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FOR THE LINEAR DIFFERENTIAL EQUATIONS
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EVA TESARTKOVA
(Received March 10th 1986)
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Introduction

This article proceeds from Bordvka s theory of central
dispersions of the linear second-order differential equations
in Jacobian form (qg) treated at length for the equations being
on both sides oscillatory on the corresponding definition in-
terval. With respect to the definitions and to the properties
of the central dispersions of particular kinds there is no
possibility to carry over these concepts into the theory of
equations (q) of a finite type automatically, in retaining
the analogy of their utilization. The following article contais
a certain generalization of the concepts regarding all the
four kinds of the central dispersions considered for the
equations (q) being of a finite type - special on a finite
or on an infinite definition interval (a,b) by means of the
definitions of the special central dispersions of the res-
pective kinds. Furthermore, there are discussed conditions
and properties related to this generalization. The concepts
of the special central dispersions were introduced in the
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sense of [2], whére a group of the 1st kind central dispersions
of (q) of a finite type - special on the interval (- oe ,+ oo)
was employed to the theory of linear difference equations.

The text is divided into four chapters. Chapter 1 defines
the special central dispersions of the 1st kind of the equation
(g) of a finite type l-special on the corresponding definition
interval. With several theorems there are introduced zhe pro-
perties of such defined functions and a possibility is dis-
cussed regarding their mutual composition and an algebraic
structure of a set of these functions relative to the rule of
composition. Chapter 2 comprises analogous consideration to
the concepts of the special central dispersions of the 2nd
kind of equation 2-special on the definition interval. Chapter
3 investigates the conditions under which the concept of the
special central dispersions of the 3rd and 4th kinds may be
interoduced in connection with the ordering of the fundamen-
tal sequences of the equation (q) 1,2-special, in dependence
on the 3-fundamental and 4-fundamental numbers of the equation.
The final chapter 4 comprises the definitions of the special
central dispersions of the 3rd and 4th kinds, with their pro-
perties. There are shown the mutual possibilities and the rules
of composition to the special central dispersions of the four
kinds considered.

It might be well to point out here that throughout the
text the concept of the left or of the right & -fundamental
number r(z) or s(x) for #=1,2,3,4, i.e. the greatest lower
bounds and the least upper bounds~of the point set from the
interval (a,b) possess a left or a right A -conjugate point
on (a,b), in the sense of Borlvka is retained. By the 1-funda-
mental solution of the equation (q) of a finite type - special
we understand every solution u, possessing a zero at the
points r(i), s(l). By the 2-fundamental solution of the
equation (q) we understand every solution Uy whose derivative

has a zero at the points r(z), 3(2).

1. Special central dispersions of the 1st kind

Consider a linear differential equation of the second
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order

y" = q(t) y ., (q)

where q(t)éC(o) on the interval j=(a,b) with -ee<adbs+ ==,
Let this equation be l-special of the type m2 2., This means -
that every solution of the equation, except the l-fundamental
one, possesses exactly m-1 zeros in j. Both fundamental

numbers r(l), s(i) are proper and besides l-conjugate numbers.

Equation (q) satisfying the above assumptions will be written

as (q{1)).

It is evident in this case that the interval (a,b) may
be devided into two disjoint parts (a,s(l)L <s(1),b), where
45(1),b) form exactly those points of the interval j to which
there does not exist any right l1-conjugate point in j. It
follows from this that the fundamental central dispersion ¥
in the sense of the definition from [1] is defined on

(a,s(l) = (1)), only, the composite function VZ on the in-
terval (a,aé )), only, etc. Thus, generally, YL is for k <4m

cefined on (a, a( &), only. However, for k2m it is not defined
on any t € j. Slmllarly, the function ?Lk is defined for k<m
on (a(l),b), only, but for k&m it is not defined for any te& j.
The points aé ), k=1,2,...,m-1 represent thereby the zeros of

the 1-fundamental solution u; in the following ordering
S C R CO PN CODNPIN S IR CS DS

Thus an ordered sequence of zeros of the 1-fundamental solution
will be called hereafter the 1-fundamental sequence. For the

partial intervals (a(l) (1)) will be used the following no-

tation

(a,a{1)) = ofV) (D)) 2 5(1), . (a(t)b) = oD

2o
2

(ail),a

For the differential equation (q(l)) may be introduced
a function which uniquely associates the first on the right
lying l-conjugate point to every point t € (a, a( )), and the

l-conjugate point from the interval (a,aél)) to every

te(all),b).
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Definition 1.1,

P(t) for t e(a,aéi%)
dey =
Po(m-1)(Y) for te(alt)o)

L

1) the domain of definition_of the function P (t) forms

(a,alt)y 0 (alt),by;

2) the range of values of the function \D(t) forms

(a,agl)) u(ail),b);

3) (P(t) is_an increasing function from class c3) on_the

intervals (a,a&{%), (aé{%,b);

4) there is fulfilled

lim(I)(t) = b, lim(b(t) = a, lim I)(t) = lim(ﬁ(t) = a&l);

t-»argj;j)__ t-vaélj_"%-*- T2b” taat
5) the function P(t) uniquely maps
3§1) onto Jﬁii for i=1,2,...,m-1,

Jél) onto ng).

P r oo f: The above properties immediately follow from
the assumptions of the equation (q(l)), from the definition

and from the properties of the functions (t) stated in [1].

Analogous may be defined also the k-th or the -k-th

- 98 -



special central dispersion of the 1st kind for k€N, k<m in
the following way.

