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OF FUNCTIONS WITH A CONTINUOUS FIRST DERIVATIVE 

JITKA KOJECKA 

(Received March 16, 1982) 

M. Laitoch defined a central projection of bundles of integrals relative to the 
differential equation (q): y" = q(t)y with a given basis. There is considered 
a mapping among linear combinations ay + py' and yy + dy' of the integral y 
relative to (q) and its derivative y\ where the numbers of bases [a, /?] and [y, 5\ 
are satisfying the condition ad — fly ^ 0. 

The present paper deals with properties of a central projection of functions of 
a pair of accompanying spaces PO[a, /?] and Pa[y, 8\ to a linear two-dimensional 
space of functions with a continuous first derivative. The definitions and properties 
regarding these accompanying space have been discussed in [8] and [9]. We 
investigate the course of the central projection in dependence on the extreme 
points of the spaces PO[a, /?] and P<r[y, <5] and their connection with transforma­
tions of these spaces. In conclusion we are showing assumptions under which the 
central dispersion of bundles of integrals of the differential equation (q) in [3]. 

Throughout this paper we assume S c Cx(i) to be a regular two-dimensional 
space of a certain type and the set S' a C0(i) of derivatives of all functions relative 
to S to be a regular two-dimensional space of a certain type as well. Next we 
assume every function y e S and its derivative y' to be independent on the interval i 
and shall be concerned with two accompanying spaces PQ[U, P\ and Pa[y, 5\ 
to the space S. The accompanying spaces P£>[a, /J] and P<r[y, <5] are, respectively, 
the sets of all functions g(ay + fly') and a(yy + dy'), where a, />, y, S are real 
constants different from zero, satisfying the condition ad - Py ¥> 0 and g > 0, 
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a > 0 are functions continuous on the interval i. We assume the spaces PQ[CC, PI 
and Po"[y, b~\ to be regular and of a certain type on the interval i. Let (u, v) be 
a basis of the space S. Then the characteristic or the phase of the basis 
(Q(QIU + /?u'), 0(av + pv')) relative to the space PD[a, /?] will be written as f(t) 
or <p(t), t e i; the characteristic or the phase of the basis (o(yu + Su'), a(yv + dv')) 
relative to the space P<x[y, 8] will be written as p(t) or \j/(t), t e i. The function 
w = uv' — u'v is the Wronskian of functions of the basis (u, v) relative to S. 

In [8] there are studied the zeros of functions of the space PQ[<X, /?]. If it holds 
for the function y e S and for the point t0 e i that y(t0) = 0 and y'(t0) = 0, then t0 

is a zero of type 1. If y(t0) = 0 and ; °N = — - , then t0 is a zero of type 2. 
y(*o) ,# 

From our considerations will be excluded such zeros of type 1 which are the limit 
points of extremes of the function relative to the space S' having its zeros value 
at these points. In other words, we assume that there exist 

l i m 4 $ - and lim / ( 0 

r-ro- y(0 r-,o+ y(0 

with y G S, for every t0 e i. 

Definition 1. Let t1,t2ei, ti < t2. If there exists a function y e S such that 
Q(ti) (ay(lj) + Py'(h)) = 0 and a(t2) (yy(t2) + 5y'(t2)) = 0, we say that the orderer 
pair of spaces {PO[a, /?], Pa\y, <5]} has a central projection £. The function £(t) 
assigning a first zero t2 e i (if any), t2 > tx, of the function a(yy + 5yr) to every 
zero tt e i of the function Q(ay + /?y'), will be called the central projection of an 
orderer pair of spaces {PQ[_CC, /?], Pa[y, d~]}. 

Convection 1. For the sake of brevity we shall speak, hereafter, of the central 
projection £ of the orderer pair of spaces {PO[a,/?], Pcr[y, (5]} from Definition 1 
as the projection £. 

Lemma 1. Let the projection £ be defined at the point t0 e i. Then £(l0) > t0. 
The statement is evident. 

Theorem 1. Let t1,t2ei. The projection £ is defined at the point tL assuming there 
the value t2 exactly if t± < t2 and a basis (u, v) of the space S exists such that the 
functions u, v and the points tl9t2 satisfy the following equation 

m(tx) + ßu'(tt) av(^) + ßv '( ' i) 
yu(t2) + ôu'(t2) yv(t2) + òv'(t2) 

= .0 (1) 

and the function u, v and the points tif tei do not satisfy equation (1) for any point 
te(tut2). 

The statement follows from Theorem 6 (see [9]). 

Theorem 2. Let tt, t2e i. The projection £ is defined at the points tL assuming 

there the value t2 exactly if tt < t2 and 
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(i) the function f and p are defined at the points tx and t2 andf(tt) = p(t2)9 respect­
ively, whereby f(tt) ^ p(t) for every t e(tl9 t2) for which p is defined. 

(ii) the functions f and p are not defined at the points t1 and t2, respectively, 
whereby p is defined on the interval (tt, t2). 

The statement follows from Theorem 8 (see [9]). 

Theorem 3. Let tl9 t2e i. The projection £ is defined at the point t1 assuming 
there the value t2 exactly if t1 < t2 and 

<P(t\) = Hti) + kn, 

for k being an integer, holds, whereby (p(t^) i= \j/(t) + kn for every t e(tl912). 
The statement follows from Theorem 9 (see [9]). 

Lemma 2. Let the projection £ be defined at the point t0 e i. Then it holds for the 
function y e S satisfying the equation g(t0) (<xy(t0) + fiy'(t0)) = 0 that: 

oc y 
1- if —TT > — r » tnen y ^ 0 on the interval (t09 £U0)>, P d 

ex y 
2. if —TT < — r > tnen y nas at most one zero ln the interval (t09 £(f0)>. 

