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_ ON A CERTAIN TRANSFORMATION
OF THE SOLUTION SET OF TWO LINEAR SECOND
ORDER DIFFERENTIAL EQUATIONS

SVATOSLAV STANEK

(Received September 15, 1981)

1. Introduction

In [1]—[3] there were investigated transformations of the type
A(t)u + B(t)v )

with such a property that under certain assumptions the function A(¢) y(¢) +
+ B(t) y'(t) is a solution of equation (Q) : Y = Q(t) Y for every solution y of
equation (q) :y” = q(¢) y and also conversely: there exists one and only one
solution y of (q) such that Y(t) = A(¢) y(¢t) + B(t) y'(¢) to every solution Y of (Q).
‘The present paper gives conditions necessary and sufficient for the transformation
.of the solution set of (q) onto the solution set of (Q) to be of the form (1).

2. Auxiliary lemmas

We consider differential equations of the type

Y =p(t)y, peC(), : ®

where j = (a,b), — < a < b £ 0. If necessary further restrictive assumptions
‘will be imposed on the coefficient p of (p).
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Definition 1. Let g € C'(j), Q € C°(§). Let a function F = F(t, u, v) be defined on
*F(t, u, v)
or* ou’ o'
0<i<2,0=5/j<4 05154, i+j+1=k. Say, the function F maps the
solution set of (q) onto the solution set of (Q) (or more briefly: equation (q) onto
equation (Q)) if the function Y(t) := F(t, y(1), y'(1)), t €], is a solution of (Q) for
every solution y = y(t) of (Q) and also conversely, there exists one and only one

solution y = y(t) of (qQ) to every solution Y = Y(t) of (Q) such that the equality

Y(t) = F(t, y(2), (1)) holds on

Lemma 1. Let g € C'(j), Q € C°(j). The function

F(t,u,v):= A@)u + B(t)v, (t,u,v)ejx RxR, @

ixRxR having here continuous partial derivadtives for 0 £k £4,

maps equation (q) onto equation (Q) iff A, B is a solution of the system of differential
equations
A"+ (q(t) — Q) A + 29(t) B' + q'(t) B =0,

' o e €)
24" + B" + (q(1) — Q1)) B =0,

and
q(t) B¥(t) — A*(t) + A'(t) B(t) — B'(t) A(t) = a constant (# 0). 4)

Proof. (=) If the function F defined by (2) maps (q) onto (Q) then the function
Y := Ay + By’ is the solution of (Q) for every solution y of (q). It follows from
the equalities
A"y +24'y' + qdy + B"y' + 2qB’y + B(gy' + 4'y) =
= Q(4y + By')

holding for every solution y of (q) that 4, B is a solution of (3). Let y,, y, be
independent solutions of (q) and put Y;:= Ay; + By}, i = 1,2. Then Y,, Y,
are necessarily independent solutions of (Q) and

Y,Y; - Y{Y, = (qB* — 4> + A'B — AB) (y1y2 — »1y%)

holds for their Wronskian, whence (4) follows.

(<) Let A4, B be a solution of (3) and (4) be valid. Let y be a solution of (q)
and put Y:=A4y + By'. By an easy calculation it can be verified that Y is a solution
of (Q). Let y;,y, be independent solutions of (q) and put Y;:= 4y; + By;,
i = 1, 2. Then it follows from (4) and (5) that ¥, and Y, are independent solutions
of (Q) and thus the function F defined by (2) maps (q) onto (Q).

Example 1. Let g e C2(j), g(t) # 0 for t €j. Let F(t, u, v) := B(t) v for (¢, u,v) €

€ jx Rx R map (@) onto (Q). Then it follows from Lemma 1 that B is a solution
of the system

2q(t)B + q'(t) B =0,
B" + (qt) = Q) B=0
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and q(t) BX(t) = k, where k # 0 is a constant. Then B(t) = —‘/ﬂ_ and Q(t) =

p Via@®)|
=q(t) + qu(t)l< )

. The transformation of the form F = B(t)v Was
investigated in [1].