Definition 1.2.

to_the_equation (q( )) for keN, k<m, will be called_the

function

; ¢, (t) for te(a,all)y,
(t) =
« Pty (€) for te(all)lby

m=-k*

k€eN, k< m:

(e,alIh v (a{Z) b,

2) the range of values of the function (ﬁk(t) forms

- e e e e e e

3) f@k(t) is_an increasing_function from_class c(3) on_the

intervals (a,a{l)), (alt) p);

4) there is_fulfiljqg

1im G (t) = b, 1y (1) = a, lin @ (t) = 1im (1) = ai(<1).

(1)- -
tvan_k t-;aéil): t=b tra”

(1)
J onto Jgiﬂ for i=1,2,...,m-k,
(1)
m-k+3 ontd J:(Ll) for i=1,2,...,k .



P r oo f. The above properties immediately follow from
the assumtions of the equation (q(l)), from the definition
and from the properties of the functions Y(t) stated in [1].

Definition 1.3.

¥, (1) for te(alt),b) ,

¢ k(t) =

o P (t) for te(a,all)),

/

1) the domain_of definition_of the function @_k(k) forms

(a,af* )y v (alt),b); /

2) the range of values of the function qtk(t) forms

(a,afZh) v (all)b),

3) ¢—k(t) is_an increasing_function from_class c(3) on_the

intervals (a,al’)), (a{'),b);

4) there is_fulfilled I

lim@_k(t) = b, limé_k(t) = a, lim@_k(t) = lim@_k(t) =

(1)~ (1)+ - +
twa t=a / t+b t»a
k ko / - all).
m-k?
5) the function P, (t) uniquely maps
(1) (1) i
=N onto  JpTiLi for i=1,2,...,k ,

/ -100 - /
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Dgi& onto 3&1) for i=1,2,...,m-k .

P r oo f. The above properties immediately follow from
the assumptions relative to the equation (q(l)), from the
definition and from the properties of the functions V(t)
stated in [1].

It becomes clear from the above definitions that @1(t) =
=:@(t),4§_k(t) = @m_k(t). Thus, the special central dispersion
with an arbitrary integer index may be defined as follows.

Definition 1.4.

all t €(a,b).

Remark 1.1.

The function ©zm+k(t) has the properties 1) through 5) given
in the statement of Theorem 1.2 except for a difference of
notation for k=0, where aél) is used for the point a, a;i& is
used for the point b, and the function ¢O(t) is continuous
in the whole interval (a,b). Thus, there is no reason to
consider lim @b(t) for t~aaél)' and it holds lim @O(t) = a
for t—at, lim ¢O(t) = b for t—=>b".

It becomes evident from the above definitions and state-
meats that the special central dispersions of the 1st kind
may be arbitrarily composed on the domain a1 . J%l)u Jél)u ..
ceo U Jél), i.e. on the interval j=(a,b) except for the points
of the 1-fundamental sequence. This leads us to define the
following

Theorem 1.4.
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P r oo f. There is fulfilled for the arbitrary
ik 6{0,1,...,m-1}, j<k and for any z€ Z that:

1. @k = q)k = ®J Qk-j = ¢k—j ¢J H

2, @g = @0 is a unit in G(l)

3. to every §, there exists an inverse element
o= b= b 1n o)
4. ¢"= 9, = ®k¢m-—k = &, (b-k = ®y s
s. Pk L dTgk . 02 - 9D - D, -
Corollary 1.1.

- == == - =T =T R - - e el T e e m T -

@k of _the_group 6l1) is a generator_of the cyclic_subgroup

is_igomorphic with_the_set_of integers Z,, modulo i.

G|(<1) of order i=m/k in_the_group s(1), Thus, the subgroup G1(<1)

P r oo f: It follows from the statements expressed in
the group theory. There is fulfilled for arbitrary k,i€ N such
that m=ki, je{o,l,...,i-if and for arbitrary z€ Z that:

1. (DE = (I)O is a unit of the group G|(<1) ;
2. OF = Pyiningy = Puai Oy = ¢, b, -

- 6,0, -®

ki = kj ;
3. there exists an inverse element @St = @—jk =
. = Qm-jk = ¢k(i—j) to every éjk in G(kl)
Corollary 1.2,
The factor_group G“)/G,ﬁl)» where k is_a_non-negative integer
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modulo k.

P r oo f. From the statements known in the theory of
groups it follows that if k is a non-negative integer divisor
m, then G(l)/Gﬁi) is composed of classes

1 1 1 1
G|(< ) - G|(< )q)o' G|(< )©1' see Gl(< )(Dk"l )

where G|(<1)©j is a set of all special dispersions ©I< Q] ,
@ké Gl(<1)' @jé G(i) for j=0,1,...,m-1, Every element of the

group G(l) = {@’,‘b ooy ém-lf belongs exactly to one of the
given classes because for arbitrary non-negative integer i,]j,
k€N, m=ki, j<i, ce{o,l,...,k-lj there is fulfilled:

(1 1) 1
1. Gl(< )®jk+c= GI(< )‘bjk(bc= Gi(< )i)c;

2. G£1)®C= G‘f(l)(bf.

2. Special central dispersions of the 2nd kind

Again, let us consider the equation (q), 9<0, qéc(o)
on the interval j. Suppose this equation is of a 2-special
type m22, By this we understand that the derivative of any
solution of the equation, except the 2-fundamental one, pos=-
sesses exactly m zeros in j, the derivative of the 2-funda-
mental solution u, possesses exactly m-1 zeros in j. Both
fundamental numbers r(z), s(2) are proper and, besides, they
are 2-conjugate points. The equation satisfying the above

assumptions will be hereafter referred to as (q(z)).

