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M. Laitoch defined a central projection of bundles of integrals relative to the
differential equation (g): y" = q(¢) y with a given basis. There is considered
a mapping among linear combinations «y + By’ and yy + Jy’ of the integral y
relative to (¢) and its derivative y’, where the numbers of bases [, 8] and [v, §]
are satisfying the condition ad — By # 0.

The present paper deals with properties of a central projection of functions of
a pair of accompanying spaces Po[a, f] and Pa[y, 8] to a linear two-dimensional
space of functions with a continuous first derivative. The definitions and properties
regarding these accompanying space have been discussed in [8] and [9]. We
investigate the course of the central projection in dependence on the extreme
points of the spaces Pg[a, ] and Po[y, §] and their connection with transforma-
tions of these spaces. In conclusion we are showing assumptions under which the
central dispersion of bundles of integrals of the differential equation (g) in [3].

Throughout this paper we assume S <= C,(i) to be a regular two-dimensional
space of a certain type and the set S’ = C,(i) of derivatives of all functions relative
to S to be a regular two-dimensional space of a certain type as well. Next we
assume every function y € S and its derivative y to be independent on the interval
and shall be concerned with two accompanying spaces Pg[a, 8] and Po[y, 5]
to the space S. The accompanying spaces Pg[a, ] and Pa[y, 9] are, respectively,
the sets of all functions e(ey + By’) and o(yy + 6y’), where @, B, y, § are real
constants different from zero, satisfying the condition ad — By # 0 and ¢ > 0,
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¢ > 0 are functions continuous on the interval . We assume the spaces Po[«, f]
and Po[y, 6] to be regular and of a certain type on the interval i. Let (¥, v) be
a basis of the space S. Then the characteristic or the phase of the basis
(o(ou + Ppu’), o(aw + Pv")) relative to the space Pg[o, B] will be written as f(¢)
or @(t), t € i; the characteristic or the phase of the basis (a(yu + du’), o(yv + "))
relative to the space Pa[y, 8] will be written as p(t) or Y(z), t €i. The function
w = uv’ — u'v is the Wronskian of functions of the basis (u, v) relative to S.

In [8] there are studied the zeros of functions of the space Pg[«, f]. If it holds
for the function y € S and for the point ¢, € i that y(to) = 0 and y'(to,) = 0, then ¢,
is a zero of type 1. If y(t,) = 0 and y((:o)) = ———ﬁ—, then ¢, is a zero of type 2.

0

From our considerations will be excluded such zeros of type 1 which are the limit
points of extremes of the function relative to the space S’ having its zeros value
at these points. In other words, we assume that there exist

y'(t) . Y1)
lim —=— and lim ,
tto— .V(t) tote+ Y(E)

with y € S, for every ¢, €.

Definition 1. Let t,,t,€i, t;<t,. If there exists a function y € S such that
o(ty) (ay(t)) + By'(t)) = 0and o(t,) (yy(t,) + 6y'(t,)) = 0, we say that the orderer
pair of spaces {Pg[a, B], Po[y, 5]} has a central projection {. The function {(t)
assigning a first zero t, € i (if any), t, > t,, of the function o(yy + Jy’) to every
zero ty € i of the function o(ay + By’), will be called the central projection of an
orderer pair of spaces {Pg[a, B], Po[y, 5]}

Convection 1. For the sake of brevity we shall speak, hereafter, of the central
projection { of the orderer pair of spaces {Po[a, ], Pa[y, 6]} from Definition 1
as the projection (.

Lemma 1. Let the projection { be defined at the point ty€i. Then {(ty) > t,.
The statement is evident.

Theorem 1. Let t,, t, € i. The projection ( is defined at the point t, assuming there
the value t, exactly if t; < t, and a basis (u, v) of the space S exists such that the
Sfunctions u, v and the points t, t, satisfy the following equation

au(ty) + Pu'(ty) av(ty) + v'(ty)
yu(ty) + ou'(t3) yu(tz) + 6v'(t,)

and the function u, v and the points t,, tei do not satisfy equation (1) for any point

te (tl ’ fz)
The statement follows from Theorem 6 (see [9])

=0 Y

Theorem 2. Let t;,t, €i. The projection { is defined at the points t1 assuming-
there the value t, exactly if t; < t, and
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(i) the function f and p are defined at the points t, and t, and f(t,) = p(t,), respect-
ively, whereby f(t,) # p(t) for every t € (t,, t,) for which p is defined.

(i) the functions f and p are not defined at the points t, and t,, respectively,
whereby p is defined on the interval (t,, t,).

The statement follows from Theorem 8 (see [9]).

Theorem 3. Let t;, t, €i. The projection { is defined at the point t, assuming
there the value t, exactly if t; <t, and

o(ty) = ¥(t) + kn,

for k being an integer, holds, whereby ¢(t,) # Y(t) + k= for every t € (t,, t,).
The statement follows from Theorem 9 (see [9]).

Lemma 2. Let the projection { be defined at the point ty € i. Then it holds for the
Sfunction y € S satisfying the equation 9(t,) (ay(to) + By'(to)) = O that:

1. if LA , then y # 0 on the interval (tq, ((2,)D,

B o
2. if —% < —% , then y has at most one zero in the interval (¢, {(t5)).

Proof: By Lemma 1.2 [8] and by Theorem 2.2 [8] there is either y(ty) # O

and 2 (‘0) ~% or ¥to) =0, ¥'(t,) = 0 and lim _y_(t_).. = + 00. In view of the

¥t) B 110+ V(B
definition of { we have a(?) (yp(¢) + 8y'(¢)) # O for t € (¢4, {(t0))-

1. Let —%> — Y If there were the zero point T € (¢4, {(t,)> of the function y,

é
then, by Theorem 2.1 [8] there would be lim —= y® _ — o0 and the function —f}—

t->T~ y( )
Y

would assume the value - on the interval (#,, T) contradicting our assumption

() + 5y’(t) # 0 on (fo, {(to))-
2. Let ——ﬁ— < —- . If there were two zeros T, Tre(ty, {(t)), Ty < T,

o
of the function y, then, by Theorem 2.1 [8], the function —‘;— would assume the

value —%’— within the interval (T, T,), which, however, would conflict with the
assumption yy(t) + 6y'(¢) # 0 for t e (ty, {(t,)).

