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VOL. 76, MATHEMATICA XXU 

Katedra matematické analýzy a numerické matematiky přírodovědecké fakulty Univerzity Palackého 
v Olomouci 

Vedoucí katedry: Prof. RNDr. Miroslav Laitoch, CSc. 

ON A CERTAIN TRANSFORMATION 
OF THE SOLUTION SET OF TWO LINEAR SECOND 

ORDER DIFFERENTIAL EQUATIONS 

SVATOSLAV STAN6K 

{Received September 15, 1981) 

1* Introduction 

In [1] — [3] there were investigated transformations of the type 

A(t)u + B(t)v (1) 

with such a property that under certain assumptions the function A(t)y(t) + 
+ B(t) y'(t) is a solution of equation (Q) : Y" = 2(0 Y for every solution y of 
equation (q) :y" = q(0y a-id also conversely: there exists one and only one 
solution y of (q) such that 7(0 = A(t) y(t) + B(t) y'(t) to every solution Y of (Q). 
The present paper gives conditions necessary and sufficient for the transformation 
of the solution set of (q) onto the solution set of (Q) to be of the form (1). 

2. Auxiliary lemmas 

We consider differential equations of the type 

y"=P(0y> PeC°(j), (P) 

where j = (a, b), — oo <j a < b g oo. If necessary further restrictive assumptions 
will be imposed on the coefficient/? of (p). 
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Definition 1. Let q e CHj), Q e C°(j). Let a function F = F(t, u, v) be defined on 

i x R x R having here continuous partial derivatives ~—— for 0 < k ^ 4, 
dfduJdvl 

0 g z ^ 2, 0 g j g 4, 0 ^ / g 4, i + j + / = k. Say, the function F maps the 

solution set of (q) onto the solution set of (Q) (or more briefly: equation (q) onto 

equation (Q)) if the function Y(t) := F(t, j ( t ) , y'(O), te], is a solution of (Q) for 

every solution y = y(0 °f (q) #«^ also conversely, there exists one and only one 

solution y = y(0 of (q) to every solution Y = 7 ( 0 0f (Q) such that the equality 

Y(t) = F(/,y(0,y'(0) holds on j . 
Lemma 1. Let q e C1®, Q e C°(j). The function 

F(t, u, v) : = A(t) u + B(t) i>, (r, u, v) e j x R x R, (2) 

maps equation (q) onlo equation (Q) (/f^, B is a solution of the system of differential 

equations 

A" + (g(0 - Q(0) A + 2q(t) B' + g'(t) B = 0, 
2A ' + 2 T + fo(/)- Q(t))B = 0, 

and 

a(0 # 2 ( 0 - ^ 2 ( 0 + A'(t) B(t) - B'(t) A(t) = a constant ( ^ 0). (4) 

Proof . (=>) If the function F defined by (2) maps (q) onto (Q) then the function 
Y: = Ay + By' is the solution of (Q) for every solution y of (q). It follows from 
the equalities 

A"y + 2A'y' + qAy + B"y' + 2qB'y + B(qy' + g'y) = 

= Q(Ay + B/) 

holding for every solution y of (q) that A, B is a solution of (3). Let yt, y2 be 
independent solutions of (q) and put Y% : = Ayt + By,', i = 1,2. Then Yi9 Y2 

are necessarily independent solutions of (Q) and 

Yt Y'2 - Y/Y2 = (qB2 - A2 + A'B - AB') (y[y2 - yxy'2) 

holds for their Wronskian, whence (4) follows. 
(<=) Let A, B be a solution of (3) and (4) be valid. Let y be a solution of (q) 

and put Y: =Ay + By'. By an easy calculation it can be verified that Y is a solution 
of (Q). Let yi,y2 be independent solutions of (q) and put Yt : = Ay( + By\9 

i =• 1,2. Then it follows from (4) and (5) that Yj and Y2 are independent solutions 
of (Q) and thus the function F defined by (2) maps (q) onto (Q). 

Example 1. Let q e C2( j), q(t) ^ 0 for t e j . Let F(t, u9v):= B(t) v for (t, u, v) e 
e j x R x R map (q) onto (Q). Then it follows from Lemma 1 that B is a solution 
of the system 

2q(t)B' + q'(t)B = 0, 
*" + (q(t)~Q(t))B~0 
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and q(t) B2(t) = k, where k # 0 is a constant. Then B(t) = X| j and Q(0 = 
/ i v Vl«(OI 

= q(0 + VI «(01 ( ... I . The transformation of the form F = B(0 v w a s 

V VI «(0 I / 
investigated in [1]. 