P ° 
Proof: By Lemma 1.2 [8] and by Theorem 2.2 [8] there is either y(t0) # 0 

and Lp2> = * 0 r y(t0) = 0, y'(t0) = 0 and lim -i-i-1 = + oo. In view of the 
y(to) P t-*t0+ y(t) 

definition of £ we have <r{t) (yy(t) + Sy'(t)) ^ 0 for t e (t09 £(l0)). 
oc y 

1. Let —— > — r . If there were the zero point Te(t09 £(l0)> of the function y, 
P o 

then, by Theorem 2A [Si there would be lim ; , = — oo and the function — L J t-*r- y(t) y y would assume the value —— on the interval (t0, T) contradicting our assumption 
o 

yy(t) + Sy'(t) ^0on( t 0 , £ ( l 0 ) ) . 
2. Let ~ < - ~ . If there were two zeros Tl9 T2e(t09 £(t0)>, Tt < Tl9 

P <5 , 
of the function y, then, by Theorem 2.1 [8], the function — would assume the 
value —~- within the interval (Tl9 T2)9 which, however, would conflict with the 

o 
assumption yy(t) + 5y'(t) # 0 for t e (t09 £(l0)). 

Theorem 4. Let tl9 t2e i. The projection £ is defined at the point tx assuming 
there the value t2 exactly if t1 < t2 and there exists a y e S such that either 

(i) 2 -̂1== -4- a n d ^TTT^ ~ T » whereby it holds if y(t0) * 0, then 
y(tt) p y(t2) o 

y'(t0) # —r> C/X'o) = °> ***« /(to) ^ 0,/or everj l0 6 (tl9t2); 
Уífo) <5 
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or 

(ii) y(tt) = 0, y'(h) = 0 and - ^ M = " T > whereby ^ o ) * 0 and-^2^ + ~ T 
ylt2) d y(to) ° 

/ o r every t0e(tl5 t2); 
or 

Cm) 4 ^ 4 = - 4 - ^ y C a ) = 0, y'(t2) = 0, whereby y(t0) 9& 0 and^l 4= ™ 
y('i) P y<Jo) * 

> r every t0 G (tx, t2). 
Proof:*. Let C(t0 = t2- Then it follows from Lemma 1.2 [8] and Theorem 2.2 

[8] for the function yeS satisfying the equation o(tx) (<*y{tx) + />y'(ti)) = 0 

that either y(tx) # 0 and — ^ = - 4 ' o r J ^ " °» ^'('i) - ° a n d 

y(*i) P 

l i m 2 W = + 0 0 

*-*,+ y(0 
a) Let - 4 - > ~ | - . Then, by Lemma 2, / ^ O o n the interval ( t l 5 t2>, thus 

P ^ o 
— > —|- on the interval (t1} t2) which implies that either , */ == - 4 " a n d 

y 5 y(ti) /? 

b) Let —-- < —£-. Then, by Lemma 2, there exists at most one point Te 
P o , 

e (tl5 t2> such that y(T) = 0. Let y # 0 on (t l3 t2>. Then either — > —|- on 

<tl5 t2) which leads to y(tt) = 0, y'(tt) = 0 and i j - ^ = - j , or — < - — 

on (tlf t2) which leads to ^ 4 = ~ 4 - a n d ^ T = — r • N o w > l e t y(r) = ° 
y(ti) p y(h) o 

for Te( t l 5 t2>. Then, if J # t2, we get — < — j on (tl9 T) and — > — j 
on (T, t2) which yields i - ^ - . = -* a n d i $ 4 - " 4 • I f ^ = h, then iL < - - L 

y('i) /* y(t2) 5 y <5 

on ( t l 9 t2) which yields ^Sb* = - 1 . and j / ( t 2 ) = 0, y(t2) = 0. 
y('i) P 

II . Let one of the relations (i), (ii), (iii) hold. It is then obvious (from Defini­
t ion 1) that C(ti) = t2 • 

Corollary 1. Let the projection £ be defined at the point t0 e i and let ye S be 
that function which satisfied the equation q(t0) (oy(to) + Py'Oo)) = 0- Let w ^ 0 
on the interval ( t0 , C(t0)). Now, 

(X y 
1- -/ — s - > " " 4 " J t*ew every function xe S has at most one zero on the interval 

P o 

<to, C(to))? 
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OL y 
2. if —£- < — r , then every function xe S has at most two zeros on the interval 

P d 

(t0, C(t0))y specially: if y ^ 0 on (t0, C(f0)), then every function xeS has one zero 
at most. 

Corollary 2, Let the projection ( be defined at the point t0 e i and let ye S be 
the function satisfying the equation g(t0) (oLy(t0) + Py'(t0)) = 0. Let Tie(t0, C(to))> 
i = 1, 2, .. . , k9 be zeros of the Wronskian w. Now 

h i f ° > y t h e n ^ > y , 
P <5 y(xt) 8 

2- V ""4" < —T tnen in case ofy¥^0on (t0, £(t0)) we have -^~~- < —|- a«d P 8 y(xi) 8 

in case of Te (t0, C(f0)) bewg zero of the function y , we have ; , < —— for a// 
v >> y(T.) ^ 

T, < Tand^4- > -\-for all X, > T 
y(*j) * J 

Theorem 5. Let one of the following assumptions hold: 
OL y 

(i) — - - > —£- and the space S be of type m^.2 on i, 
P 0 
OL V 

(ii) —-- < —~ and the space S be of type m ̂  3 on i. 
P o 

Then the projection ( is defined at least at one point of the interval i. 
OL y 

P r o o f : (i) Let —— > — r and ti912 ei, f, <t2, be the neighbouring zeros 
P o 

of the function y e S. By Theorem 2.3 [8], the function ~ assumes then all values 

OL y 
from (—oo, -f-oo), i.e. also the values —-r- and — r on the interval (ti912). Let 

p d 

/ °; = — - hold for t0 e (ti912). Since —~ > --^- the function — assumes, 
y(t0) P P o y 

y with respect to Theorem 2.1 or Theorem 2.2 [8], the value —~- on the interval 

(to, t2). Thus C is defined at t0-
OL y 

(ii) Let —-r- < — r and ti,t2,t3e i, tx < t2 < t39 be the zeros of the function 
p o 

yeS with y ^ 0 on the intervals (ti912) and (t2913). By Theorem 2.3 [8] , the 
v' function — assumes on every interval (fx, t2) and (t2, t3) all values from the 

OL y y'Oo) 0-
interval ( - c o , -foe), hence the values — — and —£- as well. Let ~TT- = —£-

P 8 y(t0) P 
y' y 

hold for / 0 e ( t i , t2). If the function — assumes the value —~- on (f0, t2), ( is 
y o 
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obviously defined at t0. If — < —~ 0n (t0, t2) and y'(h) = 0, then £ is defined 
y o 

at ,0 assuming there value ,2 ; if £ < - . { . on (,0, ,2) and / ( , 2 ) / 0 then L 

assumes the value —^- on (t2, t3) — hence, it is defined at t0. 