Theorem 4. Let t,t, €i. The projection ( is defined at the point t, assuming
there the value t, exactly if t; < t, and there exists a y € S such that either

y(tl)— -2 and Yt _ v whereby it holds if y(t,) # 0, then
0] ) 7 A Thy 5 y if y(to) # 0,

V() , _ 7 £ 3(t0) = O, then y'(to) # O, for every to € (ty, 1,);
.V(to) é
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or

(030 =0, ¥(e) = 0ana 208 = L, whereby o) # 0 and 00—
Sfor every tye (4, t,);
or

(i) L9 = _ % ang y() = 0, (1) = 0, whereby y(to) # 0 and L0 4 —

W) B ¥(to) 5

Jor every ty e (¢, t,).
Proof: 1. Let {(t,) = t,. Then it follows from Lemma 1.2 [8] and Theorem 2.2
[8] for the function ye S satisfying the equation eo(t;) (ey(¢,) + By'(¢,) =0

that either () # 0 and 2 ((ttl)) = —%—, or y(t;) =0, y(t;) = 0 and
1
y'(®)

lim —== 4+
t—ty + y(t)

a) Let ——ﬁ— > ——;—. Then, by Lemma 2, y # 0 on the interval (¢,, ¢,), thus
y b . e L V() x
< > —% on the interval (¢,,t,) which implies that either = —— and
y 7 g onthe interval (1, £2) P i) - B
y(t) (t2) _y y (tz) Y

or y'(¢,) = 0, y(¢;) = 0 and -

Ty = 5 y'(ty) ¥(t1) ) = s

b) Let —-%— < ——2;—. Then, by Lemma 2, there exists at most one point T'e

€ (ty, t,» such that y(T) = 0. Let y 5 0 on (¢, ¢,). Then either —yy— > ——;- on

(t,, t,) which leads to p(t}) = 0, y'(t,) = 0 and 262 = _ ¥ o ¥V o _ ¥

W(t2) 0 y 6

. V() « Y _
on (¢,,t,) which leads to = —— and ——. Now, let =0
(s, ) W - F M e T )
for Te(ty, t,). Then, if T # t,, we get —)y)— < —%_ on (¢, T) and —y—- > —%
on (T, t,) which yields ((t“)) —%- and ’y’ ((:z)) = _%. If T = t,, then %— < —-;'—
2
y'(ty) _

TR —%— and y'(t;) = 0, y(z,) = 0.

II. Let one of the relatlons (i), (i), (iii) hold. It is then obvious (from Defini-
tion 1) that {(¢t,) = ¢,.

Corollary 1. Let the projection { be deﬁned at the point ty€i and let ye S be
that function which satisfied the equation o(ty) (0y(to) + By'(t,)) =0. Let w0
on the interval (t,, {(ty)). Now,

on (2,, t,) which yields

. o . .
1. if ———B-> e , then every function x € S has at most one zero on the interval

é
(o, (20)),
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S .
2. if ~F < —-%, then every function x € S has at most two zeros on the interval

(2o, C(t0)); specially: if y # 0 on (to, {(to)), then every function x € S has one zero
at most.

Corollary 2. Let the projection { be defined at the point tyci and let y € S be
the function satisfying the equation o(to) (2y(to) + By'(to)) = 0. Let ;€ (to, {(to)),
i=1,2,...,k, be zeros of the Wronskian w. Now

a y'(%) y
Jif =L s =Y then > -,
LY P7 T T
2. if ——F < ——7 then in case of y # 0 on (t,, {(ty)) we have y(( ')) < ——;— and
in case of T € (ty, {(to)) being zero of the function y, we have Y ((T')) -—%— for all
7; < T and ——== y(T’) —Z-for all ©; > T. "
) ,) 7

Theorem 5. Let one of the following assumptions hold:

) —%—> —%— and the space S be of type m 2 2 on i,

@ii) —%— < ——:;- and the space S be of type m = 3 on i.

Then the projection [ is defined at least at one point of the interval i.

Proof: (i) Let 25 Y and t,,t, €, t; <t,, be the neighbouring zeros

B 5

of the function y € S. By Theorem 2.3 [8], the function —%— assumes then all values

from (— o0, + ), i.e. also the values —% and ——;' on the interval (¢,, ¢,). Let
! ’
y'(to) = —Z hold for to € (t1, t5). Since —-7—;— > ——;— the function % assumes,

¥(to) B
with respect to Theorem 2.1 or Theorem 2.2 [8], the value —-g- on the interval

(to, t;). Thus { is defined at #,.

(ii) Let —%— < —-;— and t;,t,,t;3€i,t; <t, <tj3, be the zeros of the function
y€ S with y # 0 on the intervals (¢, ;) and (¢,, t;). By Theorem 2.3 [8], the
function % assumes on every interval (¢, ¢,) and (¢,, t3) all values from the

. t o
interval (— oo, + ), hence the values —2 and - as well. Let 2% ( °) —_—

B o W) B

hold for 1, € (¢;, 2;). If the function ~yy— assumes the value —%— on (fo, t2), { is
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'

obviously defined at ¢,. If —ﬁ— < —% on (29, t,) and y'(t;) = 0, then { is defined

’

at t, assuming there value ¢,; if —i— < é% on (ty, t;) and y'(t,) # 0 then %

assumes the value ———1;— on (t,, t3) —hence, it is defined at ¢,.