For the existence of the central dispersions of the 2-nd
kind in the sense of the definition from [1] there evidently
hold analogous considerations to those for the central dis-
persions of the 1st kind in part 1. The points a§2) for
i=1,2,...,m-1 represent here the zeros of the derivative of

the 2-fundamental solution u, in the following ordering
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a <a§2) = r(2)< aé2)<... <a;%£ = 5(2)4 b

Thus ordered sequence of zeros of the derivative of the 2-fun-
damental solution will be called the 2-fundamental sequence.

The partial intervals (a§2), agfz) will be written as

n

(a,aiz)) = 3&2), (aéz),aéz)) Jéz),...,(a(z) b) = Jéz)

m-1"*

For the differential equation (q(z)) we may introduce a
function associating the first right lying 2-conjugate point
to every point t g(a,aéé{) and the 2-conjugate point from the

interval (a,aiz)) to every t a(aé%%,b).

Definition 2.1.

Y(t) for te(a,aé%%),
V(v =

(a,a{2))u (a{2),b)

intervals (a,a1%)), (a{%),0)
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4, there is fulfilled

1in ¥(t) = b, Llin¥(t) = a, Lin¥(t) = Lin¥(t) = a{?)

(2)- (2)+ - +
tsar”g tsa "] t-+b t-»a

3&2) _O_nEO_ 3:(1.53). for i=112'~°'1m_1
3&2) onto 3(2)

Proo f. The above properties immediately follow from
the assumptions of the equation (q(zb. from the definition
and from the properties of functions ¥ (t) stated in [1].

Similarly may also be defined the k-th or the -k-th

special central dispersion of the 2nd kind, for k&N, k<m,
as follows.

Definition 2.2.

yk(t) for t é(a,aé%&),

L//k(t) =

?;(m—k)(t) for t é(aé%&,b),

to_the_equation (q(z)) possesses the following properties_for
keN, k<m:

(a,al2)) v (al?) b)
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2) the range of _values of _the_function Vk(t) forms

3) %k(t) is_an increasing function from class c(®) on_the

intervals (a.aé%&), (aé%&,b);

4) there is fulfilled

lim Yk(t) = b, liﬁlwk(t) = a, lim Wk(t) = lim yk(t) = aﬁz);

(2)+
m-k

- +

t#&;%&_ t-a t+b t-a

5) the function yL(t) uniquely maps

3(2) onto  3¢2) for i=1,2,...,m-k;
i == i+k - =
(2) (2) =

Dm—k+i onto J} for i=1,2,...,k

P r oo f. The above properties immediately follow from
the assumptions of the equation (q(z)), from the definition
and from the properties of the functions Y(t) stated in [1].

Definition 2.3.

Y (1) for te(al®),b),

SV (t)—
-k ?ﬁ-k(t) for t e(a,a&z)),

(a,aﬁz)) U(aﬁz).b);
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2) the range of _values of _the_function V

(a,alZ)) v (af?).b);

3) Q_k(t) is _an increasing function from _class C(l) on_the

4) there is_fulfilled

lim V_k(t) = b, lim V_k(t) = a, lim V_k(t) = lim y_k(t) =

t-.»al(<2)_ t-»al(<2)+ tsat t>b” =a§f&;

5) the function V_k(t) uniquely_maps

3&2) onto Jé§&+i for i=1,2,...,k ,
Jgf& onto ng) for i=1,2,...,m-k

P r oo f. The above properties immediately follow from
the assumptions of the equation (q(z)), from the definition
and from the properties of the functions /(t) stated in [11.

It becomes evident from the definitions that Vl(t) = V]t),
?_k(t) = ?F—k(t)' Consequently, the special central dispersion
of the 2nd kind with an arbitrary integer index may be defined

as follows.

Definition 2.4.

relative_to the equation (q(2 ) for z6eZz, k=0,1,...,m-1 will

be_called the function V;m+k(t) = ?k(t), where yb(t) =t

for all te(a,b).

Remark 2.1.

The function Zm+|<(t) possesses the properties 1) through 5)

given in the statement of Theorem 2.2. except for a difference
of notation for k=0, where aéz) is used for the point a, aé%&

is used for the point b, and the function ?b(t) is continuous
in the whole interval (a,b). Thus, there is no reason to con-

sider the limit y%ﬂt) for t-»aﬁz)_ and it holds lim Vb(t) = a
for tsa®, lim Vb(t) = b for tab”.
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From the above definitions and theorems it becomes appa-
rent that the special central dispersions of the 2nd kind may
be arbitrarily composed on the domain 3(2) = Jiz)u 3%2)(/...
u..(JJ;Z), i.e. on the interval j=(a,b) except for the pointg

of the 2-fundamental sequence. This remark justifies the
following

Theorem 2.4.

=T e e e T =T, gl TR

A = s R i =it DR =R =Y 2 =T

Proo f. For arbitrary jJ<6{O,1,...,m—1i , j<k and
for any z€Z there is fulfilled:

1. ¥ A % L//k—j = Tk-j %j i

2. (fa = VO is a unit of the group G&z)

k

H
3. there exist an inverse element SVEI = VLk = 9;-k

to every element VL in G(z)

4 lfm = Vﬁ = VL q%—k = (fk Vlk = yb i
5. pEnrie L pEngk . V,i (//k = L/o (7V|< = L//k

Corollary 2.1.

P r oo f. This follows from the statements expressed in
the group theory. For arbitrary k,ie N such that m=ki, for
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i 6{0,1.---vi'1i and for arbitrary z€ Z there is fulfilled:

1. V/E = Qb is a unit of the group G£2) ;

v W , .
2. (#El+3 Tt k(zi+]) T V&zi ij = q;m VLj = 96 v&j = V

kj;

. . -1
3. there exist an inverse element Vak = (#—jk = ({m—jk =

4 (2)
= Ti(i-3) to every tfjk in Gy .

