 j=2p+1
whereby on the existence of its (real) solution just equation
2q
[T v@)-4]=0
ji=2p+1
decides.
If this equation of the 2(q — p)™ degree has m [where me {1, 2, ..., 2(q — p)}]
real mutually different roots Aj€ R, j = 1, 2, ..., m, with multiplicities v;, v,, ..., v,

[v;e N, j=1,2,...,m, whereby ) v; =2(q — p)], then to them correspond m
j=1

mutually different points
15,1, .., the(ty, Ty)
such that
w(t}“)=l§, i=1L2,...,m

[cf. again considerations under §)].

The first conjugate point from the right to the point " ¥ty I = (— o0, + ),
at which the solution y(¢) of the differential equation (n) together with the function
u"~¥(t) are vanishing, is exactly that v-multiple point *t*, s€ {1, 2, ..., m}, from
the set of points

Vi vx L vt

which with respect to their arrangement in the interval (¢o, T;) lies on the left
as the first of them.
Specially, if ¢ = p, when equation (7) has no real root, the system (4) of functions
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y*(@, Cy, ..., C,) and thus also the solution y(¢) of the differential equation (n) has
no zero in the open interval (¢,, T;), so that )

n—-ktl = Tl ,

i.e. the first conjugate point from the right to the point *~¥¢, is exactly the first
(neighbouring) zero of the function u(t) lying on the right of the point ¢,.

In this last (special) case system (4) of functions y*(¢, C,, ..., C,) has — by any
choice of parameters C;€R, j = 1,2, ..., k, C, # 0, corresponding to the given
conditions — no zeros on the whole interval I = (— o0, + co) [so that with respect
to its continuity on this interval I there hold either still y*(¢, Cy, ..., C) > 0 or
still y*(¢, Cy, ..., C;) < 0] and therefore all zeros of solution y(¢) of the differential
equation (n) coincide with those zeros of the function " ~¥(¢) and are throughout
of multiplicity v =n — k.

4. In case ) instead of simple complex conjugate imaginary pairs of roots of
equation (7) we consider their possibly multiplicities in a manner completely
analogous to that used in ) including distinguishing two possibilities, where
8,) k — 1is an odd number [there always exists at least one real simple or multiple

root of the corresponding equation (7)] or where
d;) k — 1is an even number [there need not exist any real solution of the cor-
responding equation (7)].

If we assume — in this most general case — that the equation (7) has exactly p

(p € N) complex (imaginary) mutually different roots

A‘s = a5 + ibs’
a, byeR, b, #0,s5 = 1,2, ..., p, with multiplicities v, ..., v, € N, whereby
k-1

.4
2y =Ms
s=1

then between remaining roots of (7) there exist again p complex — and namely
conjugate — roots
Ay = a, — ib,
P
with corresponding multiplicities equal v, ..., v, for each Z v, = M also holds.

s=1
Equation (7) is now of the form

P k-1
L0 - aT + 533" T1 (@ - £l =0,

On existence (and multiplicities) of the real roots ;e R, je {2M + 1, ...,k — 1}
of (7) only equation

k-1
T w0 - £]=0

ji=2M+1
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decides (with total multiplicity M’ = k — 1 — 2M = 0 remaining for these roots).

The next considerations would virtually follow all those under y) [together
with appealing to the corresponding considerations under )], where we should
get results concerning the existence and multiplicity of the first conjugate point
from the right to the point ® ¥t €I = (— o0, + ), at which the solution y(t)
of the differential equation (n) together with the function 4" ¥(¢) are vanishing.

It turned out that such a point lies in all cases either in an open interval (¢,, T;)
and is of multiplicity u € {1, 2, ..., k — 3} at most such that

l<spsk—-1-2M<k-—1

always holds; or such a point coincides with the first (neighbouring) zero T'; of the
function u(t) lying to the right of the point ¢, and is of mutliplicity p = n — k.
By this our Theorem 1.1 is completely prooved.

REFERENCES

[1] Z. Husty: O iteraci homogennich linedrnich diferencidlnich rovnic; Sbornik VSZ a les. fakulty
v Brng, &. 4, 1956.

[2] O. Boruvka: Lineare Differentialtransformationen 2. Ordnung; VEB Deutscher Verlag der
Wissenschaften, Berlin, 1967.