Lemma 3. Let the projection { be defined on the interval {a,b) < i. It then holds
for every interval j = <{a, b) that { % constant on j.

Proof: If { = k were on an interval j = {(a, b, k = constant, then k € i would
we a sinfular point of the space Po[y, §], which conflicts with the hypothesis about
its regularity. ) -

Theorem 6. Let the following assumptions be satisfied: The projection { is defined
on the interval {a, b) < i and assumes the values from the interval (¢, d) = i; w(t) #
# 0 for all te<a, d); there lies no extreme point of the space Pg[a, f] in (a, b),
and there lies no extreme point of the space Pa[y, 8] in (c, d).

Then the projection { is continuous and strictly monotonic on {a, b).

Proof: In view of the hypothesis w # 0 on (a, d), every point on {a,d) is

a zero of type 2. We shall break up the proof into two parts: 1. if — % > -—%
L oY
and 2. B < 5
1. Given —-% > —%. By Lemma 2 and respecting the hypothesis w # 0

on {a, d), it holds for every function x € S such that g(¢,) (ax(ty) + Bx'(t,)) = 0, -

where #, € <a, b that x # 0 on {ty, {(to)>, whereby {(t,) € (¢, d). The function .’;_

o X(to) _ o X)) _ v . XO _
is continuous on <{ty, {(ty)D, = —— 220/ - " and > -4
R 8 Y R () M M) M
for t e {t4, {(ty)). Let y € S be the function for which —‘}(%1)2- = —% . There may
now arise two alternatives for the function %: either —;— > -—% on (a, b) or
¥ o ' . Y® o . .
< < —— on (a, b). The equality =——~ = —— for t € (a, b) cannot arise with
y B @5 ananty ), B
respect to Theorem 2.10 [8]. ‘
. y' a [y o . . X
Given — < —F 5l > -7 on (a, b), then it holds for every function =’

x € S, assuming the value ~% on (a, b)—Ilet it be at the point ¢, € (a, b) —that

x’ x’ o .
=< ~F (—x_ > —-ﬂ—) on the interval (¢o, b)-
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% on (a, b). If the function x were such that -fﬁz- > -2
B e x(t) B

for any ¢ e (t,, b), where t, denotes a zero of the function g(ax + fx’), then, by
Theorem 2.8 [8] and respecting the assumption that no extreme point of the

Let first X < -
Yy

space Po[a, ] is lying in <a, b), there exists §, > O such that ’;((:)) < -—%— holds

for te(ty — 94, tp). Since, however % #* % must be valid on <a, to), then, if

x # 0 on <a,tyy or if Te<{a,t,) so that x(T) =0, ie. lim —x-g)-
o1+ X(0)

. . . . . . X
a point must exist in the interval (g, ¢,) or (T, t,) wherein the function gw assumes

= -4 00,

the value —% , and by Theorem 2.10 [8] an extreme point of the space Po[a, ]

must lie in the interval (a, ¢,) or (T, t,), which coutradicts our assumption.

’ ’

Completely analogous we can show if % > -—% on (a, b), then —E— > —%—
. x’(to) o
on (ty, b) if = ——, ty€(a, b).
oDy = T
Let us now select the points ¢t;€(a,b), i =1, ..., k,
A<ty <ty <..<th_, <t <b, | (V)
taking k sufficiently great for
l@ >1,,0(t) >ty ..., Lth—y) > 1, (1) > b, 3
(which is possible with respect to Lemma 1) and let us denote by x; € S the func-
. . x’(t‘) o
tions for which =222 = ——,
x{(1) B

y' o X; o . X
A. Let — < ——on (a, b). Then — < ——-on (¢;, b) for every function —

" 3 ( % ; (t:, b y X,

and it holds with respect to w # 0 on {a, d):

’

¥y’ X1

y < _5; on <t1’ (Ca)>9 ,

3 < s on {t3, {(1,)),
: @
r] ’

Xk=-1 Xk

o1 < X, on <t {(ti-1)D,

Xk _ V1

— < on <b, {(t)>,

< <, {(1))

where y, € S is the function for which i‘gg = —%. From the above relations -
1
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we get the following inequalities
L@ < lt) <Uty) < ... < Uti-y) < Ut < L(B)- ()
Evidently, the greater is k, the more so will hold the relations (3), (4) and thus
also (5). The projection { is therefore increasing on <{a, &) with respect to Lemma 3.
Let us now the continuity. With respect to the fact that { is defined as increasing
-on {a, b), it could have only points of discontinuity of the 1st kind on {a, b).
So, it suffices to show that every point ¢3 € ({(a), {(b)) is a functional value of
at a point of (a, b). Let t5 € (C(ti 1), ¢(2)). Following Lemma 1 [6] there exists

xo(to) = —-Y.Inanalogy with the method used in the paragraph
xo(10) o

before part A. concerning the proof of this Theorem, it can be shown that if

xo(t) Xy . Xb
t t —
o) < - 5 for a te {{(t;-1), t%), then, to satisfy the relation —‘=L o % %o on

the interval {{(¢;_,), 5 », there would have to exist a point of ({(t;-,), tg) at which

an x, € S so that

the function —;5- assumes the value -——6—, whereby if there exist a T e({(t;- 1), 1)
o

so that xo(T) = 0, this point would lie on the interval (T, t3). This would yield
with respect to Theorem 2.10 [8] a contradiction with the assumption that the
space Po[y, 6] has no extreme points on the interval (c, d).