Jia®1

Example 2. Let ge C%(j), o, feR, o® + 2 >0, «® — B2q(t) # 0 for f€].
Let F(t,u,v) := ad(t) u + PA(t) v, (t,u, v) e jx Rx R, map (q) onto (Q). Then 1t
follows from Lemma 1 that 4 is a solution of the system

ad” + a(q(t) — Q1)) A + 2Bq(t) A" + Bg'(t) 4 = 0,
204" + pA" + P(q(t) — Q1)) 4 = 0,
and B%q(t) A%(t) — a?4%(1) — «?4%(t) = k, where k # 0 is a constant. Then

A(D) =—?/——2_._‘/—l_k_2'—*ﬁ—, the function F may be written in the form F =
la” — B%q()|
= _%t?‘__ and Q = q+,ZLﬁ‘LZ__+\/|u2 _plql(__i__‘>
Via? — Bq(0)| « —Fq Viet ~ pq|
The transformation of the form F = —E_u_—;t——ﬁi_ was investigated in [3].
Vie? - pq|

Example 3. Let g C(j), e C(), fe (i), o2(t) + alt) B(¥) — (1) f(t) —
— B2(t) q(t) # O for t ej. The transformation of form (2) mapping (q) onto (Q)
was investigated in [2], where

L « . B .
Ve +af — o' — pq| Ve +ap’ — o' — pq|
Then Q = q + (e’ + 20f'q + afg’ + o"B’ + 2B%q + BBq — o'f" — 2% —
— 20'fq — BBq) (@* +af — '~ Bq) "+ oP +af —a'B— Biq| x

1 )
x( Viat+op —a'f—fq|

Lemma 2. Let ge C'(j), Q e C°(j). Let y,,y, be independent solutions of (q)
and Y., Y, be independent solutions of (Q). Then

A =cy1Yy + cy1 Yy + 333 Y) + 3 Y,

6)
B = —ciy, Yy — e Yy, — ey Yy — ey, Yy,

with ¢y, ¢3, C3, C4 being arbitrary constants, is the general solution of (3).
Proof. Put x, := A, x; := B. System (3) may then be written in the following
-equivalent form
Xy = Xy,

Q@) — @) x; — q'(t) x3 — 2q(t) x4,

Il

X3
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’

X3 = X4, -

x4 = (1) — 4() x5 — 2x,.
Let y and Y be solutions of (q) and (Q), respectively. Putting x, : = y'Y, x, : = x},
X3 = —yY, x, 1= xj yields

’

Xy =x] =(@@O)y +49OY)Y + 2q(t) yY' + Q1) y'Y =
=(Q) — gD Y'Y + ¢'(t)yY + 2q) (V'Y + yY') =
= (Q(t) — q(t) X1 ~ q'(t) x5 — 2q(t) x3 =
= (Q(t) — q(t)) X1 = q'(1) x5 — 2q(t) x4,

Xy =x3=—qt)yY — 'Y — Q(t)yY =

=(q(®) — QW) yY — 2(q(t) yY + y'Y") =

= (Q(1) = q(1)) X3 = 2x; = (Q() — q()) x5 — 2x;.

From this we find that 4 := »'Y, B:= —»Y is a solution of (3). Let us put
W=y, ¥5 — Yiv,, W:= Y, Y, — Y{Y,. Then a brief calculation verifies

nt y2 Y ny, .Y,
gy Yy + 1Y) @Yy + 0 Y] anY, + yiY;, gy Y, + yiY; — W22 £0
=Y - Y =Y, =¥, Y,

=01Y = Y] =» Yy =Y Y, =3, Y, =Y, — .Y,
This proves the assertion of the Theorem above.

Corollary 1. Let the assumptions of Lemma 2 be satisfied. Then all solutions A, B
of (3) satisfying (4) are of the form (6), where c,, c,, c5, c4 are arbitrary constant,
c1€q — Cyc3 # 0.