Lemma 3. Let the projection £ be defined on the interval <a, b> c: i. It then holds 
for every interval j c <a, b> that £ =£ constant on j . 

Proof: If £ s k were on an intervalf c <a, b>, k ~ constant, then kei would 
we a sinfular point of the space Pcr[y, <5], which conflicts with the hypothesis about 
its regularity. 

Theorem 6. Let the following assumptions be satisfied: The projection £ is defined 
on the interval <a, b> c i and assumes the values from the interval (e, d) a i; w(t) -̂  
# 0 for all t e <a, d); there lies no extreme point of the space Pg[a, /?] in (a, b), 
and there lies no extreme point of the space Pa[y, <5] in (c, d). 

Then the projection £ is continuous and strictly monotonic on <a, b>. 
Proof: In view of the hypothesis w --- 0 on <a, d), every point on <a, d) is 

oc y 
SL zero of type 2. We shall break up the proof into two parts: 1. if —-5- > —~-

P ° 
and 2. — - < —£-. 

P o 
<x y 

1. Given —— > —^-. By Lemma 2 and respecting the hypothesis w 9- 0 
on <d, d), it holds for every function x e S such that g(t0) (xx(t0) + Px'(t0)) = 0, 

x' 
where l0 6 <a, b> that x 7- 0 on <t0, C(f0)>, whereby £(/0) e (c, d). The function — 

is continuous on <,0, « , . » , - ^ - - 4 , ^ f = -I a n d _ ^ L > 7 
*('o) P *(£('<>)) d *(0 d 

for te <t0, C(f*0)). Let j e S be the function for which . = - - - - . There may 

now arise two alternatives for the function —: either — > —--on (a, b> or 
y y P 

— < - 4 - on (a, b>. The equality , :• = --^- for te (a, b> cannot arise with 
y P y(t), P 
respect to Theorem 2.10 [8]. 

Given — < - 4 - (— > -^r J on (a, b>, then it holds for every function —, 
y P \y P) x 

xeS, assuming the value --^- on (a, b)~let it be at the point t0 e (a, b)-that 

— < —^ ( — > — - ) on the interval (t0, b}-
x j8 \x p) 
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Let first --— < —jr on (a, b>. If the function x were such that — ™ > —F 
y fi x(t) p 

for any t e(t0, b>, where *0 denotes a zero of the function Q(OLX + j?x'), then, by 
Theorem 2.8 [8] and respecting the assumption that no extreme point of the 

space PQ\JX, /?] is lying in <a, b>, there exists S0 > 0 such that —j-— < —g- holds 
x' v' for ?e(f0 - 80, t0). Since, however — ^ — must be valid on <a, t0}, then, if 

* y x'(t) 
x ^ 0 on <a, /0> or if Te <a, f0) so that x(T) = 0, i.e. lim ——- = +oo, 

f-+T + * ( 0 
x' 

a point must exist in the interval (a, t0) or (T, t0) wherein the function — assumes 

the value ——, and by Theorem 2.10 [8] an extreme point of the space P£[a, j8] 

must lie in the interval (a, t0) or (T, t0), which contradicts our assumption. 
v' a x' 0-

Completely analogous we can show if — > —— on (a,b}, then — > —jr 

o n ( r 0 ! * > i f ^ = -±,t0e(a,b). 
x\'o) P 

Let us now select the points tte (a, b), i -= 1, ... , k, 
a < ti < t2 < ... < **_! <tk <b, (2) 

taking k sufficiently great for 

C(a) > tt, Uh) >h,..., C(tk-i) > h, Wk) > b, (3) 

(which is possible with respect to Lemma 1) and let us denote by xt e S the func­

tions for which -—r* = —TT • 
xi(td P 

A. Let — < —~- on (a, b>. Then —l- < — - on (tt, b> for every function —L 

y P xi P xi 
and it holds with respect to w ^ 0 on <a, d): 

У xi 

У xi 
on <ři,(Cfl)>, 

Xi Xo 

_Ł < —Ł 
1 X2 

OП <í2>f(*l)>, 

xk-l xk 
xк-l xk 

on <řJfc,C(řjк
-i)>ł 

xí ^ Уl 
xк Уl 

on <b, Ç(tк)), 

(4) 

where j ^ e £ is the function for which -~~ = —r-. From the above relations 
yi(b) P 
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~we get the following inequalities 

i(a) < an) < at2) < ... < cfe-i) < c(t*) < m- (5) 
Evidently, the greater is k, the more so will hold the relations (3), (4) and thus 
also (5). The projection (is therefore increasing on <#, &> with respect to Lemma 3. 