Thus %‘l > ——;—- on the interval ({(¢;_,),t)) and since {(f;_,) < tg < {(tD,

xl
Xy < =% < =L ontheinterval <t;, {(t;- ). If xo # 0 on (t;-y, 1),
X4 Xo x,

it must hold —/—=

then we have the inequality izt < 22 also on (¢4, 1), whence it follows that

Xi-1 Xo

there exists a ¢, € (t;-4, ¢;) so that Xolto) = -—-a-. If there exists.a T € (t;-1, t)
0
Xo(to) B
5o that xo(T) = 0, then lim iogg = + oo and there exists again a to € (T, t)
t t+T+ 0 . . .
so that xogt"; = —% . Since the point ¢y was chosen arbitrarily, there obviously
olto

cxists a point ¢ € (a, b) to any point t* € ({(a), {(b)) so that {(z) = ¢*, which is the
result we wished to proove.

’

B. Let % > -—%— on (a, b). Then we get in (4) and (5) the reverse inequality,

whence it follows that the projection { is descreaing on {a, b) and its continuity
could be proved analogous to that carried out in part A.

2. Let —-—%- < -——;—. Then, by Lemma 2, it holds for every function x € § such
that o(t,) (ex(to) + Bx'(ty)) = O with ¢4 € <{a, b) that x has at most one zero in the
interval {ty, {(to)), {(to) € (¢, d). The notation of functions and points from sec-

tion 1. conserning the proof is preserved.
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C. Let us first assume yl # 0 on the interval (b, {(b)). Then .18 continuous:
on <b, {(6)) and TL ” 1< "a‘ for £ € <b, {(b)). Let us show that x ;e 0 on Ctos L(te)>
for every functxon xe S such that g(to) (ax(to) + Bx'(t,)) = 0, where &, e <a b)..

Then two possible cases for —x— arise from the continuity of the function —; at t,:

’

either §, > 0 so that ix; > ...% or fx— < —--%— on (tg, ty + o). It is readily seen
. . ! o
that x # 0 on {ty, {(25)) is evident in case of% > —f on (¢, ty + o). In case of

x o . . . .
—< ~F on (g, to + do) in assuming the existence of a zero of the function x-
x

in the interval (¢o, {(¢,)), we are led to contradiction to the assumption of our
Theorem saying that Po[y, §] has no extreme points in the interval (c, d). The
proof was carried out analogous to that in section 1. It turns out that { is continuous:

. . o Xi o N ' o

and increasing on <a, b} if — > ——_ on the intervals (¢;, by and RS
X B y B

on the interval (a, b); is contmuous and decreasing on {a, b) if 2 %ion

X B

the intervals (¢;, b) and —y— < ——ﬁ— on the interval (a, b).

D. Let us now assume that T, € (b, {(b)) so that y,(T,) = O and let us show
that T, e (ty, {(to)) so that x(T,) =0 for every function xeS such that

o(to) (@x(ty) + Px'(t,)) = 0, where #, € <a, b). If such a point did not exist, then %
would be continuous on (f,, {(#;)) and with respect to the assumptions of our
Theorem either ;— >-2orX<_%on (to, b) and it would hold cz- < —-—;—

B x B

on {t,, C(to)). In case of —;— > ——i“—, respecting the assumption w # 0 on {a, d),

p

ie. ;— + —y—l— we should be led in analogy with part 1. to the existence of a point
in ({(to), L(B)), wherein = takes on the value -—-5-. This however would conflict
with the assumption of Theorem 2.10 [8] saying that Po[y, 6] has no extreme
points on (c, d). In case of —< -—ﬂ- the contradiction is clear.

Thus every function x; in (ti, {(z,) has a zero. Let us denote it by T, and let T
be a zero of the function y in (g, {(a)). Assuming w # 0 on {a, d) yields

T>T,>...>T, > T,

if L’ > _z on (4, b) and s —% on (¢;, b, i.e. the projection { is decreasing
x“

B
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on {a, b), and
T<T, <..<T,<T,,

if —{)—- < ——Z— on (a, T) and % < —%— on (t;, T)), i.e. the projection ( is increasing

on {a, b).
The continuity could be proved in analogy with section 1.

Theorem 7. Let the following assumptions be satisfied: The projection { be defined
on {a,b) c i taking on the values from (c,d) < i, for all t € <a,d) be w(t) # 0.
There lies no extreme point of the space Pg[a, B] in the interval (a, d), and no extreme
Dpoint of the space Po[y, 8] lies in (c, d).

Then the projection { is continuous and increasing on {a, b).

Proof: Weapply the results of the proof of Theorem 6 adopting also the notation
therefrom.

1. Let —

o .
2~ _ Y There cannot occur case 1B. as in the proof of Theorem 6,
’

B 6
because the assumption -%— > —-% on (a, b) gives the fact that at least one point
must lie on the interval (b, {(a)), wherein %j— takes on the value —%. Following

Theorem 2.10 [8] then there exists an extreme point of the space Pg[a, f] in the
interval (b, {(a)) = (a,d), which is a contradiction. Thus the statement follows
from section 1A. in the proof of Theorem 6, i.e. the projection { is increasing.

2. Let —~< -X . In analogy with section 1. concerning the proof of this

B o
Theorem, the inequalities —j‘;— < —-% on (a, b) and -;C-'- < —% on (¢;,b) from
case 2C. yields a contradiction to our assumptions. It follows from the inequalities
Y X

7 > ——% on (a, b) and < > -—% on (¢;, b) that the projection { is increasing.
i

. .y o X; o

In case 2D. the inequalities — > ——- on (g, b) and — > ——

qualities > = on (4by and 7>~

T>T, >...>T, > T, yield repeatedly to a contradiction to the assumptions
of this Theorem. Namely, there would exist again at least one point of the interval

’

on (¢, b) i.e.

(a, T), wherein %— = —% . Thus, there may occur just the case -yy— < ——% on (a, T)
and -’;z— < —% on (t;, T),ie. T < T, <... < T, < Ty, and it repeatedly holds

that the projection ({ is increasing.
The continuity of the projection { was proved in the proof of Theorem 6.