Corollary 2.2.

divisor m, is _a_cyclic group of order k with_a_generator

G(Z) y&. Thus, it_is isomorphic_with the set of_integers Z

modulo k.

Pr oo f. From the statements known in the theory of
groups it follows that if k is a non-negative integer divisor
m, then the group G(Z)/ Géz) is composed of classes

2 2 (2 (2
(B - DY, oY, L oD

' k k-1 "
where Géz)(yl is a set of all special dispersions (/k V(,
9126 G£2), ?3 3 G(z) for j=0,1,...,m-1. Every element of

the group G(Z) = {W ’ Wl' . Vm-li belongs exactly to
one of the given classes, because for arbitrary non-negative
integer i,j, k€N, m=ki, j<i, c e{O,l,...,k—lg there is
fulfilled:

2 2) 2
1. GI(< ) (]ij+c = GI(< )(//jk L//c = Gt(: )L//c;

2. G](f)gyc = ol®Ye

3. Mutual ordering of fundamental sequences relative to
equation (q) of a finite type -1,2 special

Consider an equation (q), q(t)< 0, g(t)< c(©) for a1l t
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from the interval j. Let this equation be of a finite type,
1,2-special, which means that both fundamental numbers r(l),
s(l) are proper l-conjugate numbers and simultaneously both
fundamental numbers r(z), 5(2) are 2-conjugate proper numbers,
as well. Under these assumptions we may express the following
assertion on the ordering of zeros of the l1-fundamental so-
lution and of the zeros of the derivative of the 2-fundamental

solution relative to the equation (q).

Theorem 3.1.

a=r{*c ail) = r(l) = r3)< 852) = r(2) ¢ aéi) Z ...
e <aé€% = s(2) ¢ aéi% =s(1) 2 (3 p o 6(4)

Pr oo f. Following the statement given in part 8, § 3
of [1] we know that if r(4), s{4) are improper, then the
function ui has no zero to the left of r(i) and to the right
of s(l). In this case r(3) = r(l), 5(3) = s(i) and the first
zero of the function ui lying to the right of r(i) or to the
left of s(1) is r(z) or 3(2), respectively. Then r(l)c r(z),
s(l)> s(2) and the two solutions uy, u, are dependent. Since
the fundamental solutions U, Uy have both all zeros and all
zeros of the derivatives in common, the conclusion of the

above statement follows from the ordering theorems.

Theorem 3.2.



a = r(3) ¢ a§2) = r(2) o r(4)< ail) = r(l)é aéz) <

e e

. < aé{% = s(l)< aé%i = 9(2) = 8(4)< b = 8(3)

P roo f. Following the statement of part 8, §3 of [1]
we know that if r(s), 5(3) are improper, then the solution u
has no zeros to the left of r(z)and to the right of 5(2).
In this case r(4) = r(z), 5(4) = 5(2) and the first zero

2

lying on the right of r(z) or on the left of 5(2) are res-
pectively r(l) or s(l). Hence r(2)< r(l), 3(2) >s(1) and the

two solutions uy, U, are dependent. Since the fundamental

2
solutions Ug, Uy have both all zeros and all zeros of the

derivatives in common, the conclusion of the above statement
follows from the ordering theorems.

Theorem 3.3.

a = r(4)< a{l) = r(l) = r(3)< aéz) = r(2) <aé1) <oene

ee e <a§_‘:_l‘_1) = S(l)C as]%:l)- = 8(2) = 8(4)4b = 8\3)

Proof. Following the statement of part 8, §3 of [1]
we know that if r(4), 5(3) are improper, then the function ui
has no zeros to the left of r(l) and the solution u, has no
zeros to the right of 5(2). In this case r(3) = r(l%, 5(4) =
= 5(2) and the first zero of the function ui lying to the
right of r(l) is r(z) and the first zero of the solution u,
lying to the left of s(?) is s(l). Then r(1)< r(2),
(1) ¢ s(?) and the solutions u;, u, are dependent. The

conclusion of the statement follows from the ordering theorems.
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Theorem 3.4.

1f r(3), 6{4) are simultaneously improper, then th

a = r(3)< aéz) = r(2) < r(4)4 a&l) = r(l)é 352) YA

) - o(2), (2

1 {= s(l) = 5(3)45(4) = b
m—

.o <aé%
Proof. Following the statement ®of part 8, §3 of [1]
we know that if r(3), s(4) are improper, then the solution u,
on the left of r(z) and the function ui on the right of 3(2)
have no zero. In this case r(4) = r(z), 3(3) = s(l), and the
first zero of u, lying to the right of r(z) is r(l), while
the first zero of the function ui lying to the left of s(l)
is 5(2). Hence r(2)< r(i), 5(2)4 s(l) and the two solutions
up, u, are dependent. The conclusion of the statement follows

from the ordering theorems.

Theorem 3.5.

P r oo f. Obviously for any equation (q) of a finite
type there must always at least one of the fundamental numbers
r(3), r(4) and at least one of the fundamental numbers 5(3),
3(4) be proper. It follows from the negation of the statement
in part 8, 8§83 of [1] that the independence of the fundamental
solutions Ugs Uy implies the fact that r(3), r(4) and simul-
taneously also 5(3), s(4) are proper fundamental numbers. The
converse implication does not follow from the statement but
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it may be argued by contradiction. Let the fundamental numbers
r(s), r(4) be proper. By the above mentioned statement from
1] the function ui has exactly one zero, i.e. r(#) on the

left of r(l). Then, for ug, U dependent there would follow

r(4) = r(z), r(3) = a contrad?cting the assumption saying

that r(s) is also a proper fundamental number. Analogous si-
tuation occurs also on the opposite side of the interval. For
5(4) proper the function ui has exactly one zero, i.e. 3(4)
lying to the right of 3(1). From this it would follow for u,,
2 dependent that 3(4) = 5(2), 5(3) = b, which, however would
conflict with the assumption saying that 5(3) is also a proper

u

fundamental number.