Let us now the continuity. With respect to the fact that £ is defined as increasing 
on <a, fe>, it could have only points of discontinuity of the 1st kind on <a, &>. 
So, it suffices to show that every point t J e (C(#), CO-*)) is a functional value of C 
at a point of (a, b). Let t0 e (C(ti-iX CĈ i))- Following Lemma I [6] there exists 

an x0 e S so that ° ° = —|-. In analogy with the method used in the paragraph 
xo(t*o) 5 

before part A. concerning the proof of this Theorem, it can be shown that if 

- ^ 4 ~ < ~ | - for a t e <C('i-i), 'o), then, to satisfy the relation - ^ - * — on 
x0(t) d *i-i *o 
the interval <£(£,•-1), ?0 >, there would have to exist a point of (C(-i-i), to) a t which 

Xr\ V ik 
the function —— assumes the value —-—, whereby if there exist a Te(C(-\-i), *o) 

x0 o 
so that x0(T) = 0, this point would lie on the interval (T, t0). This would yield 
with respect to Theorem 2.10 [8] a contradiction with the assumption that the 
space P<r[y, (5] has no extreme points on the interval (c, d). 

x' y 
Thus —~> —~ on the interval <C('i-i)»C) a n d since C('»-i) < 'o < tOd* x0 o 

it must hold -^-±- < — < - ^ on the interval (ti9 C('i-i)>. If x0 + 0 on (*,_!, rf), 
* i - l X 0 * f 

x' x' 
then we have the inequality • • '"*• < — -̂ also on (^- i , tj), whence it follows that 

* i - l x0 

there exists a t0 e (**»•-!, t() so that °̂  °̂  = —-=-. If there exists, a Te (**-!, ti) 
*o(*o) P 

x'(Y) 
so that Xo(-T) = 0, then lim °̂  = + oo and there exists again a t0 e (T, t^ 

x'(t ) a t~*T+ x°^ 
so that °̂  °̂  = —-r-. Since the point t0 was chosen arbitrarily, there obviously 

xo(*o) P 
exists a point f e (a, b) to any point t* e (£(a), C(b)) so that £(0 = t*, which is the 
result we wished to proove. 

B. Let — > —-r- on (a, b}. Then we get in (4) and (5) the reverse inequality, 
y p 

whence it follows that the projection C 1s descreaing on <a, b> and its continuity 
could be proved analogous to that carried out in part A. 

ot y 
2. Let —~ < —~~. Then, by Lemma 2, it holds for every function xe S such 

P o 
that g(t0) (ax(t0) + Px'(t0)) = 0 with t0 e <a, b> that x has at most one zero in the 
interval <f0, C(̂ o)>> C('o) e (c> d). The notation of functions and points from sec­
tion 1. conserning the proof is preserved. 
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C. Let us first assume yt ¥> 0 on the interval <b, f(fi)>, .Then -̂ -M& continuous 
v' v Yt 

on <b, Z(b)> and - ^ < ' for t e <b, C(*)). Let us show that x # 0 on <%, C(̂ o)> 
for every function xeS such that g(t0) (ax(f0) + fix'(t0)) = 0, where %e <a, b). 

x' x' 
Then two possible cases for — arise from the continuity of the function — at t0: x x 

either 50 > 0 so that — > —— or — < —~ on (t0, t0 + <50). It is readily seen 
x p x p 

x ' OL 
that x ? - 0 o n < ^ C('o)> is evident in case of— > —— on (t0, t0 + 50)l In case of 

. x p 
— < —~- on (/0, t0 + 50) in assuming the existence of a zero of the function x 
x p 

in the interval (t0, C('o))> w e a r e -^d to contradiction to the assumption of our 
Theorem saying that P<r[y, <5] has no extreme points in the interval (cy d). The 
proof was carried out analogous to that in section 1. It turns out that C is continuous. 

and increasing on <a, b> if —-- > —-r on the intervals (ti9 b> and — > —— 
Xi p y £$, 

x' a-
on the interval (a, b>; is continuous and decreasing on <a, b> if —~ < —~ on 

i xi P 
the intervals (tt, b> and — < —-~ on the interval (a, b>. 

D. Let us now assume that T0 e (b, C(b)) so that yx(T0) = 0 and let us show 
that Tx e(t0,£(t0)) so that x(Tx) = 0 for every function xeS such that 

x' Q(t0) (ocx(t0) + px'(t0)) = 0, where t0 e <a, b). If such a point did not exist, then — 

would be continuous on (l0, C('o)) and with respect to the assumptions of our 

Theorem either — > —~ or — < --% on (/0, b> and it would hold — < - -? -
x p x p K09 7 x d 

x a 
on </0, C(*o))- In case of — > —-r-, respecting the assumption w ^ 0 on <a, d), 

x p 
. x y[ 
i.e. — + , we should be led in analogy with part 1. to the existence of a point 

x y* „' 
X V 

in (C(**o)> C(£))> wherein — takes on the value —£-. This however would conflict 
x <5 

with the assumption of Theorem 2.10 [8] saying that Pa\y,8] has no extreme 
x' a 

points on (c, d). In case of — < —-r- the contradiction is clear. 
Thus every function x( in (tt, C(*\)) has a zero. Let us denote it by Tt and let T 

be a zero of the function y in (a, C(a))- Assuming w # 0 on <a, d) yields 
T> Tt > . . . > Tk > r 0 , 

if Z. > - i L on (a, b> and — > ~ 4 " o n ^ l 5 6 > ' i , e * t h e P r oJ e c t i o n ^ i s d e c r e a s i n g 
^ P xh P 
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on <a, b>, and 
T <T1 < ... <Tk <T0, 

if — < —— on (a, T) and —-- < —~ on (tt, Tt), i.e. the projection £ is increasing 
y P *i P 

on <a, b>. 
The continuity could be proved in analogy with section 1. 

Theorem 7. Let the following assumptions be satisfied: The projection £ be defined 
on <a, b> <= i taking on the values from (c, d) cz i, for all t e <a, d) be w(t) ^ 0. 
There lies no extreme point of the space PQ\CC, /?] in the interval (a, d), and no extreme 
point of the space Pa[y9 <5] lies in (c, d). 

Then the projection £ is continuous and increasing on <a, b>. 
Proof: We apply the results of the proof of Theorem 6 adopting also the notation 

therefrom. 
cc y 

1. Let —— > —~. There cannot occur case IB. as in the proof of Theorem 6, 
P o 

because the assumption — > —~ on (a, b> gives the fact that at least one point 
v' a 

must lie on the interval (b, £(a)), wherein — takes on the value —— . Following 
Theorem 2.10 [8] then there exists an extreme point of the space PQ[OL, /?] in the 
interval (b, £(a)) c: (a, d), which is a contradiction. Thus the statement follows 
from section 1A. in the proof of Theorem 6, i.e. the projection £ is increasing. 