Example 2. Let q e C2(j), a J e R , a2 + p2 > 0, a2 - p2q(t) # 0 for / e j\ 
Let F(r, u, v) : = aA(l) u + jSA(t) v, ({, u, v) e j x R x R, map (q) onto (Q). Then it 
follows from Lemma 1 that A is a solution of the system 

aA" + a(q(t) - Q(t))A + 2Pq(t) A' + pq'(t)A = 0, 
2aA' + pA" + p(q(t) - Q(t)) A = 0, 

and P2g(t)A2(t) - oc2A2(t) - a2^2(Q = k, where k 7- 0 is a constant. Then 
/I k I A(t) = — v , the function F may be written in the form F = 

y/\a2 - ß2q(t)\ 

V|«2-/?W-- 2 -Y. 
V л/l a2 - 02a I / 

aы + /Jt> , л aßíj' 
and ß = q + - ^4 - + V |a 2 - / ? 2 a (0 l a 2 - / ? 2 ? V V| a2 - j82« I 

The transformation of the form F = —============== was investigated in [3], 
Via2 -fi2q I 

Example 3. Let q e C2(j), a e C3(j), 0 e C3(j), a2(t) + <x(t) P'(t) - a'(0 /*(0 -
— />2(0 q(0 ?-= 0 for t e j . The transformation of form (2) mapping (q) onto (Q) 
was investigated in [2], where 

A= g , 1 = £ - . . 
VI a2 + ayS' - a'jS - £2a | V| a2 + a/T - a'/? - 02a | 

Then Q = q + (aa" + 2a/?'? + apq' + a"j8' + 2p'2q + /J/J'tj' - a'j8" - 2a'2 -

- 2a'pq - pfi'q) (a2 + ajS' - a'jff - j82«)_1 + V| a2 + aj8' - a'j8 -p2q\x 

( ' >' Y 
V v | a 2 + a)S'-a / iS-y?2q | / 

Lemma 2. Let qeC1®, Q e C°(j). Lel yi,y2 ^e independent solutions of(q) 
and Y!, Y2 be independent solutions of (Q). Then 

-4 = ^ly i -^l + <\>y!Y2 + C3y2^1 + c4y2^2> (gv 

B = - c j y j Y ! - c2yl^2 - ^3y2^1 - C 4 y 2 Y 2 , 

with Cx,c2,cz, c4 bein# arbitrary constants, is the general solution of (3). 
Proof. Put xi := A, x3 := B. System (3) may then be written in the following 

equivalent form 
xi = x2> 
x2 = (Q(0 - q(0)*i - q'(0*3 - 2q(t)x4> 
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X3 — X4.9 

x\ = (g(0 - <?(0)*3 - 2x2. 

Let y and Y be solutions of (q) and (Q), respectively. Putting xt : = / Y, x2 : = xi, 
x 3 : = — jY, ;c4 : = x 3 yields 

x'2 = xl = (*/.'(0.v + *7(0'/) Y + 2*7(0 JY' + Q(t)y'Y = 

= (Q(0 - q(t))/Y + q'(t)yY + 2q(t)(y'Y + yY') = 

= (S(0 - <7(0) xx - q'(t) x3 - 2*7(0 x'3 = 

= (S(0 - q(0) Xx ~ q'(t)x3 - 2a(0 x4, 

x\ = x"3 = -q(t)yY - ly'Y' - Q(t)yY = 

= (q(0 - Q(t))yY ~ 2(q(t)yY + y'Y') = 

= (Q(0 - q(0) x3 ~ 2x\ = (g(0 - *7(0) *3 - 2x2. 

From this we find that A : = y'Y, B := —yY is a solution of (3). Let us put 
w '•= ViZ — y[y2, W := YtY2 — Y[Y2. Then a brief calculation verifies 

= w2W2Ф0. 

y'lYx y'2Yx y[Y2 y'2Y2 

qyi Y, + vi Y[ qy2 Y, + y'2 Y[ qyx Y2 + y[ Y'z qy2 Y2 + y'2 Y'2 

-yxYx -y2Yx ~yxY2 -y2Y2 

-ViY! -VxY[ ~y'2Yx -y2Y[ -y[Y2 - yxY'2 -y'2Y2-y2Y'2 

This proves the assertion of the Theorem above. 