Theorem 8. Let the following assumptions be satisfied: The projection { be defined
on the interval {a, b) < i taking on the values from (¢, d) = i, b < c and there lies
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an infinite number of zeros of the function w on the interval (b, c), for all t € {a, b) U
U (¢, d) be w(t) # O, there lie no extreme points of the spaces Pg[o, ] and Po[y, 5]
in (a, b) and (c, d), respectively.

Then the projection { is continuous and strictly monotonic on {a, b).

Proof: Consider first exactly one zero of the Wronskian w lying an interval
(b, ¢) written as t. We continue to employ the notation. introduced in the proof
of Theorem 6.

1. Let =% > —¥ . All function L, —y‘—, i have the same value at the
B 0 Yy 0N Xi
point 7 and following Corollary 2 ‘; ((:)) > —-%.'1 holds.

A. Let % < —% on (a, b). This yields the following inequalities:

’ ’
PPN

< on {t;, b
< <11, b
Xy Xh
x1 < X, on {t,, b) 7
: 6
X1 Xi
—_ < = on {t, b)
Xk-1 Xk *
xi(b) _ yitb)
xx(b) yi(b)’
YeX o X2 o  Fm1 o % V1 o (p 1), ©)
y X1 X2 Xk-1 Xk Y1
If w changes its sign at 7, then the inequalities
!_>_§.L>i2_>_”>_)f£"_l_>._xi>ﬁ '(8)
y X1 X2 Xg—~1 Xk 1 ‘
hold on (7, ¢) and
y X
T > on {c, {(t))
> <6, ()
Xy X2 .
=t 2 t
xl > xz on <C, L:( 2)>
Xk—1 X
—_ > — on {c, {(t)>
e X (%) |
X Vi
ks 2L on {c, {(b)). ®
Xk V1 )

Hence, the projection { is decreasing on {a, b). If w does not change its sign at 1,
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then (8) with a reverse inequality holds and moreover

y X
—_< — on {c, {(a
7 < {e, {(a))
x4 X5
i N < N on {c, {(t,)>
: (10)
xx'c-1 X :
¢, Uty
e e, Ute-1)>
Xy Vi
Nal AP LT on <c, L(t)D.
= = Y, n <c, {(ty)>

Hence, the projection { is increasing on {a, b). .
B. Let '};—f > —-%— on (a, b). Then in analogy with part A. of the proof of this

Theorem, we obtain the following results: if w changes its sign at 7, then the projec-
tion { is increasing on <a, b), if w does not change its sign at 7, then the projection {
is decreasing on <a, b).

o Y
2. Let 7 < 5
C. Letting y; # 0 on <b, {(b)), then in analogy with part 1A. of this Theorem,
we obtain the following results: Let % > —% on (a, b). If w changes its sign at 7,
i

then the projection { is decreasing on <{a, b}, if w does not change its sign at «,

’

then the projection { is increasing on <a, b>. Let Y < —% on (a, b). If w changes
its sign at 7, then the projection { is increasing on <a, b), if w does not change its
sign at 1, then the projection ( is decreasing on <a, b).

D. If the functions y,, y, x; have a zero in (b, {(b)), (a, {(a)), (¢;, {(¢,)), respective-
ly, then with respect to Corollary 2, these zeros are either all smaller or all greater
than 7. In a manner analogous to that used in part 1A. in the proof of this Theorem
on taking account of part 2D. in the proof of Theorem 6, we obtain the following
results for the projection { increasing or decreasing on <a, b): If w changes its
sign at 7, then under the assumption of w # 0 on <a, d), the projection { being
increasing and decreasing on <{a, b) is decreasing and.increasing on <a, b),
respectively. If w does not change its sign at 7, then the same statements remain
valid as under the assumption of w # 0 on {a, d).

The continuity of the projection { could be proved analogous to that in the
proof of Theorem 6.

If w has a finite number of zeros 7;, i = 1,2,..., k, on (b, c), then we may
proced for every t; analogous as in parts 1. and 2. regarding the proof of this
Theorem, whence the statement follows.
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Theorem 9. Let the assumptions below be fulfilled: The projection { be defined on
{a, by < i taking on the values from (c,d) < i; for all te {a,d) be w(t) # 0;
to € (a, b) be exactly one extreme point of the space Po[a, B] in (a, b); there does
not lie any extreme point of the space Paly, 8] in (c, d). The projection { is then
continuous on {a, b) and has an extreme at t,.

Proof: Following Theorem 2.8 [8] there exists an x &S such that g(t,)x

’

’
, x .
x (ax(to) + Bx'(to)) = 0 and 2 has an extreme at to. Let = has a maximum at ¢,.
x

If x # 0 on {ty, {(#,)) or there exists a T, € (¢o, {(t,)) such that;x(T}) = 0, then

’

. x o .
obviously < <~pF on {a, ty) U (2o, b) or <a,ty) U (ty, T,). We continue to

B
use the notation from the proof of Theorem 6.
It then holds —yy— > —% on (a, ty), for t; < t, we have ;l > —%— on (¢, ty),
X} o . X5 o
for t; > t, we have —- < —— on (1, b), if x; # 0 on {t;, {(t;)> or =L < ——
Xj B Xj B

on (¢, T)), where T} € (t;, {(¢;)) is a zero of the function x;.

With reference to the proof of Theorem 6 the projection { is either increasing
on <a, t,) and decreasing on {t,, b), or it is decreasing on <{a, t,» and increasing
on (t,, b). Next, the projection { is by Theorem 6 continuous on <{a, t,» and
continuous on {t,, b, thus it is continuous on {a, b> and has an extreme at ¢,.

’
x . .
If g has a minimum at ¢,, we may proced with the proof analogous as for the

-maximum.