Of y 
2. Let —-r- < —~. In analogy with section 1. concerning the proof of this 

P o 

Theorem, the inequalities — < — - on (A, b> and —-i- < —— on (tt, b> from 
y p *« p 

case 2C. yields a contradiction to our assumptions. It follows from the inequalities 

— > —-r- on (a, b> and -—-- > —~r- on (ti9 b> that the projection £ is increasing. 

In case 2D. the inequalities — > —-r- on (a, b> and —l- > —-r- on (tt, b> i.e. 
y P *i P 

T > Tx > ... > Tk > T0 yield repeatedly to a contradiction to the assumptions 
of this Theorem. Namely, there would exist again at least one point of the interval 
(a, T), wherein — = —-=-. Thus, there may occur just the case — < — - on (a, T) 

y p y p 
x'. d 

and —l- < - — on (ti9 T(), i.e. T < Tt < ... < Tk < T0, and it repeatedly holds 
Xi p 

that the projection £ is increasing. 
The continuity of the projection £ was proved in the proof of Theorem 6. 

Theorem 8. Let the following assumptions be satisfied: The projection £ be defined 
on the interval <a, b> cz i taking on the values from (c, d) e i, b < c and there lies 
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an infinite number of zeros of the function w on the interval (b, c},for all t e <a, £> u 
u (c, d) be w(t) 7*- 0, there lie no extreme points of the spaces Pg\a, jS] and Pa[y, 5] 
in (a, b) and (c, d), respectively. 

Then the projection £ is continuous and strictly monotonic on <tf, b>. 
Proo f : Consider first exactly one zero of the Wronskian w lying an interval 

(b, c> written as T. We continue to employ the notation, introduced in the proof 
of Theorem 6. 

1. Let —-r- > — ~ . All function — , -^-, —--- have the same value at the 
P S y yi xi 

V'(T) y 
point T and following Corollary 2 ; ' > — ~ holds. 

y(t) d 
A. Let — < —— on (a, b>. This yields the following inequalities: 

y p 
У к Xi 

У x i 
on <ř l 5 b> 

Xl X2 
x l x2 

on <ř2,í>> 

xk-í xk 
xk-l xк 

on <ífc, b> 

x'k(b) y[(b) 
xÁb) Уi(b) 

•> 

Xl X2 Xk-1 -----< — < — < ...—±-±- < • 
x'k к yi 

y Xl X2 Xk-1 Xk yl 

If w changes its sign at T, then the inequalities 

hold on (T, C> and 

x2 

> — > . . . > 
x2 

^ f c - l Xк ^ yl 

* k - l *fc yl 

/ x'i 

У x i 
on <c, C(ři)> 

X\ X2 

— > — 
x l x2 

on <c, C(ř2)> 

Xк-1 Xk 
xk-l Xk 

on <c, Ç(ífc)> 

X'k ^ yí 
Xk yl 

on <c, Ç(ft)>. 

(6) 

on <Ь, т). (7) 

2 L > J І Ł >._:__> ...>__ІL_І_>_2 Î_>_-J_ (8) 

(9) 

Hence, the projection ( is decreasing on <a, _•>. If w does not change its sign at T, 
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then (8) with a reverse inequality holds and moreover 

on <c,C(a)> 

~-<^ on<c,C(.i)> 
Л ţ X^ 

xk-

Xк-

-1 

-1 

** < — -̂
xk 

xк < A 

(10) 

<c,C(-*~i)> 

on <c,C0*)>. 
Xk yl 

Hence, the projection C is increasing on <a, b>. 

B. Let — > —-r- on (a, b>. Then in analogy with part A. of the proof of this 
y p 

Theorem, we obtain the following results: if w changes its sign at T, then the projec­
tion C is increasing on <a, b>, if w does not change its sign at T, then the projection C 
is decreasing on <a, b>. 

2.U,-f<-Z. 

C. Letting y± ^ 0 on <b, C(b)}, then in analogy with part 1A. of this Theorem, 
v' a 

we obtain the following results: Let — > — ~ on (a, b>. If w changes its sign at T, 
y P m 

then the projection C is decreasing on <a, b>, if w does not change its sign at T, 
v' a 

then the projection C is increasing on <a, b>. Let — < —— on (a, b>. If w changes 
its sign at T, then the projection C is increasing on <a, b>, if w does not change its 
sign at T, then the projection C is decreasing on <a, b>. 

D. If the functions yt, y, xt have a zero in (b, C(&)X (0, C(«)), (fa C(OX respective­
ly, then with respect to Corollary 2, these zeros are either all smaller or all greater 
than T. In a manner analogous to that used in part 1A. in the proof of this Theorem 
on taking account of part 2D. in the proof of Theorem 6, we obtain the following 
results for the projection C increasing or decreasing on <a, b>: If w changes its 
sign at T, then under the assumption of w # 0 on <a, d), the projection C being 
increasing and decreasing on <a, b> is decreasing and increasing on <a, b>, 
respectively. If w does not change its sign at T, then the same statements remain 
valid as under the assumption of w ^ 0 on <a, d). 

The continuity of the projection C could be proved analogous to that in the 
proof of Theorem 6. 

If w has a finite number of zeros Ti5 i = 1, 2,..., k, on (b, c>, then we may 
proced for every Tf analogous as in parts 1. and 2. regarding the proof of this 
Theorem, whence the statement follows. 
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Theorem 9. Let the assumptions below be fulfilled: The projection £ be defined on 
<a, by c i taking on the values from (c, d) c i; for all te (a,d) be w(t) 9-- 0; 
to e (a, b) be exactly one extreme point of the space PQ[OC, /?] in (a, b); there does 
not lie any extreme point of the space P<r[y, 5] in (c, d). The projection £ is then 
continuous on (a, by and has an extreme at i0. 

