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1. Introduction

We consider the differential equation

1

ﬁZVZ o
2 2 2pe 4
YA BYIN T — ~]y=0  xe(0, ), (1.1)
x
3
where y > 0, and fe| [; 5] are parameters.
If we choose in (1.1) 28 —2 =a and %> =¢, |v| = 2—15—, then we obtain
the differential equation
Y +cx’y =0 x e (0,00) , (1.2)
which was investigated in [5].
2 .
When f = ——g— V=5 [v] = %, then (1.1) reduces to.the equation
Y +xy=0 x e (¢, ), (1.3)

which is satisfied by the linearly independent Airy functions Ai(—x), Bi(—x)
of the first kind and of the second kind, respectively.

Remark 1.1. General solution of (1.1) can be written in the form

y = /xCy(yx"), (1.4)
where C.(x) denotes any linear combination of the Bessel functions J.(x) and
Yo(x).

As usual we say that f(x) is completely monotonic on (0, c0) and write
J(x) e M (0, o) if
(=DfPx) 20 (1.5)
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for i=0,1, ... and x > 0. If in (1.5) a strict inequality holds for i = 0, 1, ...,
then we denote it by f(x) € M (0, o0).
We say that the sequence {x,};~, is completely monotonic if

(=D)idix, =20 i,k=012 .. (1.6)

where the difference operator is defined by Ax, = x;,.; — x, and A"*lx, =
= A(4"x;); in this case we write {x,} € M. If the strict inequality holds throughout
(1.6) then we write {x,} € M. If in addition x, — 0 as k — oo, we write {x,} €
€M% o and M, , respectively.

From the proof of [2] Theorem 3.1 it follows that

a) let {x,}>, denote the sequence of zeros of any nontrivial solution of (1.1)

2 35
sequence {Ax,} e M* ,

and let ﬁe<l;i> and | v| gi (when B =1 then let |v| > 7

—1-) , then the

b) let fe < l; %> and |v| 2 ﬁ then the sequence of areas under each arch

between two successive zeros of the graph of any nontrivial solution of (1.1) belongs
to the class M .

The im of this paper is to enlarge the scope of known higher monotonicity
properties of solutions of (1.1).

2. Preliminaries

We recall some results which will be useful in the next section.
Let y(x) be any nontrivial solution of the differential equation

Y +ax)y +bx)y =0, x > 0. @.n
Denote bv {x{’}7, the sequence of consecutive zeros of the i-th derivative i =
=0, 1,2, ... of any nontrivial solution z(x) (z'(x) = z(x), x* = x,) which may

or may not be linearly independent of y(x).
Moreover we define the following sequences of functions

ay(x) = a(x), bo(x) = b(x), (2.2a)
bi(x) _
a;41(x) = a(x) — h(x) =0,1, .. (2.2b)
bi(x) .
b 1(x) = bi(x) + ai(x) — ai(x) B i=0,1,2, .. (2.2¢)
Jix) = bi(x) — —a(x) - —l-a (x), i=0,1,2,.. (2.3)

For 2 > —1 and a suitable W(x) we define the quantities

RS’=R£"(VV,A)=XT'W<x) exp(l | ,(x)dx)!w’(xn dv. (4

Xy
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Lemma 2.1. (see [7] Theorem 5.1). For i =0,1,... let W(x) >0 be any
completely monotonic function. Let ai(x), b(x) and f(x) be defined as in (2.2)
and (2.3) and suppose that the function f{x) is such that

fi(x) e M .(a, ©), fi(0) >0 —0 < a <.
Then {R{P} e M*.
New besides (2.1) consider the equation

Y'"+ A(x) Y + B(x) Y = 0. 2.5

Let A;, B;, F; be determined by formulas analogous to (2.2) and (2.3) and
{XM e, denote the sequence of zeros of the j-th derivative of any nontrivial solu-
tion Y(x) of (2.5). Then the following result holds.

Lemma 2.2. (see [8] Theorem 1.1). If fi(x) € M (a, ®), 0 < fy(o0) = Fj(0) <
< oo and (f; — F;) € M (a, o) for some i,j = 0, then the condition

[ TF12(x) = FI()] dx < 0 2.6)

is necessary and sufficient to ensure that corresponding to each sequence {XJ}
there is some solution of (2.1) whose i-th derivative has zeros x\P k = 0,1, ... such
that
(P - XPYeM, . (2.7)
Remark 2.1. If in Lemma 2.2 moreover (f; — F;) > 0 on (a, ) holds, then we
obtain (2.6) in the form
{(x) — XPYe M3 ,. (2.6")
Finally we establish the following result.
Lemma 2.3. Let the hypotheses of Lemma 2.1 hold and let y(x) = z(x), i.e. x\¥
are related to y(x). Then {P{P} e M* where

i i), 1 \ i - (i -
Pﬁ) = P,(‘)(W) = W(x,) exp(——z— j" ai(x)dn) o % +l)(xfc))l L (2.8)

For the proof of this lemma see [5] pg. 3 and Remark 3.2.