Remark 3.1.

There is nothing to say about a mutual ordering the elements

of 1-fundamental and 2-fundamental sequences in case of both
fundamental numbers r(3), r(4) proper, and therefore also in
case of 5(3), 3(4) proper since from the hitherto known results
there does not follow any existence of exactly one zero of a
derivative of an independent 2-fundamental solution between

two neighbouring zeros of a l-fundamental solution. It merely
follows from the ordering theorems that between two neigh-
bouring zeros of an arbitrary solution there lie either one

or two or no zero of the derivative relating to an arbitrary

independent solution.

4., Special central dispersions of the 3rd and the 4th kind

Again, we consider the equation (q), q(t)< 0, q(t) € C(O)
for all t from the interval j. Let this equation be l-special
of type m and simultaneously 2-special of type m. The equation
satisfying the above assumptions will be hereafter written as
(q(l'z)). From the reasonings in chapter 3 it becomes evident
that there may occur but the situations given in the statements
of Theorems 3.3, 3.4 and 3.5.

For the ordered sequence of zeros of the 1-fundamental
solution u, we will continue to employ the term the 1-fun-
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damental sequence and write it as (a(l)) Likewise the partial

intervals (agl), gi%) will be denoted as introduced before

(a,a{1)) = a{®)

1 1 1 1 1
coaft) ety < ofM) L (alt) by = o(t),
The ordered sequence of zeros of the derivative of the 2-fun-
damental solution will be termed as the 2-fundamental sequence
and written as (a )y.For the partial intervals (a(z),a(z)) we
will continue to use the notation

(a,a{?)y = a{2), (af{®),al?)) = 3(2), ..., (al?),b) = 2(2).

’,
Likewise under the 4-fundamental sequence (éq)we will under-
stand an ordered sequence of zeros of the derivative of the
l1-fundamental solution and the partial intervals (a(4),a(4))

i+l
will be written as

(a,a{*)y = o), (a{®),af*)y = oM, L, (alP),by = 2i4),

Under the 3-fundamental sequence (aahwe will understand an

ordered sequence of zeros of the 2-fundamental solution u, and

3) (3 2
the partial intervals (ag ),a§+}) will be written as

(a,a{3)) = 3{3), (af),aéz’)) = Jé%) (arflz‘),b) = Jé‘fj)_

geees
In the dependence on the assumptions of the above statements
there may occur the following three situations for the mutual
ordering of the fundamental sequences.

Situation a) Assume both left fundamental numbers r(3), r(4)
to be proper. It follows from statement 3.5, that the funda-
mental numbers 3(3), 3(4) are also proper and the solutions

U, u, are independent of each other. Then the 1-fundamental
solution u; has exactly m-1 zeros in (a,b), while the 2-fun-
damental solution uy has exactly m zeros in (a,b). The function
ui has exactly m zeros in (a,b), while ué has exactly m-1 zeros
in (a,b). For the elements of the fundamental sequences there
hold the following orderings
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a <a§4) = r(4)< aii) - r(Pe aé4)< aél) <.
<a§:£ = s(1)<ar$l4) =s*) <p
a< a£3) = r(3)< aiz) = r(2)< aé3)< aéz) <

e e <a§f% = 5(2){ aéz) = 3(3) < b .

In this case, however, it is impossible to fix any mutual
ordering of the sequences (;15 and (525 or (433 and (Jh5

Situation b) Let the fundamental numbers r(4) and 3(3) be

improper. Then the fundamental solutions u u, are dependent

1 "2

and the following ordering

a=a{Mcall) = a3 caf?) - o) .

coft] = o <ofF] = A <eP = b

holds for the elements of all four fundamental sequences.

Situation c) Let the fundamental numbers r(s) and s(#) be
improper. Then the fundamental solutions u,, u, are dependent

and the following ordering

a = a£3)< agz) = a§4)4 a§3) = a&l) <

e <o e ool = P o) < b

holds for the elements of all four fundamental sequences.

It becomes evident from the mutual ordering of the fun-
damental sequences that the fundamental central dispersion of
the 3rd kind X or of the 4th kind  in the sence of the

definition from [1] is defined only on the interval (a,aés))
or (a,a&4)), respectively. In general, the dispersion y| or
Wy for ksm is defined only on the interval (a,a(z) ) or

(4) 4 . o m-k+l
(a,am_k+1), respectively, while for k >m it is non defined on
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j at all. The dispersion X_l or Ww_, is defined on the in-
terval (a§3),b) or (a§4),b), respectively. In general, 1’—k
or (u_k is defined for k&m only on the interval (a£3),b) or
(a£4),b), respectively, while for k>m it is not defined on j
at all.

Besides the special central dispersions of the 1st and
2nd kind as shown in the foregoing chapters, there exists a
possibility of defining special central dispersions of the
3rd and 4th kind for the equation (q(l'z)) as displayed in the
definitions below.

Definition 4,1.