Corollary 1, Let the assumptions of Lemma 2 be satisfied. Then all solutions A, B 
of (3) satisfying (4) are of the form (6), where ci9 c2, c3, c4 are arbitrary constant, 
c1c4 - c2c3 ^ 0. 

Proof. Let us put w : = yxy'2 - y[y2i W: = Yy Y2 - Y[Y2 and A, B be defined 
by (6). Following Lemma 2 A, B is a solution of (3) and a simple calculation verifies 
that 

qB2 - A2 + A'B - B'A = wW(c2c3 - cxc4). 

From this immediately follows the assertion of Corollary 1. 

Remark 1. Let q e C*(j), Q e C°(j). It appears from the examples below that the 
form of the mapping F of (q) onto (Q) is not generally of form (1), where A, B are 
suitable functions. 

Example 4. Let us put q(t) :=* 1, Q(t) : = 9 for t e R, F(f, t/, v) : = (u + t?)3 + 
+ (u — o)3 for (f, u, v) e R x Rx R. The functions e\e"t are independent solutions 
of (q). It holds 

F(f, c-e' + c2c~r, cief - c2c"f) == (cicf + cicf)3 + 0?2e~f + c2c"*r)3 = 

= 8c3e2' + 8c3c~3t 
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for every cx, c2 e R. Let Y be a solution of (Q), Y(0) = a, Y'(0) = jS. It follows 

ct = - 1 3 / , 3 a + g ? C2 = Lil^lzJL from the equalities 8c3. + 8c | = a, 

24cJ - 24c2 = /?. We see that F maps (q) onto (Q). 

Example 5. Let q(t) : = 0, Q(0 : = 0 for t e R, F(t, u, v) : = u + v2 for (f, u, i?) e 
e R x R x R . The function cx + c2t, where cx, c2 are arbitrary constants, is the 
general solution of (q). It holds for every c1, c2 e R and t e R that 

F(t, ci + c2t, c2) = (c! + c2) + C2t. 

Let t0 e R and Y be a solution of (Q), Y^o) = a, Y'(t0) = /?. F rom equations 
cx + cf + c2l0 = a, c2 = )8 it follows cx = a - p2 - j5/0 , c2 = /?. We see that 
the function F maps (q) onto (Q). 

Example 6. Let q(t) : = 1, Q(t) : = 1 for t e R, F(t, u,v):= e~2t(u + v)3 + u - v 
for (t, u, v) G R X R X R . Then c!cf + c2c~f, where cl5c2 are arbitrary constants, 
is the general solution of (q). Then we have for every ct, c2 and teR 

F(t, cxe
% + c2c~r, c!cf - c2c~r) = e-2\2c1e

tf + 2c2e~ f = 8c3er + 2c2e;' . 

Let Y be a solution of (Q) satisfying the initial conditions Y(0) = a, Y'(0) = p . 

From equations 8c3 + 2c2 = a, 8c3 - 2c2 = p we obtain ct = — 3 / a + t 
2 y 2 

a — /? 
r i _ . Thus it appears that F maps (q) onto (Q). 

Lemma 3. Let q e Cx(}), Q e C°(j) and let F map (q) onlo (Q). Furthermore, let 
x be a solution of (q) and write 

«(0 : = T 4 ('> x^' *'W)' ^ ° : = 4^(*> x(t)' *'«))> 
Gu uu(JU 

c(t):=^(t,x(t),x'(t)), te'y 

Then 

, 2 
Gv 

(fly + by') z + (by + cy') z' 

is a solution of (Q) for every solution y or z of (q). 
P r o o f . Let x1?x2 be independent solutions of (q). Putting Y(t,a, P) : = 

: = F(l, ax , ( t ) + px2(t)9 ax[(t) + j8x2(r)), (t, a, p) e j x R x R , then Y(r, a, p) is 
a solution of (Q) for every a, p e R. But also the functions 

d2Y d2Y d2Y 
da2 ' dadp9

 5 / ? 2 ' 

85 



are solutions of (Q). It holds 

82Y __ d2F 2 , S2F , d2F ,2 

5a 3M2 Sudv dv2 

d2Y d2F d 2 F , , d2F , , 
~~W~~~~XiX2 + ~u~d~^XiX2 + XlX2)+~~JXiX2' W 

d2Y _ d2F 2 -, d2F , 52F ,2 
~W~lSXl + 2~~~~X2X2 + ^v2~X2' 

where the values of the partial derivatives of the function F are taken at the point 
(t9axx(t) + fix2(t), ax[(t) + Px2(t)). Let x = a ^ + ^xl9 where a t , ^i are 
appropriate numbers. Writing ax and ̂  for a and j5, respectively, in (8), we obtain 