3. Completely monotonic sequences

The main result of this paper is given by the following

Theorem 3.1. Let y(x) and z(x) be two solutions of (1.1) which may or may not
be linearly independent and let {%"}i-o and {x{}2-o for i = 0,1,2,... be the
sequence whose k-th term is a zero of the i-th derivative of y(x) and z(x) respectively.
Then each of the sequences whose k-th term is given below is completely monotonic
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1

[
on the interval (p, ©) where p = ** —#—-«f’fv. Let Be 1;i and |v| Z
By 2 B
1
==
235
b(EA (3.1)
Ay (%) = Ay*(x), (3.2)
X'k+y
x ’ . ]
Josly(lde  if %< —=, (3.3)
X's 2 .
(%, — x)  provided  x, > x}, (3.4
(x, — %) provided Xo > Xy, 3.5
(X — %) provided Xo > X, (3.6)
X — %) provided Xo > Xg. 3.7)

Moreover if W(x) is any completely monotonic function, then the same is true
also for

44
~,(x—") for example | y'(x)17}, (3.8)
[y'(x) |

Wix!
_."_(i’:)_ for example Ly ()78, (3.9)
[y (xi) |

Wi
‘m&,,‘,)_ for example [y (x) 17, (3.10)
[y (xi0) |
W(x,) for example X, n >0, (3.11)
W(xy) for example (x) "% % >0. (3.12)

Moreover if w(x) is any function with the completely monotonic first derivative,
then the same is true also for

Aw(x,)  for example ax8, 0<p=, (3.13)
x,  for example Axp)Pf, 0< B, (3.14)
1
[%%;Tl)] provided B >0, w(x)>0, (3.15)
’ 8
[E’M] provided > 0, w(x) > 0. (3.16)
(x;)
Proof: Formulas (2.2) and (2.3) in case of equation (1.1) give
1
22 L1
2,2 262 B 4
ap=a=0; by = b; Jo(x) = bo = By"x = 2 >
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_ b o Uby 3B
a; = by’ by = bo; fl(x)_b0+2 by 4(bo >
_ b0 _p b0 b Y. =b
a, = bo’ bZ_bO bo +2(b0 > fZ(x)’— 0-

Let us choose in 2.4 i =1,1 =2 and

’

Wl(x)=(l; +2a)exp[—j"adx] =g—£’.
0

It is clear, for the general rules for calculation with higher monotonic fupctions
(seed:e.g. [9]) that under the hypotheses of Theorem 3.1 W,(x) € M,, and fim e
€ M (p, ). In our case we have ([7] Theorem 7.1)

Ri(Wy,2) = —4y*(x)
and since y*(x;) > 0 for k = 0, 1, ..., lemma 2.1 implies that {yz(x,ﬁ)} M* when
Xo > P.
To prove (3.2) we choose in (24) i =2, 1 = 2 and

’

W(x) = Wy(x) = (El—— + 2a1)exp [-fa,dx] =

b,
_{ bo 5 bo by .,
= ( e b, ) exp | —Eo—dx = —by(x).

Thus we have (— W,(x)) € M (p, ©) and, in the same way as above
Ri{(—=W,,2) = —R{(W,,2) = 4y"*(x;) = 4y"*(x)).

Moreover since f5(x) € M (p, ©), an application of lemma 2.1 gives (3.2).
Property (3.3) is a consequence of lemma 2.1 with i = A = 1 and with W(x) = 1
1
when » = ~5-
To prove (3.4) we set i = 0, j = 1 in lemma 2.2, in which case (2.5) and .1
become identical. It is simple to see that

_ 15 3 (b Y
fO fl_ 270“"—4"(—5:)EMw(p, CD)
Now let us denote

Fx) = fo'* - fi".
We can write & (x) in the form

gr(x) - fO - fl .
fo* + 11
We can find easy that
lim #(x) xf

X 00
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exists and is finite when § > 1 and with respect to [3] pg. 549 we can see that (2.6)

is valid, i.e. [ (fo — f1) dx < o0.
The proof of (3.5), (3.6) and (3.7) is analogous.
To prove (3.8) we use lemma 2.3 with i = 0. Since a, = 0, we have
POW) = W) |y (x|
and
PO(W) = |y'(x) |7

1 . 1
To prove (3.9) we set W(x) = W(X) ——=. Since We M, —— € M (p, ©),
Vbo(x) Vbo
we have W(x) e M (p, ©) and
’ ’ 1 1 b, rye ot - ’ "we s -
() = W(x) ——— (exp—2~5 ﬁdx) YD1 = W) |y 617
| Vbo(x3) 0 Jams

P =y ()17
Similarly to prove (3.10) we set W(x) = W(x)-l— and
bo(x)

PiW) = W(x) | y" () |7
Since x} = x,, it follows P{(1) = | y"(x) | %
Properties (3.11), (3.13) and (3.15) follow from ([6] Corollaries 3.1, 3.2
and 3.3).
Finally, properties (3.12), (3.14) and (3.16) can be proved in a similar way by

using lemma 2.1.