Theorem 10. Let the following assumptions be fulfilled: The projection { be defined
on £a, b) < i assuming there the values from (c,d) < i; w(t) # 0 be valid for all
te<a,d); tg e (c, d) be the isolated extreme point if the space Pa[y, 5] on (c, d)
with {(t,) = tg, where ty € (a, b); there does not lie any extreme point of the space
Po[a, B] on (a, b). Then the projection { is discontinuous at t,.

Proof: Following Theorem 2.8 [8] there exists an x e S such that a(tg)x

x (yx(t3) + 6x'(13)) = 0 and —fc—- has an extreme at t5. We continue to use the nota-
tion from the proof of Theorem 6.

a Y

1. Let —— > —=

L B > =3

. X
at tg. Thus, there exists ¢ > 0 such that <> -% for te(tg,ty + € < (c, d).

. ! X ..
. Since —f—c— > -——3;— holds for t e <t,, tg) then —has a minimum

Because of t, € (a, b) we consider the intervals <a, ¢,> and {t,, b). Since { is
defined on the whole interval <{a, b) and assumes there the values from the interval

r

(c, d), then being assumed that w # 0 on {a, d), it follows that the function %
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X)) _ v
x(17) S’
where t] € (t5 + & c). It then holds — with respect to Theorem 6 and to the
assumption, that ¢4 is an isolated extreme point of the space Po[y, ] — that there
exists an & > 0 such that the projection { is continuous for te {t, — &, ty)
and it holds {(¢) < t(’,‘; the projection ({ is continuous for te (¢, t, + &) and
it holds {(¢) > tT. t, is the point of discontinuity and more precisely, of the first
kind.

must take on the value —-g— on the interval (t5 + ¢, c). Let therefore

’

o X . . x'
2. Let == < —- . Then ~— has a maximum at toif x # 0 on {ty,tg); ~— has

B o
a minimum at ¢, if x has a zero in (¢, t3). The proof proceeds in analogy with
case 1.

Remark 1. Let the projection { be defined on {a, b) assuming there the values
from (c,d); let w(t) # O for te {a,d) and ty € (a, b) be an isolated extreme point
of the space.Po[a, B]; {(2,) € (c, d) be an isolated extreme point of the space Pa[y, 6].
Let xe€ S be that function for which o(ty) (ax(to) + Bx'(ty)) = 0. This enables us
to prove in analogy with the proofs of Theorems 6, 9, 10 the validity of following
relations:

’

o . . . L
1. Let =2 > —X with % having a maximum at ty. Then the projection { has

B é
d minimum at ty and is discontinuous at to with lim {(t) > {(z,).

t=to
’

o L, X . .. L. .
2. Let -2 > - with X having a minimum at t,. Then the projection { is
x

B 0
continuous at t, and hds a mdaximum at t,.
o o, X ,
3. Let ——B- < —% with = having a maximum at t, and x # 0 on {ty, {(tc)).
Then the projection { is continuous at t, and has a maximum at t,.
o X . .. '
4. Let ——E < —% with - having a minimum at t, and x # 0 on {1y, {(to)).
Then the projection { has a minimum at t, and is discontinuous at t, with lim {(t) >
[ 3ad )
> {(to)-
o y o, X . , . .
S. Let —-F < -5 with > having a maximum at t, and x having a zero in

(to, L(t0)). Then the projection { has a minimum at t, and is discontinuous at ty with
lim {(2) > {(t,). o
R d 7Y

o L, X . .. . .
6. Let —— < e with — having a minimum at t, and x having a zero in
B 5 x g 0 g

(to, {(t0)). Then the projection { is continuous at to and has a maximum at t,.
In all the above cases the local extremes of the projection on {a, b are in question.
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The following Theorem 11 involves conditions sufficient for the existence of the
projection { on the interval with an point ¢, € i at which the projection { is defined.
The proof of this assertion proceeds completely analogous to those of Theorems 6,
8, 9, 10 and therefore it is left out. g

Theorem 11. Let the projection { be defined at the point t, € (a, b) < i assuming
the value {(ty) € (¢, d) = i. Let next w # O on the interval (a, d). Then it holds:

1. Let {(t,) not be an extreme point of the space Pa[y, 8], then there exists a real
number h > O such that the projection { is defined on the interval (to — h, to + h).

2. Let to not be an extreme point of the space Po[a, B and {(¢,) be an extreme
point of the space Po[y, 8]. Then there exists a real number h > 0 such that the
projection { is defined on the interval (ty — h, ty).

Remark 2. The first assertion of Theorem 11 remains valid if ©; € (to, {(t,)) is
a limited number of zeros of the Wronskian w. The latter assertion of Theorem 11
depends on the fact whether the Wronskian w changes the sign at its zeros or not.
The projection { is defined either on the interval (t, — h, tyy or on the interval
{tg, to + h).

Theorem 12. Let the projection { be defined on j < i. Then
Sf@) = p(L@)
holds for all t € j for which the characteristics f and p are defined. Next it holds
o) = y(l@®) + kn

_ for k being an integer and t € j.
The statement follows from Theorems 2 and 3.

Corollary 3. Let the projection { be defined on j < i. Then
Loawe(t) + P’ ()] [yo(C(2)) + Sv'(C())] —
= [an(®) + Bo'())] [yu(C(®)) + o/ ({(®)] = O an
holds for t € j and for the basis (u, v) of the spdce S.

Theorem 13. Let the projection { be continuous and increasing or decreasing on
J2 < i mapping this interval onto the interval j, = i. Then there exists exactly one
transformation T(z, {, j,, j,) for which

ey + By") = T(o(yy + 6y"), where yeS.