Proof Letusput w:= yyjy — y1¥,, W= Y, Y, — Y/Y, and 4, B be defined
by (6). Following Lemma 2 A4, Bis a solution of (3) and a simple calculation verifies
that

gqB* — A? + A’B — B'A = wW(c,c3 — c,cy).
From this immediately follows the assertion of Corollary 1.

Remark 1. Let g € C'(§), O € C°(j). It appears from the examples below that the
form of the mapping F of () onto (Q) is not generally of form (1), where 4, B are
suitable functions.

Example 4. Let us put ¢(¢):= 1, Q(¢) := 9 for teR, F(t,u,v) := (u + v)® +
+ (u — v)3 for (¢, u, v) € RxRx R. The functions €', e™* are independent solutions
of (q). It holds

F(t, ¢ + ce™", cie' — ce™") = (cre' + ¢1€') + (c,e™" + cpe™)? =

= 8cle? + 8cje™
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for every ¢, ¢, € R. Let Y be a solution of (Q), Y(0) = «, Y'(0) = B. It follows
1 . [3a+p 1,.[3c—8

“a=7 6 77 6
24c? — 24c¢3 = B. We see that F maps (q) onto (Q).

from the equalities 8¢ + 8¢5 = a,

Example 5. Let g(t) := 0, Q(z) := 0 for e R, F(t,u,v) := u + v* for (t,u,v) €
e RxRxR. The function ¢; + ¢,t, where ¢;, ¢, are arbitrary constants, is the
general solution of (q). It holds for every ¢;, ¢, € R and 7 € R that

F(t,¢cq + cyt,¢3) = (¢, + ¢2) + cat.

Let t, € R and Y be a solution of (Q), Y(#y) = «, Y'(t,) = B. From equations
¢y 4+ ¢ + cytg =, ¢; = B it follows ¢; = o — B — Bty, ¢, = B. We see that
the function F maps (q) onto (Q).

Example 6. Let q(t):= 1, Q(t) := 1 for teR, F(t,u,v) := e w4+ 0> +u—v
for (¢,u,v) e RxRxR. Then c,¢' + c,e”}, where ¢,, ¢, are arbitrary constants,
is the general solution of (q). Then we have for every ¢y, ¢, and te R

-t

F(t, cie' 4+ ce™", cref — cre™) = €7 (2¢,€')® + 2c,e™" = 8cie + 2c,e7".

Let Y be a solution of (Q) satisfying the initial conditions Y(0) = «, Y’(0) =

From equations 8cj + 2¢, = @, 8¢; — 2¢, = f we obtain ¢, = __‘/a . ﬁ

o ; B Thus it appears that F maps (q) onto (Q).

¢, =

Lemma 3. Let g € C'(j), Q € C°(j) and let F map (q) onto (Q). Furthermore, let
x be a solution of (q) and write

F\Z"

aty:= ZF (00, X)), b= O (1,30, X (),

0= 2E (0 xw. ¥ @), tei ™

Then
(ay + by)z + (by + ¢y') 2

is a solution of (Q) for every solution y or z of (q).
Proof. Let x;,x, be independent solutions of (q). Putting ¥(¢, «, B =
= F(t, axy(1) + Bxa(1), axi(t) + px3(2), (¢, o, B) € jXRXR, then ¥z, «, B) is
a solution of (Q) for every «, § € R. But also the functions

o’y oy @Y
oa? ~ O0adf’ 9p?’
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are solutions of (Q). It holds

'Y ny2+2aﬁ‘x,4_yF "
aaZ a 2 1 au av le l)2 X1
’Y  3°F *F 0’F
m = ~—6 7 %1%z + Pudo (x1x5 + x1%5) + — 2 xxxz, ®)
?Y _&F , *F _ ,  @8*F .
aﬂ au2 x2+2mx2x2+—6—v—;x2,

where the values of the partial derivatives of the function F are taken at the point
(t, ax,(t) + Bx,(t), axi(t) + Bx5(t)). Let x = a;x, + By1x,, where «,,f, are
appropriate numbers. Writing o, and B, for a and B, respectively, in (8), we obtain