[3] T. L. Sherman: Properties of solutions of N*" order linear differential equations, Pacific J. Math.,
Vol. 15, No. 3, 1965

[4] V. Vi&ek: Conjugate points of solutions of a fourth-order iterated linear differential equation;
Acta UP Olom., F. R. N., Tom 53, 1977.

[S]1 V. VI&ek: On a distribution of zeros of solutions of a fourth-order iterated linear differential
equation; Acta UP Olom., F. R. N., Tom 57, 1978.

Souhrn

PRVY KONJUGOVANY BOD RESENI ITEROVANE
DIFERENCIALNI ROVNICE N-tého RADU

VLADIMIR VLCEK

V préci je studovana iterovand linedrni diferencidlni rovnice n-tého fadu (n),
jejimz obecnym feSenim je homogenni polynom (n — 1)-ho stupné s n libovolnymi
(realnymi) koeficienty ve funkcich u(t), v(t), tvoficich bazi oscilatorické linedrni
homogenni diferencidlni rovnice 2. fddu v Jacobiho tvaru.

Ke studiu nulovych bodu feseni diferencidlni rovnice (n) je vybran systém vsech
jejich oscilatorickych FeSeni, které se spolu s funkci u(¢) anuluji v libovolném pevné
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zvoleném bod€ ¢, €I = (— 00, + ); ptitom v Lemmé 1 je dokdzdna nutnd a po-
stadujici podminka k tomu, aby ¢, byl pravé k-nasobnym (k = 1,2, ...,n — 1)
nulovym bodem takového systému feseni dif. rovnice (n).

Po zavedeni pojmu tzv. 1. konjugovaného bodu zprava k bodu ¢, pak podstat-
nou ¢ast prace tvofi dikaz véty o existenci a vSech moZnych nasobnostech takového
bodu do (n — 1)-ho fadu vetné.

Pesztome

ITIEPBA COIIPAXEHHAA TOUKA PEHIEHUM A
UTEPUPOBAHHOI'O IUPPEPEHIIMUAJIIBHOI'O
VYPABHEHWA n-toro ITOPA KA

BIAJUMUP BJIIYEK

B pabore u3ywaeTcss UTepHpoOBaHHOE JHHEHHOEe nubdepeHUnaNbHOE ypaBHEHUE
n-Toro mopsiaka (n), o6LIUM peleHieM KOTOTOPO SIBJISIETCS] OJAHOPOIHBII HOJTMHOM
(n — 1)-0ff cTemeHM C n TPOM3BOJBHBIMH (CyLUECTBEHHBIMH) KoedduiueHTaMu
B yuxmuwix u(f), v(f), ocyuwecTBJstoumX 0a3uC OCHMUISIHOHHOTO JIMHEHHOrO
ogHoponHoro nudbepeHInaIbHOTO ypaBHEHUS 2-20 TIopsiaKa Tuna SIKo6HI.

K wu3yyenuro HyJeBBIX Touek peuieHuit muddepeHumaibHoro ypaBHeHus (1)
u3bpaHHa cuCTeMa BCEX TaKuMX €ro KoJeOMIOIIUXCS PEILEeHUi, KOTOpBIE BMECTE
¢ yukuueit u(t) aHHyIMPYIOTCS B 110603 HUKCHPOBAHHO BHIGpaHHOM Touke 7, € =
= (—o00, +0). IIpu 3TOM Tpeamosioxenuu B Jleme 1. moka3piBaeTcs HEOOXOIUMOE
M JOCTATOYHOE YCIOBHE IJISL TOTO, YTOOLI ¢, ObLTa TOUHO K-HacoOHas (x = 1, 2, ...,
n — 1) Touka Takoi cuctemsl pewennit nudd. ypacuenus (n).

Ilocite ompeneneHuss Tak Ha3bIBaeMOW NEPBOM TOYKM COMPSIKEHHOM HANIPABO OT
TOYKH f,, IJIABHAS YaCTh 3TOW PaGOTHI COCTOUT M3 [10KA3aTEJILCTBA TEOPeMBI 06
CYLLIECTBOBAHHMM ¥ BCEX BO3MOXHBIX HACOOHOCTBsIX Takoit Touku mo (n — l)-ro
TIOpSiIKa BKJIFOUUTEJIBHO.
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