Proof: Following Theorem 2.8 [8] there exists an xeS such that g(t0)x 
x' x' 

x (ux(t0) + fix'(t0)) = 0 and — has an extreme at t0. Let — has a maximum at t0. 
If x # 0 on <t0> C('0)> or there exists a T x e ( t 0 , £(t0)) such ihatlx(Tx) = 0, then 

x' a 
obviously — < —-r- on (a, t0) u (t0, by or <a, t0) u (t0, Tx). We continue to 

x p 
use the notation from the proof of Theorem 6. 

It then holds — > —-- on (a, toy, for tx < t0 we have — > —-~ on (tf, t0>, 
y P %t p 

for tj > t0 we have - ! - < ~ on (r;, ft>, if x, -& 0 on <«•,, C(0)> or -^- < —^ 
Xy p x̂ - p 

on (tj, Tj), where 7} e (tj, £(/,)) is a zero of the function Xj. 
With reference to the proof of Theorem 6 the projection £ is either increasing 

on <a, f0> and decreasing on (t0, by, or it is decreasing on (a, t0y and increasing 
on (t0,by. Next, the projection £ is by Theorem 6 continuous on (a,t0y and 
continuous on (t0, by, thus it is continuous on <a, b> and has an extreme at t0. 

x 
If — has a minimum at t0, we may proced with the proof analogous as for the 

maximum. 

Theorem 10. Let the following assumptions be fulfilled: The projection £ be defined 
on (a, by c i assuming there the values from (c, d) a i; w(t) # 0 be valid for all 
t e (a, d); t0e (c, d) be the isolated extreme point if the space Pa\y, 5"] on (c, d) 
with £(/o) = t0, where t0 e (a, b); there does not lie any extreme point of the space 
-P<2[a> PI on 0*> b). Then the projection £ is discontinuous at t0. 

Proof: Following Theorem 2.8 [8] there exists an x e S such that (r(f0)x 
x' 

x (yx(t0) + Sx'(t0)) = 0 and — has an extreme at t0. We continue to use the nota­
tion from the proof of Theorem 6. 

1. L e t — - > —~ . Since — > —~ holds for t e (t0, tt) then — has a minimum 
fid x S x 

x' V 
at t*. Thus, there exists e > 0 such that — > —~- for t e(t0,t0 + e) a (c, d). 

x o 
Because of t0e(a,b) we consider the intervals (a,t0y and <i/

0,6>. Since £ is 
defined on the whole interval <a, 6> and assumes there the values from the interval 

x' 
(c, d), then being assumed that w ^ 0 on (a, d), it follows that the function — 
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y * J> x (ti) y 

must take on the value - 4 - o n the interval (l0 4- e, c). Let therefore —-—- = — - , 
8 *(*?) d 

where t*e(t0 + e, c). It then holds — with respect to Theorem 6 and to the 
assumption, that t0 is an isolated extreme point of the space P<x[y, <5] — that there 
exists an fij > 0 such that the projection C 1s continuous for t e <t0 — ex, *0> 
and it holds C(0 _S *%; the projection C is continuous for te (t0,t0 + e) and 
it holds C(0 > t* • *o is "the point of discontinuity and more precisely, of the first 
kind. 

2. Let —~ < — -|-. Then — has a maximum at t0 if x ?- 0 on <t0, t0>; — has 
[J (J X J\r 

a minimum at t0 if x has a zero in (l0, t0). The proof proceeds in analogy with 
case 1. 

Remark 1. Let the projection C be defined on <a, b> assuming there the values 
from (c, d); let w(t) ?- 0 for t e (d,d) and t0 e (a, b) be an isolated extreme point 
of the space PQ^, j5]; C(-*o) e (c, d) be an isolated extreme point of the space Pa[y, $]. 
Let xe S be that function for which g(t0) (<xx(t0) + Px'(t0)) = 0. This enables us 
to prove in analogy with the proofs of Theorems 6, 9, 10 the validity of following 
relations: 

1. Let —-r- > —~- with — having a maximum at t0. Then the projection C has 
p o x 

a minimum at t0 and is discontinuous at t0 with lim C(0 > £(*o)-
t-+to 

2. Let —r- > ——• with — having a minimum at t0. Then the projection C is 
p o x 

continuous at t0 and has a maximum at t0. 

3. Let —-r- < —\- with — having a maximum at t0 and x ^ 0 on </0, C(̂ o))-
p o x 

Then the projection f is continuous at t0 and has a maximum at t0. 

4. Let —-- < —~ with — having a minimum at t0 and x # 0 on <l0, C(-\))>-
p o x 

Then the projection C has a minimum at t0 and is discontinuous at t0 with lim C(t) > 
t->t0 

> C(to)-

5. Let —— < ~-™- with — having a maximum at t0 and x having a zero in 

(to» C('o))- Then the projection C has a minimum at t0 and is discontinuous at t0 with 
lim C(0 > C(̂ o). 
*-+t0 

6. Let — — < —— with — having a minimum at t0 and x having a zero in 
p o x 

(fos C(̂ o)). Then the projection C is continuous at t0 and has a maximum at t0. 

In all the above cases the local extremes of the projection on <a, b> are in question. 

74 



The following Theorem 11 involves conditions sufficient for the existence of the 
projection £ on the interval with an point t0 e i at which the projection £ is defined. 
The proof of this assertion proceeds completely analogous to those of Theorems 6, 
8, 9, 10 and therefore it is left out. 

Theorem 11. Let the projection £ be defined at the point t0 e (a, b) cz i assuming 
the value £(t0) e (c, d) cz i. Let next w ^ 0 on the interval (a, d). Then it holds: 

1. Let £(i*0) not be an extreme point of the space Pa[y, <5], then there exists a real 
number h > 0 such that the projection £ is defined on the interval (t0 — h, t0 + h). 

2. Let t0 not be an extreme point of the space Pa\a, /?] and ^(t0) be an extreme 
point of the space Pa[y, <5]. Then there exists a real number h > 0 such that the 
projection £ is defined on the interval (t0 — h, l0>. 