Y, 1= axi + 2bxyx) + cx?,

Y, 1= ax;x; + b(x;x; + x1x;) + cxx5,

Y;:

Il

yx% + 2bx,xy + cxi,
as solutions of (Q). The assertion of the Lemma follows from the equalities
aYy + pY, = [a(ax; + Bx;) + bloax; + fx;)] x, +
+ [b(ax; + Bx;) + clax, + ﬁxz)'] X1,
aY, + pY; = [a(ax; + Bx,) + blax; + fx;)'] x, +
+ [blax; + Bx;) + clox, + Px;)'] x5.

3. Main results

Theorem 1. Let g € C1(j), O € CO(j) and lef q not be equal to a nonnegative constant
in any interval. Let a functional F map (q) onto (Q). It then follows that

F(t,u,v) = A(t) u + B(t) v, (t, u,v) e jx RxR, )
i
0°F

ou?

2

2 2 ’
(t,u,v).i—F—(t,u,v) o°F ——(t,u,v)) =0, for (t,u,v)ejo,xRxR (10)
o® Bu v

where jo < j is an appropriate interval and F(t,0,0) = 0 fdr tej.
Proof. (=) Let the function F, defined by (9), map (q) onto (Q). Then, by
. . . . d*F o*F d*F
Lemma 1, 4, Bis a solution of (3) and (4) is true. Since = = =0,
ou*  oudv  gp?
condition (10) is fulfilled even on the set jx RxR and F(z,0,0) = 0 for t€j.
(<=) Let there exist an interval j, < j such that (10) is true. Let x be a solution

of (q) and let the functions a, b, ¢ be defined by (7). Then a(t) c(t) — b*(t) = 0
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for ¢ € jo. It follows trom Lemma 3 that ay? + 2byy’ + cy'? is a solution of (Q)
for every solution y of (q). Let a(t) = O for f € j,, where j; < j, is a subinterval
of jo. Then also b(t) = O for ¢ € j; . Let c(¢) 0 for t € j; . Then ¢(t) y'*(t) is a solu-
tion of (Q) on j, for every solution y of (q). Let ¢, & j; and y, be a nontrivial solu-
tion of (q), y1(¢o) = 0. Then y;(¢) does not vanish in any subinterval of j. Put
Yi(t) := c(t) y2(2), t€j,. Then Y,(t,) = Y{(t,) = 0 and therefore Y,(t) = O for
tej,, hence c(t) = 0 for tej;- So we have proved: a(t) = b(t) = c(t) = 0, tej;.
In like manner we can prove that a(t) = b(t) = c(t) = 0 for ¢ € j, follows from
the equality c¢(t) = 0 or b(¢t) =0 for t€j, = j,. So, let a(t) = b(t) = c(t) =0
for t € j;, where j; means a subinterval of j,. It then follows from Lemma 3 that

(a@®)y + b(1)y)z + BNy + () y) 2 (11

is a solution of (Q) for any solution y or z of (q). Since for any solution y or z
of (q) the function defined by (11) vanishes for ¢ € j;, we obtain from this even

a(t) = b(t) = c(t) =0 for t€j. (12)

Assume a(t) # 0, b(t) # 0 for t€j, < jo. Thena(t) y* + 2b(t) yy’ + c(t)y'? =
= (1/a(t)) (a(t) y + b(t) y")? is a solution of (Q) on j, for every solution y of (q).
We may assume without loss of generality that (Q) is disconjugate on j,. The
remaining part of the proof can be splitted into two parts:

(i) let there exist #,, ¢, € j4 such that

a(ty) b(’x) ‘
alty) bt | % (13)