Yx := ax\ + 2bXiXi + cxi2, 

2 2̂ .
 == axix2 "T* o(Xix2 + XiX2) + CX\X2 , 

Y3 : = >>x2 + 2bx2x2 + cx2
2, 

as solutions of (Q). The assertion of the Lemma follows from the equalities 

aY! + pY2 = [a(ax! + fix2) + b(ax! + jSx2)'] xt + 

+ [b(ax! + f$x2) + c(ax! + Px2)'~] xi, 

aY2 + pY3 = [a(ax! + J5x2) + b(axt + £x2)'] *i + 
+ [b(ax! + f$x2) + c(ax! + /?x2)'] ^2 • 

3. Main results 

Theorem 1. Let q e C-(]), Q e C°(i) and lei q not be equal to a nonnegative constant 
in any interval. Let afunctional F map (q) onto (Q). It then follows that 

F(t9 u, v) = A(t) u + B(t) v, (t, u, v) e i x R x R, (9) 

W 
d2F 

Hu~2 
82F ( d2F V 

(t,u,v).~— (ř, w, D) — ( ^7^7O» ». «) ) =°> for (ř,M.t))6JOxRxR(10) 

where j 0 cz j is an appropriate interval and F(t9 0, 0) = 0 for te\. 
Proof. (=>) Let the function F9 defined by (9), map (q) onto (Q). Then, by 

32F i92F 32F 
Lemma 1, A, B is a solution of (3) and (4) is true. Since — - = ~——- = = 0, 

du2 Sudv Sv2 

condition (10) is fulfilled even on the set j x R x R and F(t9 0, 0) = 0 for tej. 
(<=) Let there exist an interval i 0 c= j such that (10) is true. Let x be a solution 

of (q) and let the functions a, b, c be defined by (7). Then a(t) c(t) - b2(t) = 0 
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for t e j 0 . It follows from Lemma 3 that ay2 + 2byy' + cy'2 is a solution of (Q) 
for every solution y of (q). Let a(t) = 0 for t e j x , where j x c j 0 is a subinterval 
of j 0 . Then also b(t) = 0 for t e j l . Let c(t) =£ 0 for t e j t . Then c(f) y'2(t) is a solu­
tion of (Q) on j t for every solution y of (q). Let t0 § ^ and yx be a nontrivial solu­
tion of (q), y[(t0) = 0. Then y[(t) does not vanish in any subinterval of j . Put 
Yi(t) := c(0y;2(0, f e j j . Then r ^ ) = F/(r0) = 0 and therefore Yt(t) = 0 for 
/ e j j , hence c(t) = 0 for t e j x . So we have proved: a(t) = b(t) = c(t) = 0, t e } t . 
In like manner we can prove that a(t) = b(t) = c(t) = 0 for t e j 2 follows from 
the equality c(t) = 0 or b(t) = 0 for tej2 c j 0 . So, let a(t) = b(t) = c(t) = 0 
for t e j 3 , where j 3 means a subinterval of j 0 . It then follows from Lemma 3 that 

(a(t) y + b(t) y') z + (b(t) y + c(t) y') z' (11) 

is a solution of (Q) for any solution y or z of (q). Since for any solution y or z 
of (q) the function defined by (11) vanishes for t e j 3 , we obtain from this even 

a(t) = b(t) = c(t) = 0 for t e j . (12) 

Assume a(t) ?- 0, b(t) ^ 0 for t e j 4 e j 0 . Then a(t) y2 + 2b(t) yy' + c(t) y'2 = 
= (\\a(t)) (a(t)y + b(t) y')2 is a solution of (Q) on j 4 for every solution y of (q). 
We may assume without loss of generality that (Q) is disconjugate on j 4 . The 
remaining part of the proof can be splitted into two parts: 

(i) let there exist tx, t2 e j 4 such that 

в(l*.) !>(?!) 

a{t2) Ь(ţ2) 
Ф 0. (13) 