Remark 2. The first assertion of Theorem 11 remains valid if Tie(t0, £(t0)) is 
a limited number of zeros of the Wronskian w. The latter assertion of Theorem 11 
depends on the fact whether the Wronskian w changes the sign at its zeros or not. 
The projection £ is defined either on the interval (t0 — h, t0} or on the interval 
<*Wo + *). 

Theorem 12. Let the projection £ be defined on j cz i. Then 

fit) = p(C(t)) 

holds for all t ejfor which the characteristics f and p are defined. Next it holds 

<P(t) = *(C(0) + k" 

for k being an integer and t ej. 
The statement follows from Theorems 2 and 3. 

Corollary 3. Let the projection £ be defined on j cz /. Then 

M O + MO] L>(C(0) + M?(0)] -
- M O + MO] M « 0 ) + MC(0)] = 0 (li) 

holds for t ej and for the basis (u, v) of the space S. 

Theorem 13. Let the projection £ be continuous and increasing or decreasing on 
j 2 cz i mapping this interval onto the interval j \ cz i. Then there exists exactly one 
transformation T(z, C,j\9j'2)for which 

Q(oty + fiy') = T(a(yy + 8y% where y e S. 

Proof: The projection £ satisfies properties 1, 2, 3 from Definition 4.1 [4] and 
also relation (11) for every t ej2, where (u, v) is the basis of the space S. Following 
Theorem 4.6 [4] there exists the transformation T(z, C,j\ J2) f° r which T(a(yu + 
+ 5u')) = Q(<XU + pu') and T(a(yv + 5v')) = Q(OCV + pv') holds. From this - with 
respect to Theorem 4.2 [4] - we have ^(ay + Py') = T(a(yy + Sy')) for every 
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function y e S. By Theorem 4.4 [4] the modulus from T is a continuous functions 
onj2 and 

Q(t)(ay(t) + (}y'(t)) 
2(í) = 

*(C(0)(ľXC(0) + W ( 0 ) ) 

where j> e S for all t ej2, for which (x(C(0) (?y(C(0) + y'(C(0)) * 0- With respect 
to Definition 1 this yields the uniqueness of T. 

y' 
Convection 2. In all what follows we shall assume w ?- 0, and every function — 

with y G S being decreasing on every interval j c / where it is defined. The space S, S', 
PQ[OL, p~\ and P<r[y, <5] are thus — with respect to Theorem 2A3 [8] — of the zeroth 
class on i, i.e. the phases of these spaces are monotone on the whole interval i. 

Theorem 14. Between two neighbouring zeros of the function Q(ay + fly') e 
G PQ[OL, /?] there lies exactly one zero of the function <r(yy + Sy') e P<r[y, <5], i.e. the 
zeros of the functions Q(ay + fiy') and <r(yy + 5y') separate themselves. 

The statement follows — with respect to Theorem 2A [8] and to Corollary 2.1 
x' 

[8] — from the monotonicity of the function — on every interval on which it is 

defined. 

Corollary 4, If PQ[OL, /?] is a space of a finite type on i, then P<r[y, <5] is a space 
of a finite type on i; specially: if PQ[OL, ff\ is of type m then P<r[y, <5]] is of type 
m + 1 at most. If PQ[OL, ff\ is of an infinite type on i, then P<r[y, <5] is of an infinite 
type on i. 

( OL y 

m ^ 2, if —-r- > — r - ; 
P ° 

on i = (a, b). Let t0 e (a, b) be the least point of (a, b) for 
which the following holds: There exists an y e S such that -/-0. = —--- and 
y'(t) y y(to' " 
_ _ 4- — for au t e (t 0, b). Let t0 e (a, b) be the greatest point of (a, b), for 

which the following holds: There exists an yte S such that --•**••• = —^- and 
yi(t*0)

 s 

Ш^-^forallteiaX) 

Then the projection C is continuous and increasing on (a, t0) mapping this interval 
onto the interval (t0 , b). 

P r o o f : Since the space Sis defined on an open interval, the interval of definition 

of C is evidently an open interval. If a point Te(t0, b) existed at which the projection 

x'(C(T)) 
C would be defined, then there would exist a function x e S such that —^Tyyr f~ 

es — L where C(T) e (T, b). This would imply that the functions — and — would 
$ v y x 
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assume the same value at a point of (T, C(T)), which with respect to the assump­
tion w T£ 0 is impossible. Likewise may be shown that the projection £ assu­
mes the value t < t*. By Theorem 7 the projection is increasing and continuous. 

Theorem 16. Let the assumptions of Theorem 15 be fulfilled and write j 2 -* 
= (a> 'o)> Ji = ('o> b). Then there exists exactly one transformation T(z, C,Ji,j2) 

for which 
Q(ccy + fiy') = T(a(yy + 5y')), where y e S. 

The statement follows from Theorems 13 and 15. 

Theorem 17. Let PQ[OL, /?] and Pa[y, <5] be spaces of types +oo or — oo on the 
interval i = (a, b). Let t0,t0e (a, b) be the points of Theorem 15 in so far as these 
points exist. Then: 

1. if the spaces PQ[OL, /?] andPa[y, <5] are of type + oo on (a, b), then the projection f 
is defined, continuous and increasing on (a, b) mapping this interval onto (t*, b). 

2. if the spaces PQ[CC, ff\ and Pa[y, <5] are of type -co on (a, b), then the projec­
tion C is defined, continuous and increasing on (a, t0) mapping this interval onto (a, b). 
The statement follows from Theorems 14 and 15. 

Theorem 18. Let PQ[CC, /?] and Pa[y, <5] be spaces of type + oo on i. Then the 
projection { is continuous and increasing on i mapping the interval i on itself 
The statement follows from Theorem 17. 

Theorem 19. Let PQ[OC, j8] and Pa[y, <5] be spaces of type + oo on i. Then: 
1. £(t) = p~i(f(t))for all t e i, for which the characteristics p and f are defined. 

2. C(t) = ij/~x((p(t)), where t e i and cp and ij/ are phases satisfying the equation 

<P(to) = *KC('o)) at a point t0 e i. 
With respect to Theorem 12, the statement follows from the monotonicity of 

the characteristics p,fand from phases <p, ij/ on their intervals of definition. 