X(t)  for te(a,al®),

- e e e e e e mblaT2TE 2 - = e T A L T

3) X (1) is_an increasing_fungtion from_class (1) | o

_____________ Situation_b)

__________ m i1s_shilted_up to_point_b;



4) in_the situations a), c) there is fulfilled

1in X(t) = b, 1inX(t) = a, 1imnX(t) = 1amX(t) = a{*);

twaés)_ t*aé3)+ t-b t-at

J§3) onto (aiA),agz))
3§3) onto 3§2) for i=2,3,...,m

Jéf% onto (a,a§4)) R

in _case of the situation b) there holds (a§4),a§2)) = J{Z),

243) 2, (a,a£4)) = @; in_case of _the_situation c) there

P r oo f. The above properties follow directly from the
assumptions of the equation (q(l'z)), from the definition,
from the properties of the function X (t) stated in [1] and
from the orderings of the fundamental sequences in the si-
tuations a), b), c).

Likewise we may define even generally the k-th or -k-th
special central dispersion of the 3rd kind for k €N, k =m,

Definition 4.2.

function

X (1) for te(aali)) .

X0 -

(3)
or t€_(am_k+1,b) ,

1=h

1-(m-k+1)(t)
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2)

3)

5)

(a,aéf&+l) U(aé§&+1,b);

intervals (a,a(3) ), (a(3) b); in_the_situation b) there

----- m-k+1 m-k+1? S eTeTeTR TR
holds for k = 1'a;§&+1 = b; in_the_situation c) there holds

1im Xk(t) = b, 1imxk(t) = a, lim)(k(t) = lim){k(t) = al((4)§

(3)+
m-k+1

- +

t*a;f&;l ta ta+b t+a

k =1 it_is meaningless to_consider lim‘Xk(t) for taa&fail H

(3)-
______________ m-k+1 ?

3£3) onto (a£4),a£2)), where a&z) =b,
3(3) onto 3(2) for 1i=2,3 m-k+1

i == i+k-1  I°C 135000, )
Jé§&+1+i gnto 3§2) for i=1,2,...,k-1,



J(E]fl) gnEO (a[ﬁgj)_la|(<4))l \L\lhgrg a(()2) = a ;

in_the_situation_b) it_holds (a£4),a§2)) = Jﬁz), Jéf% =2,

(a(2).a(*) = 9

2 4 2
(a2),al*)y = of?)

0

P r oo f. The above properties follow directly from the

(1'2)), from the definition and

assumptions of the equation (q
from the properties of functions /L (t) given in [1] and from
the ordering of the fundamental sequences in the situations

a), b), c).

Definition 4.3.

1_k(t) for te(a§3),b),

;(;k(t)=
Xm-k+1(t) for t c(a,a£3)),

- e el amE e e T eTaTa L L e e e 2 DT -

(a,alt) v ald), 0y
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3) }(_k(t) is _an increasing function from class C(l) on_the_

for k=m that a£3)=b; in_the_situation_c) it_holds_for k=1

that a£3)= ;

4) in_the_situation_a) there is_fulfilled

1imX_ (t) = b, 1in X_ (t) = a, lim)(_k(t) = limx_k(t) -

t$a£3)- : t+a£3)+ tea* tab”
» O
m-k+1*

it_is meaningles_to consider lim _(t)  for t—»aéz)_;
5) the function A_, (t) uniquely maps
o) onto (a8),00Z 0. wnere o) b,
Ugf& onto J§2) for i=1,2,...,m-k ,
3(13) onto J(if%_k for i=2,3, ...,k ,
Jéf} onto (aé%&,aéf&+l), where aéz) = a ;
in_situation b) then (a{?) ,.a(2) 1) = a(2) . ol3) - g,

(2) ,(4) =

(am—k'am—k+1) =2

in si - 5(3) - (4) (2) =

in_situation_c) then J =P, (3 k411 @moks1) = 24

(2)  5(4) = 3(2)

(qn_kr Bm-k+1) = Inoiar

P r oo f. The above properties follow directly from the
assumptions of the equation (q(l'z)), from the definition,
from the properties of the functions X (t) given in [1] and
from the ordering of the fundamental sequences in the si-

tuations a), b), c).
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It becomes apparent from the foregoing definitions that

X () = X6 X_o(6) = X aq(t) for k=1,2,...,m. Thus,
the special central dispersion of the 3rd kind with an ar-
bitrary nonzero integer index may be defined as follows.

Definition 4.4.

In an analogous fashion, the special central dispersions
of the 4th kind for the equation (q(i'z)) can be defined.

Definition 4.5.

The fundamental special central dispersion of the 4th kind

(ty  for te(al)b),
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3) f)(t) is_an increasing function from class c(1)

4) in_the_situations a), b) there is_fulfilled

lin Q(t) = b, 1imQ(t) = a, Limfl(t) = LinQ(yy - af3);
tda;4)_ t»aé4)+ t+b” tasa®

5) the function Il(t) uniquely maps

g (oot
3" onte (M) for i=2,3,...,m,
A4 onto  (a,a{3));

in_the_situation_b) then_holds (a{®*),a{')) = g, 5{4). p,

in_the_situation_c) then_holds (a{®),a{™)) = o{*), 5{4). g,

3
(a,a{3)) = p.

P r oo f. The above properties follow directly from the
assumptions of the equation (q(l'z)), from the definition, from
the properties of the functions w (t) given in[1] and from

the ordering of the fundamental sequences in the situations
a), b), c).

Similarly we may define even generally then k-th or -k-th

special central dispersion of the 4th kind for ke N, k€m as
1

follows. '

Definition 4.6.
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to_the_eguation (ql’z)) for ke N, k€m will be called_the

function

w, (t) t C(a,aéi&+1) .