Proof: The projection { satisfies properties 1, 2, 3 from Definition 4.1 [4] and
also relation (11) for every ¢ € j,, where (, v) is the basis of the space S. Following
Theorem 4.6 [4] there exists the transformation Tz, {, j;, j,) for which T(a(yu +
+ ou')) = o(au + Pu’) and T(o(yv + dv")) = g(aw + Pv’) holds. From this — with
respect to Theorem 4.2 [4] — we have g(ay + By) = T(o(yy + 8y") for every
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function y € S. By Theorem 4.4 [4] the modulus from T is a continuous functions
on j, and

o(t) (ay(1) + By'(1)
a({(0) GyE®) + 8y’

where y € S for all ¢t €,, for which a({(2)) (yp({(t)) + y'({(2))) # 0. With respect
to Definition 1 this yields the uniqueness of T.

“ Z(t) =

’

Convection 2. In all what follows we shall assume w # 0, and every function —;L

with y € S being decreasing on every interval j = i where it is defined. The space S, S’,
Po[e, B] and Pa[y, 5] are thus — with respect to Theorem 2.13 [8] — of the zeroth
class on i, i.e. the phases of these spaces are monotone on the whole interval i.

Theorem 14. Between two neighbouring zeros of the function g(ay + By') €
€ Po[a, B] there lies exactly one zero of the function o(yy + 6y') € Pa[y, 5], i.e. the
zeros of the functions o(oy + By") and a(yy + 8y") separate themselves.

The statement follows — with respect to Theorem 2.1 [8] and to Corollary 2.1

[8] — from the monotonicity of the function 5 on every interval on which it is
defined.

Corollary 4. If Po[a, B] is a space of a finite type on i, then Po[y, 8] is a space
of a finite type on i; specially: if Po[a, B] is of type m then Po[y, 8]] is of type
m + 1 at most. If Pg[a, B] is of an infinite type on i, then Po[y, 8] is of an infinite
type on i.

Theorem 15. Let S be a spdce of an infinite type on m (m > 2,if ——;— > -—%—;
m 2 3,if —-Z_— < ——3;-) oni = (a,b). Let ty € (a,b) be the least point of (a, b) for

Vi) _ @ and

o) B
* —-% for all te(ty,b). Let ty € (a, b) be the greatest point of (a, b), for

which the following holds: There exists an ye€ S such that
y'(®)
(1)

N 1 ¥
which the following holds: There exists an y; € S such that —}—)—1%%- = -—}- and
’ : Yi(to
yi(®) « *
—— % —— forall te(a,t,).
y@ T Tl eltie@n)

Then the projection { is continuous and increasing on (a, t,) mapping this interval
onto the interval (tg , b).

Proof: Since the space S is defined on an open interval, the interval of definition
of {is evidently an open interval. If a point T € (¢,, b) existed at which the projection
X((m) _

D)
= _%_ where {(T) € (T, b). This would imply that the functions -’y’— and % would

{ would be defined, then there would exist a function x € S such that
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assume the same value at a point of (7, {(T)), which with respect to the assump-
tion w # 0 is impossible. Likewise may be shown that the projection { assu-
mes the value ¢ < 3. By Theorem 7 the projection is increasing and continuous.

Theorem 16. Let the assumptions of Theorem 15 be fulfilled and write j, =
= (a, to), j; = (t3, b). Then there exists exactly one transformation T(z, {,Jy,J,)
for which

e(ay + By’) = T(a(yy + 6y")),  where y€eS.

The statement follows from Theorems 13 and 15.

Theorem 17. Let Po[a, ] and Pa[y, 5] be spaces of types + oo or — oo on the
interval i = (a, b). Let to, ty € (a, b) be the points of Theorem 15 in so far as these
points exist. Then: )

1. if the spaces Pg[o, B] and Pa[y, 5] are of type + oo on (a, b), then the projection {
is defined, continuous and increasing on (a, b) mapping this interval onto (t3 , b).

2. if the spaces Pg[ea, B] and Pa[y, 6] are of type — © on (a, b), then the projec-
tion { is defined, continuous and increasing on (a, t,) mapping this interval onto (a, b).
The statement follows from Theorems 14 and 15. ’

Theorem 18. Let Po[a, B] and Po[y, 8] be spaces of type + oo on i. Then the
Dprojection { is continuous and increasing on i mapping the interval i on itself.
The statement follows from Theorem 17.

Theorem 19. Let Pg[«, B] and Po[y, 8] be spaces of type + oo on i. Then:

1. {(t) = p~Y(f(t)) for all t € i, for which the characteristics p and f are defined.

2. L) = Y~ Yo(t)), where tei and ¢ and \y are phases satisfying the equation
o(to) = Y({(to)) at a point ty€i.

With respect to Theorem 12, the statement follows from the monotonicity of
the characteristics p, f and from phases ¢, Y on their intervals of definition.

Theorem 20. Let Pg[o, B] and Pa[y, 8] be spaces of type + oo on i. Then there
exists exactly one total transformation T(z, {) of the space Paly, 8] onto Pg[a, f]
for which

olay + By") = T(a(yy + 6y"), where y € S.

The statement follows from Theorems 13 and 18.

Remark 3. Following Theorem 2.15 [8] the set of integrals of the first accompany-
ing equation (q,) with bases [a, B] to the equation () (see [2]) is a two-dimensional
accompanying space Pg[a, ] to the space S of the integrals of (), where

_ 1

Vo - B ,

The projection { of bundles oy + By’ and yy + 6y', where y is an integral of (),
is evidently a special case of the projection { of the pair of accompanying spaces

e

1



{Po[e, B, Pal, 61} to the linear two-dimensional space S of functions with a con-
tinuous first derivative. Comparing the results of [3] we see that in case the spaces
S, S', Po[, B] and Pa[y, 8] are of the zeroth class, the projection { of the pair of
spaces {Pola, B], Po[y, 8]} has similar properties as the projection of bundles of
integrals of (q) with bases [o, B] and [y, 8].

HEHTPAJIBbHAA NPOEKINA HAPHI CONPOBOAUTEJIbHBIX
IPOCTPAHCTB K JINHENTHOMY JIBYXPA3MEPHOMY
MPOCTPAHCTBY O®YHKI[MIl C HEIPEPHIBHOI IIEPBOI

POU3BOTHOI :

Pe3rome .