Lety;,i = 1, 2, be such nontrivial solutions of (q) that a(z,) y,(z,) + b(ty) y1(t;) =
= 0, a(t,) y,(t,) + b(t;) y5(¢;) = 0. It then follows from (13) that y,, y, are
independent solutions of (q). Let us set Yi(t) := (1/a(t)) (a(z) y;(t) + b(t) yi(1)*
for tej,, i = 1,2. Then Y; are solutions of (Q) on j,, Yy(¢t;) = Yi(t;) = 0. Since
a(t) y{t) + b(t) yi(t) = 0 for tej,. Then, of course, a(t) y(t) + b(t) y'(t) = 0 for
every solution y of (q) whente it follows that a(¢) = b(¢) = 0 for ¢ € j, which is
a contradiction;
(ii) let

a(t) b(ty)
a(ty) b(t,)

be valid for all ¢, t, € j,. Then there is a function k(t) # O defined on j, such
that a(t) = a. k(t), b(t) = B . k(t), where o, BeR, o # 0, § # 0. Then (k(t)/x) x
x (ay(t) + By'(t))* is a solution of (Q) on j, forevery solution y of (q). Let y,, y,
be two independent solutions of (q) such that ap(t;) + Byi(t;) = 0 with 7, # ¢,,
ty,t,€js, i = 1,2. Such solutions exist, for in the contrary case there would
exist a nontrivial solution y of (q) such that ay(t) + fy'(t) = O0for t € j,, i.e. y(t) =
= ce” /P, where ¢ # 0 is a constant and furthermore g(t) = (a/B)* for t€j,,

=0 )
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which, however contradicts our assumption of the Theorem above. Let us put
Yi(t) := (k@®)]a) (ayi(t) + Byi(t))*, tej,, i = 1,2. Then Y,, Y, are solutions of (Q)
on j,, Yi(t) = Yi(t) = 0, hence ay,(t) + Byi(t) = 0, i = 1, 2. Consequently, the
equality az(¢) + Bz'(t) = 0 holds for every solution z of (q) which leadstoa = f =
= 0, i.e. a contradiction.
This proves a(t) = b(t) = c¢(t) = 0 for t€j,. Completely analogous we can
prove the validity of (12).
In view of the fact that x is an arbitrary solution of (q) in the definition of func-
tions a, b, ¢, we find from (12)
2 2 2
Zu}: (t,u,v) = ZUI: (t,u,v) = %(z, u,v) =0, (t,u,v)ejxRxR. (15)

From (15) and from the assumption F(¢,0,0) = 0 for ¢ ej, we see that F is of
form (9).

Remark 2. We find from the examples below that it is impossible to delete the
assumption of Theorem 1 saying that g is not equal to a nonnegatlve constant
in any subinterval of j.

Example 7. Let us put ¢(r) := 0, O(¢) : = 0 for £ € R. We know from Example 5
that the function F(z,u,v):= u + v, (¢,u4,v) e RxRxR, maps (q) onto (Q).
*F °F d°F . .
It holds —- =0, - = 2, ——— = 0, whereby the function F is not of form (9).
ou’® an? Ou dv

Example 8. Let g(¢) := 1, Q(¢) := 1 for € R. We know from Example 6 that

the function F(f,u,v):= e *u + v)®> + u — v, (¢,u,v) e RxRxR, maps (q)
2 2

onto (Q). Itholds oF = 6e™u + v), oF = 6e”%(u + v), ——
ou? ov?

0°’F —2
S0 = 6e” “'(u+v),

hence o°F o’F *F
en ) ou ov

2
= 0, whereby the function F is not of form (9).
our v

Theorem 2. Let g e C(j), O € C°(j) and let (qQ) not be a disconjugate equation
on j. Let a function F map (q) onto (Q) and t{,t,€j, t; # t,, be not conjugate
points of (Q). Then (9) is valid iff

o’F o’F 0’F
Py (> u, U)="é;;(ti’”: U)“m(ti,u: v)=0 (16)

for (u,v) e RxR and F(t,0,0) =0  for tej.

Proof. (=) Letting a function F, written in the form (9), map (q) onto (Q),
"Z 2 2

yields V) = (t u,v) =0 for (f,u,v)ejxRxR.

Thus (16) is true even for all ¢, 1, €j.
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