Remark 3.1. Property (3.2) implies that the local extrema of the derivative
of | y(x)| increase, which contrasts with (3.1) (see e.g. [1] pg. 446). So (3.1)
and (3.2) describe more precisely this fact which is known for the differential
equation (1.2) (see [5]).

Remark 3.2. It is known that if g(x) € M(p, ) and g'(x) < 0 on (p, ), then
(=1 g¥(x) > 0forj = 0, 1, ... This situation occurs in our case for the completely
monotonic sequences.

Remark 3.3. It is known that the diameter r(x) of the osculating circle to the
curve y = y(x) is given by the formula

_ 0+ Y@ (3.17)

e y'(x)

If r, = r,(xy) then (3.9) and (3.17) imply
{rk} € MOO >

which means that the diameters of the circles which osculate at the local extrema
form a completely monotonic sequence on (p, ).
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Similarly if 7, = r,(x}), we have
{fileM,,

i.e. the same is true with respect to the locus of the derivative of y(x).

Remark 3.4. It is known (see [4] pg 52) that the general solution of

yra 22t 2x[3v s [ﬁzyzx”—z 4 He—2p) _22””)] y=0 xe(0 ), (3.18)
X ,

can be expressed in the form
¥ = xPHC),

where C,(x) is the Bessel function mentioned in (1.4).
By easy calculation we find that f,(x) defined by (2.3) has the form
1
2.2
2.2 28-2 Py 4
Jolx) = By - —x—f_‘

which equals the quantity b, from the proof of theorem 3.1. Therefore, there
holds for 1 > —1

A 20— 2By + 1
R” =RW, ) = | W(x)[exp—z—f —i——{w—-dx] | y(x)|*dx =
= [ W)X px) | dx. (3.19)

Xk

If W(x) € M40, ©), then by lemma 2.1 we have {RJ(W, )»)}EM?;. If

A(oc — Bv + —1—) > 0, then in (3.19) we can choose W(x) = _._.l_ﬁ which
2 ACRIIREY

belong to M (0, 0) and it holds

Xk + 1

{ | Iyx)"dx}eME

on (0, c0).
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Sihrn

POZNAMKA O VLASTNOSTIACH VYSSEJ
MONOTONNOSTI ZOVSEOBECNENYCH
AIRYHO FUNKCII

MILOS HACIK A PETER IVAN

V tomto &lanku sa skima diferencidlna rovnica

1
pzvl _ T

2
X

y 4| By y=0 x €(0, ), (1.1

3 , . oy . . .
kde y > 0,8 e(l, —2~> , ktord rovnicu mbéZeme povazovat za difer. rovnicu pre

zov§eobecnené Airyho funkcie.

Pomocou znamych postacujicich podmienok si odvodené vlastnosti kompletnej
monotdnnosti postupnosti (3.1)—(3.16) (veta 3.1); tieto vysledky roz¥iruji &ast
vysledkov prace [5]. S uvedené dva aplikaéné priklady.
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Pesiore

3AMETKA O CBOMCTBAX MOHOTOHHOCTHU
BBICHIETO TTOPSIJIKA OBOBU[EHHBIX
®VYHKLUN SUPU

MWJIOII TAYMK U TTETEP UBAH

B aroii ctaThe M3yvaercs nuddepennnaibHoe ypaBHEHE

B — 1
— y=0 xe(O, <XD) (1'1)

2
X

y// + ﬁ2y2x2ﬂ—2 _

KOTOpO€ CTAHOBHTCSA (B ONPENENIeHHOM CMBICJE) YPaBHEHMEM i 0006IIEHHBIX
byHxmit DHpu.

IIp1 MOMOIM 3HAKOMBIX IOCTATOYHBIX YCJIOBMH 371eCh NeNyIHpPOBaHBI CBOWCTBA
KOMIUIETHOM MOHOTOHHOCTH mochenosatenbHocteil (3.1)—(3.16) uro sBugercs
paciumpeHueM yacTu pesynbTaToB pabotel [5]. Toxe 3mech BBeNEHBI IPUMEPHI
OJIsT aTiuKalui.
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