Tlycts Pole, B] u Po[y, 6] conpoBOMTEbHBIE IPOCTPAHCTBA K JBYXPa3MEPHOMY IIPOCTPAHCTBY
S < Cy(), roe a, f, ¥, 0 He paBHBIC HYJIIO BEIECTBEHHbIE [OCTOsIHHBIE, @d — fy % 0, u o > 0,
o > 0 HenpephBHBIE GYHKIMH HA MHTEpBase i. OnpeneNseTcs LeHTPpalbHas IPOCKIHU YIOPSALOYCH-
HOR mapsl mpoctpancts {Pole, f1, Poly, 6]} u uccnemyrotcs ee cpoiictBa. B paboTe ompezeneHb
He0oOXOMHEMBIE M OCTATOYHLIE YCIIOBUS IJIS CYINECTBOBAHUS MPOEKIMK { B TOYKE o € | H IOKa3aHbL
JOCTaTOYHbIE YCHOBHs [JIs CYIIECTBOBaHMs mpoekuun ( HA MHTEepBasie. VlcciaemyroTcss CBOMCTBA
npoexkuuy { B 3aBUCHMOCTH OT €KCTPEMAJbHBIX TOYEK MpocTpancts Pole, f] u Poly, 6]. IToxa3sl~
BaETCsl, 9TO MpoeKuus { He JOJDKHA OBITh MOHOTOHHOM M HE HENPEPHIBHOW Ha CBOEM HHTEpBAJIe
ONpeneneHHoCTH. B ciydae, KOrma mpoekiust { HempepbhiBHA W MOHOTOHHA Ha HHTEpBAie j, < 7,
TO OHA SBIETCS aMIUIATYNOM TpaHchopmauuu T(z, {, j,, j,) mpoctpauctea Poly, 6] B untepsane
J1 = {(j;) va npocrpauctBo Pple, 8] B MHTEpBae j,.

Pa6ora Toxe Kacaercs mpocTpancts Pole, B] u Paly, 0], KOTOPBIE HYIEBOTO KJIacCa — TO €CTh,
Y KOTODBIX HEHAXOHAATCS €KCTPEMasbHbIe TOYKH. B TakoM Cilyyae MoydyuM IOA06HBIE PE3YSIbTAThI
Kak B Clly4yae IOPOCTPAHCTB MHTETPAJIOB MEPBBIX CONPOBOAUTENBHBIX YPABHEHHM K ypaBHEHHIO (g):
¥’ = q(t)y, rme g < 0 HenpepbiBHAs QyHKIMS Ha MHTEpBae i, ¢ 6asucamu [«, B, [y, 6]. [Ipoexmms
{ HenpephIBHA M BO3pAcCTaroluasi Ha CBOEM MHTEpBase ONpeNeNeHus. B cilyyae, YTO MPOCTPAHCTBA
Pola, f] m Poly, 6] TMDa too Ha WHTEpBAJE I, TO IPOEKLMs { HEIpephIBHA M BO3pacTaromas Ha
HHTEpBaJe i, 0TOOpa)XaeT MHTEPBAJ i Ha CeOs ¥ SBIIACTCS aMIUIMTYOM MOJHON TpaHCGOpMaLan
T(z, {) npoctpauctBa Poly, 6] Ha npoctpancTBo Pgla, fl, npuuem g(xy + By’) = T(a(yy + &)y
roe y € S.

CENTRALNIi PROJEKCE DVOJICE PRUVODNICH
PROSTORU K LINEARNIMU DVOJROZMERNEMU
PROSTORU FUNKCI SE SPOJITOU PRVNI DERIVACI

Souhrn

.

Necht Ppla, f] a Poly, 6] jsou privodni prostory k dvojrozmérnému prostoru S < C,(i), kde
e, B, ¥, 0 jsou realné konstanty rtizné od nuly, «d — fy # 0, a ¢ > 0, o > 0 jsou funkce spojité
na intervalu i. Je definovana centralni projekce usporddané dvojice prostori {Pol«, Bl, Paly, 6]}
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a jsou zkoumdny jeji vlastnosti. Jsou nalezeny nutné a postadujici podminky pro existenci projekce £
v bodg ¢, € i a uvedeny postacujici podminky pro existenci projekce { na intervalu. Déle je vySetfovan
priib&h projekce ¢ v souvislosti s extrémnimi body prostort Pole, 81 a Po[y, 8. Ukazuje se, Ze pro-
jekece ¢ nemusi byt monotonni ani spojitd na svém defini¢nim intervalu. Z vlastnosti projekce
plyne za pfedpokladu jeji spojitosti 2 monotonnosti na intervalu j, < i, Ze je amplitudou transfor-
mace T(z, {, j1,j2) prostoru Po[y, d] v intervalu j, = {(j,) na prostor Po[«, 8] v intervalu j,.

Dile jsou uvazovany prostory Pole, f]a Po[y, ], které jsou nulté ttidy, tj. nemaji extrémni body.
V tomto piipadé je situace podobna jako v prostorech feSeni prvnich priivodnich rovnic k rovnici (g):
¥’ = q(t)y, kde g < 0 je funkce spojitd na intervalu #, pti bazich [«, 8] a [y, 6]. Projekce £ je spojita
a rostouci na svém defini¢nim intervalu. V ptipads, Ze prostory Po[e, f]a Po[y, 6] jsou navic typu = oo
na intervalu i, je projekce { spojitd a rostouci na celém intervalu i, zobrazuje interval / na sebe a je
amplitudou uplné transformace T(z, () prostoru Po[y, 6] na prostor Polx, B], pro kterou plati
olay + By) = T(o(yy + 6y)), kde y € S.
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