1=h

(o]

[ hn1

ﬂk(t) =

(4)
for t G(am--l<+1'b) ’

W_(m-k+1)(F)

1) the domain of definition_of the function flk(t) forms

(21252001 U (820025

2) the range of values of_the_function l]k(t) formg

3) n-k(t) is_an increasing_fungtion from_class c(1) on_the

. (4) (4) L .
intervals (a,ap_ 1)+ (8p 1 q.P); E”_tbe_SEtHaEign_bl there

holds for k=m that a;f&+1 = a; in_the_situatigy c) there
holds for k = 1 that al*) ;= b;

*

4) in_the situation_a) there is_fulfilled

lim.ﬂk(t) = b, limﬂk(t) = a, limﬂk(t) = 1im_0_‘(t) - al(<3);
S
in_the_situation_b) there holds the same only ¢y . o\
it_is meaningless to_consider limfl, (t) for ts (4)-
in_the_situation_c) there holds the same_only fgt_t:i'it
is_meaningless_tQ consider limjlk(t) for t—*a&i); o

5) the function Ilk(t) uniquely maps

- 123 =



3(4) onto (aﬁS),aﬁl)), whgrg aél) = b

1 - - 7
s
4
Ji ) onto Jgi&-l for i=2,3,...,m-k+1 ,
(4) (1) ._
Im-k+l+i onto  J; for i=1,2,...,k-1,
Jn('lfj). onto (aliij)_'algz)l V_thrg aél) = a ;

in_the_situation_b) then (a£3),a£1)) =92, J§4) = P,

(af1),a3)) = 3(1)

I(-l'a
in_the_situation_c) then (a£3),a£1)) = j&l), Jéf% =9,

?

1 3
(alt),aP)) =0 .

Proof. The above properties follow directly from the
assumptions of the equation (q(l'z)), from the definition, from
the properties of the functions w(t) given in [1] and from
the ordering of the fundamental sequences in the situations

a), b), c).

Definition 4.7.

function
w_i () for te(al*),b),

ﬂ_k(t) =

Wpogsa(t)  for te (a'a|(<4)).

(a,a{*))u(al*),b);
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the range or_ 23; _______
m-k+1*

2) the range of values of_the_function fl_k(t) forms

(a,a(3) 1 ua b);

3) Jl_k(t) is_an increasing function from class C(l) on_the

LR A B
holds for k=1 that a£4) = a; in_the_situation_c) there
holds for k=m that a£4) = b;

4) in_the_situation_a) there is fulfilled

1in L (6) = b, 1inld (t) = a, 1infl (t) = 1indd (1) -

t¢a£4)- twa£4)+ taat txb
= 5(3) .
= ksl

that_for k = m it_is meaningless to_consider lim!ij(t)

for t-»a£4)+ ;

5) the function (1_k(t) uniquely maps

4 1 1
3{ ) onto (aéf&+1,aé_&+1), where a; ) = b,
(%) onto M) for is1,2,....mek
J§_4) onto J:(i.}-n)'l—k EOE i=2,3,...,k ,

1
J;i% ento (aéi&~a£§&+1). where aé ) = a;

in_the_sityation_b) then 3{*) = p, <a$f&+1na§f&+1) = 2,

1 3 1
(aé_&,a&_&+1) = Jé—&+1 i (1
)

in_the _situation_c) then (a&f&+1,a&i&+1) = Jm—k+1'

3(4) =P, (a(i) 3(3) )y =-@.

m+1l m-k?“m-k+1
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Proo f. The above properties follow directly from the
assumptions of the equation (q(l'z)), from the definition,
from the properties of the functions @ (t) given in [1] and
from the ordering of the fundamental sequences in the situ-
ations a), b), c).

From the above definitions it becomes apparent that
Qu0) =0y, O_(r) =L (1) for k = 1,2,...,m. Thus,
the special central dispersion of the 4th kind with an ar-
bitrary nonzero integer index may be defined as follows.

Definition 4.8.

512m+k—1(t) = jlk(t)'

Consider now a set [' of all special central dispersions
relative to the equation (q(l'z)) defined on the domain J ,
i.e. on the interval (a,b) except the points of all four fun-
damental sequences. The set M= G(l)u G(Z)U G(3)U G(4)
represents a union of sets of the special central dispersions
of the individual kinds on the domain 3J . From Theorems 1.4.
and 2.4, stated above we find that the sets G(l) ={'bo,<©1,...
""(ﬁm—li and c(2) - { VO' Yﬁ...., vm-l} are finite cyclic
groups of order m with the generators '@1 and ‘yl, respecti-
vely. Both groups have a unity element Qb = Y% = t, for all
ted in common. The sets G(3) =[X1,X2,...,Xm} and G
={I)1,J72,...,1)m g of all special central dispersions of the
3rd and 4th kinds, respectively, contain exactly m different
elements, whereby the elements of the set 6{3) to the elements
of the set G(4) are mutually inverse. For the composition of
elements from the set ['on the domain J.there are then valid

the following rules:
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1)

2)

3)

4)

5)

6)

7)

8)

9)