Theorem 20. Let PQ[OL, /?] and Pa[y, <5] be spaces of type +co on i. Then there 
exists exactly one total transformation T(z, Q of the space Pa[y, 5] onto Po[a, jS] 
for which 

Q(ay + fiy') = T(a(yy + 8y% where yeS. 

The statement follows from Theorems 13 and 18. 
Remark 3. Following Theorem 2.15 [8] the set of integrals of the first accompany­

ing equation (qx) with bases [a, /?] to the equation (q) (see [2]) is a two-dimensional 
accompanying space P0[a, /?] to the space S of the integrals of (a), where 

1 
Q = 

V« 2 - ß2q 

The projection ( of bundles ocy + fly' and yy + oy', where y is an integral of(q), 
is evidently a special case of the projection ( of the pair of accompanying spaces 

77 



{PO[a, /?], P<r\y9 8"]} to the linear two-dimensional space S of functions with a con-
tinuous first derivative. Comparing the results of [3] we see that in case the spaces 
S, S", Po[#> f\ and P<r[y, S~] are of the zeroth class, the projection £ of the pair of 
spaces {PQ\&, P], Po"[y, o*]} has similar properties as the projection of bundles of 
integrals of(q) with bases [a, $] and [y, d~\. 

ЦЕНТРАЛЬНАЯ ПРОЕКЦИЯ ПАРЫ СОПРОВОДИТЕЛЬНЫХ 
ПРОСТРАНСТВ К ЛИНЕЙНОМУ ДВУХРАЗМЕРНОМУ 

ПРОСТРАНСТВУ ФУНКЦИЙ С НЕПРЕРЫВНОЙ ПЕРВОЙ 
ПРОИЗВОДНОЙ 

Резюме 

Пусть Ро[а, /3] и Ра[у, б] сопроводительные пространства к двухразмерному пространству 
5 с С1О*), где а, /3, у, б не равные нулю вещественные постоянные, <хб — ($у Ф 0, и ^ > О, 
а > 0 непрерывные функции на интервале /. Определяется центральная проекция упорядочен­
ной пары пространств {Ро[а, р], Ра[у, б]} и исследуются ее свойства. В работе определены 
необходимые и достаточные условия для существования проекции С в точке (0 е / и показаны 
достаточные условия для существования проекции С на интервале. Исследуются свойства 
гхроекции С в зависимости от екстремальных точек пространств Р^[л, /5] и Ра[у, б]. Показы­
вается, что проекция С не должна быть монотонной и не непрерывной на своем интервале 
определенности. В случае, когда проекция С непрерывна и монотонна на интервале у2 <-- и 
то она является амплитудой трансформации Т(г, С, II, )г) пространства Ра[у, о] в интервале 
II = СС/г) на пространство Р^[сс, ($] в интервале /2. 

Работа тоже касается пространств Ро[сс, ($] и Ра[у, б], которые нулевого класса — то есть, 
у которых ненаходятся екстремальные точки. В таком случае получим подобные результаты 
как в случае пространств интегралов первых сопроводительных уравнений к уравнению ^): 
у" = ^(^)у, где а < 0 непрерывная функция на интервале 1, с базисами [а, р], [у, б]. Проекция 
С непрерывна и возрастающая на своем интервале определения. В случае, что пространства 
Р^[<x, Я и Ра[у, б] типа ±оо на интервале /, то проекция С непрерывна и возрастающая на 
интервале /, отображает интервал / на себя и является амплитудой полной трансформации 
Т(г, О пространства Ра[у, б] на пространство Ро[ос, /5], причем о^(ау + /3/) = Т(а(уу + бу')) 
где уе8. 

CENTRÁLNÍ PROJEKCE DVOJICE P R Ů V O D N Í C H 
P R O S T O R Ů K LINEÁRNÍMU D V O J R O Z M Ě R N É M U 

P R O S T O R U FUNKCÍ SE S P O J I T O U PRVNÍ DERIVACÍ 

Souhrn 

Nechť J»g[a, /3] a Pa[y, 6) jsou průvodní prostory k dvojrozměrnému prostoru S cz C.(/), kde 
a, P, f> ° jsou reálné konstanty různé od nuly, ad — pV Ť4 0, a Q > 0, a > 0 jsou funkce spojité 
na intervalu i- Je definována centrální projekce uspořádané dvojice prostorů {PQ[CC, p], Poty, d]} 
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a jsou zkoumány její vlastnosti. Jsou nalezeny nutné a postačující podmínky pro existenci projekce f 
v bodě t0eisi uvedeny postačující podmínky pro existenci projekce f na intervalu. Dále je vyšetřován 
průběh projekce f v souvislosti s extrémními body prostorů Po[a, /5] a Poty, o]. Ukazuje se, že pro­
jekce f nemusí být monotónní ani spojitá na svém definičním intervalu. Z vlastností projekce f 
plyne za předpokladu její spojitosti a monotónnosti na intervalu j 2 c i, ze je amplitudou transfor­
mace T(z, f,ji,j2) prostoru Poty, d] v intervalu ji -= f(j2) na prostor Po [a, /3] v intervalu j 2 . 

Dále jsou uvažovány prostory Po[a, !3] a Poty, <5], které jsou nulté třídy, tj. nemají extrémní body. 
V tomto případě je situace podobná jako v prostorech řešení prvních průvodních rovnic k rovnici (q): 
y" = a(t)y, kde a < 0 je funkce spojitá na intervalu i, při bázích [a, /3] a ty, o]. Projekce f je spojitá 
a rostoucí na svém definičním intervalu. V případě, že prostory Po[a, /3] a Poty, d] jsou navíc typu ± co 
na intervalu i, je projekce f spojitá a rostoucí na celém intervalu i, zobrazuje interval i na sebe a je 
amplitudou úplné transformace T(z, f) prostoru Poty, d] na prostor Po[a, /3], pro kterou platí 
o(ay + /3y') = T(o(yy + (5/)), kde y e S. 
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