Let j f , i = 1, 2, be such nontrivial solutions of (q) that a(tx) y^t^ + b(tt) yi(ti) = 
= 0, a(t2) y2(t2) + b(t2) y'2(t2) = 0. It then follows from (13) that yi9 y2 are 
independent solutions of (q). Let us set Yt(t) : = (lla(t))(a(t)yt(t) + b(t)y\(i))2 

for t e j 4 , i = 1, 2. Then Y{ are solutions of (Q) on j 4 , Yt(tf) = Y;(tf) == 0. Since 
^(0yi(0 + b(t)y'i(t) = 0 for tej4. Then, of course, a(t)y(t) + b(t)y'(t) = 0 for 
every solution y of (q) whence it follows that a(t) = b(t) = 0 for t e j 4 which is 
a contradiction; 

(ii) let 

<*(h) Kh) 
a(t2) b(t2) 

= 0 (14) 

be valid for all tit t2 e j 4 . Then there is a function k(t) ^ 0 defined on j 4 such 
that a(t) = a . k(/), b(t) = P . k(t), where a, j8 eR, a # 0, fi * 0. Then (k(r)/a) x 
x (a,y(t) + py'(t))2 is a solution of (Q) on ] 4 for every solution y of (q). Let j j , y2 

be two independent solutions of (q) such that ayt(t^ + py't(t^ = 0 with tx ^ t2, 
ti,t2eJ4» i = ->2. Such solutions exist, for in the contrary case there would 
exist a nontrivial solution >> of (q) such that ay(t) + Py'O) = 0 for t e j 4 , i.e. }>(f) = 
= ce~iat/fi\ where c ^ 0 is a constant and furthermore q(t) = (a//?)2 for f e j 4 , 
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which, however contradicts our assumption of the Theorem above. Let us put 
Y.(t) : - (k(t)/a) (ayt(t) + fSy&t))2, t e j 4 , / = 1, 2. Then Yt, Y2 are solutions of (Q) 
on j 4 , Yt(ti) = Y'i(ti) = 0, hence ayt(t) + Py't(t) = 0, i = 1, 2. Consequently, the 
equality az(0 + Pz'(t) = 0 holds for every solution z of (q) which leads to a = J? = 
= 0, i.e. a contradiction. 

This proves a{t) = b(t) = c(t) = 0 for t e j 0 . Completely analogous we can 
prove the validity of (12). 

In view of the fact that x is an arbitrary solution of (q) in the definition of func­
tions a, b, c, we find from (12) 

d2F d2F d2F 
—-(t9u9v) = — - ( t , u , v ) = ——-(f, u, v) = 0, (f, u, v)ejxRxR. (15) 
c9u c3v du ^ 

From (15) and from the assumption F(t, 0, 0) = 0 for tej, we see that F is of 
form (9). 

Remark 2. We find from the examples below that it is impossible to delete the 
assumption of Theorem 1 saying that q is not equal to a nonnegative constant 
in any subinterval of j . 

Example 7. Let us put q(t) : = 0, Q(t) : = 0 for t e R. We know from Example 5 
that the function F(t,u,v) : = u + v2, (t, u, v) e R x R x R, maps (q) onto (Q). 

d2F d2F d2F 
It holds —— = 0, = 2, -—r— = 0, whereby the function Fis not of form (9). 

du2 dv2 duSv 
Example 8. Let q(t) := 1, Q(t) := 1 for t e R. We know from Example 6 that 

the function F(t, u, v) : = e"2t(u + v)3 + u ~ ^, (t, u, v) e R x R x R , maps (q) 

onto (Q). It holds ^ = 6c"2f(u + v),™ = 6e~2t(u + v), - i - f - = 6e~2t(u + v), 
du2 dv2 cudv 

d2F d2F ( d2F \2 

hence — - . —r~ 1 = 0, whereby the function F is not of form (9). 
du2 dv2 \dudvj 

Theorem 2. Let q e Cx(j), Q e C°(j) and let (q) not be a disconjugate equation 
on j . Let a function F map (q) Onto (Q) and tx, t2 e j , tt ^ t2, be not conjugate 
points of (Q). Then (9) is valid iff 

d2F , s d2F . . d2F , • n n „ 
™ ^ , u , v ) = ^ a - , u , . ) = ^ i 7 ( ^ u , v ) = 0 (16) 

fOr (u, v) e R x R and F(/5 0, 0) = 0 for r 6 j . 

Proof . (=>) Letting a function F, written in the form (9), map (q) onto (Q), 
e?2F d2F d2F 

yields — ~ ( t , u , v ) = — - (t, u, v) = ——• (t, u, v) = 0 for (t, u, v) e j x R x R . 
du2 (9v ^^^^ 

Thus (16) is true even for all tx, t2 e j . 
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