1)y ol ¢ (D)
o(2) y o(2) ¢ o(2)
o(3) ¢ ol1) ¢ (3
ey 6(2) ¢ (M)

o(1) ¢ ol4) ¢ o(4)
6(2) ¢ 6l3) ¢ 5(3)
6(3) x 6l ¢ (@)
6(4) x (3) ¢ 1)

where G(l)x G(k) is a set of all elements ( (%) ‘y(k))‘*
%9-(1)[71(@(”] written as 3\(1) Z‘(k) 3\(1)6(?(1) an(k)ge(k)
for i,k=1,2,3,4; other results of the composition of
elements from the set r belong into I" no more;

q)i <I)k = ¢i+k = @i+k—m

for i,ke {O,i,...,mqlf

Yo Y= Yik = Yiiken for i,k G{O,l,...,m-lf
- 1+k for i+ksm
Xﬁ K = where ié[l,z,...,m'i
X!&k -m for i+k>m kefo,1,...,m-1}
Il for i+kém
n (A where ie{1,2,...,m{ ,
+ k S)1+k -n for i+k>m ke{0,1,...,m-14
for i+kém
o 0 - where ief0,1,...,m-1,4
i k Q . ke{1,2,...,m§
i rkem for i+ksm
1+k for i+kém
Vg )(k = where i€{0,1,...,m-1{,
)( for i+ksm ke{l,z,...,mi
i+k-m
X, ﬂ‘k Yisk-1 = Yiek-ton for i,ke{1,2,...,n
'Qi Xk (§i+k-1 = ®i+k-1—m for i,ke{1,2,...,n}
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10) ®;1 = Q-i = ©m-i
;1 \V_i = \ym-i for i 5{0,1,...,m-1§

s o= Q

m-k+1
-1
Ilk = )cm-k+1 for ke {1,2,...,mf
P r oo f. The properties 1) through 9) follow directly
from the definitions and statements stated in sections 1, 2,
4 and from the properties of the central dispersions in the
sense of [1]. It remaints to prove the two last relations of

10) which is comparativily easy by means of relations 1)
through 9), since it holds for all t€ J, k¢ {1,2,...,m f that

Qe X = Qg =t
an = Yo =t
Y, =
=9, -«

q)m-k+1+|<-1 =

3

m-k+1 = Ykem-ksl-1 =

3

[l
t

)(m—k+1 !1k = \vm—k+1+k-1 =
n X

3

o <€ € O
]

3

m-k+1 = ®k+m—k+1-1 =
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SOUHRN

K teorii centralnich disperzi linearnich diferencidlnich

rovnic y°° = g(t) y kone&ného typu - specidlnich

Pro homogenni linearni diferencidlni rovnici 2.r&adu v Ja-
cobiho tvaru l-specidlni resp. 2-specidlni kone&ného typu m
na prislusném koneéném nebo nekoneéném definiénim intervalu
jsou v ¢&lanku definovany specidlni centralni disperze @n(t)
resp. Wn(t) 1. resp. 2.druhu s libovolnym celoéiselnym in-
dexem n, diskutovany jejich vlastnosti a algebraickd struktu-
ra mnozin G(l) resp. G(Z) takto definovanych funkci. Pro rov-
nici téhoz typu 1,2-specidlni na definiénim intervalu jsou
definovany také specialni centralni disperze xn(t) resp.
f)n(t) 3. resp. 4.druhu, kde n€z, n # 0. Mnozina ' = ¢t
v G(Z)U G(3)U G(4) specialnich centrélnich disperzi vs$ech
ctyr uvaiovanygh druhl se skladad ze dvou kone&nych cyklickych
grup cft) ={@0, @1,..., @m-lf , resp. c(2) ={Y , Vl,...
cees vm—l , Fadu m s generatorenm @1(t) resp. Y,(t) a ze
m resp. G(4) =

dvou koneénych mnozin G(3)= {Xl' X2,...,X
(ng , obsahujicich navzajem inverzni prvky.

{90

Dreecs

PE3OME

llpuMeuaHue nmo Teopu;u LEHTpaJbHHX Jucnepcuit aumneit nuddepen-
LUMBJBHHX ypaBHeHM# y"=q(t)y KOHEUHOIrO THIa~-CIeLUMaNsbHHX

Jas oZHOpoIHOro JMHelHOro AuddepeHuuasbHOro ypaBHEHUS
2-oro nopanka B fopme fkob6by koHeyHoro Tuna m , l-oro cne-
OMaJbHOTO MJM 2-0T0 CHEeUManbHOT'o, Ha IpUHalJekalleM KOHeUYHOM
uau 6eCKOHEUYHOM MHTepBaJax OonpeleseHus, B CTATbe BBOJAATCSH
cnenuasbHHe LNeHTpalbHHe Iucrmepcuy Qn(t) UK Vn(t) l-oro
UAM 2-0T0 POJLE C NPOMBBOJBHHM LEJOUMCJICHHHM MHIEKCOM n M
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o0Ccy®nenTcs MX CBOKCTBa M aJarebpauueckas CTPYKTYypa MHOKECTB
G(l) naun G(2) TakuM o6pasoM BBeHNeHHHX ¢yHkuuit. las ypaBHe-
HMS 3rToro runa 1,2-cnenuasbHOro Ha MHTepBaJe OnpeleseHus
BBOJSATCH TaKKe CHeuuansbHHE LEeHTpalbHHe IMCIepCHm Xn(t) nan
_Qn(t) 3-ero uaum 4-oro poma, rie n€Z, n # O.MHOXecTBO
f’= G(l)uGKZ)UG(S)UG(4) cnelMaJbHHX LEeHTPaJBHHX IMUcClIep-
cuit Bcex yeTHpeX YUMTHBEEMHX pDOJOB COCTOMTCH M8 LByX KOHeU-
HNX mukamueckux rpymn G(L) =f@o, ‘I’l,...', (Dm-l{ nam
e{?) - {Wb, Yreees Vm_lf mopsiska m c remeparopou P, (t)
MM Vi(t) W M3 IByX KoHeuHNX uHomecTs G(3) ={]&,X.,...,)fmf
(

(4) - {ﬂl,ﬂ 0 } . CoZepEalMX B3aUMHO 06paTuMue

uan G YRR R

SJEMEeHTH .
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