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1. Introduction

Let us consider a differential equation

(P(t)(P(t)x")7)" + 4p(t)q(t)x” + 2(p(t)q(t)) x = (1
= f(t,x,x", (p(t)x")")

whose terms are supposed to be: &

p,q€c%(3), paect(a), fec®(D), p(t)>0 for t€3,

where 3 = [t_, ), D = I xR3.

By a solution of (1) we mean the right-maximal solution
of (1). Let x be a solution of (1) on an interval [tx,TX)C J,
T, % ®. We say that the solution x (the derivative x° of the

X
solution x; the second quasiderivative (px")" of the solution
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x) is oscillatory if the function x (x ;(px’)") has a zero in

every left neighbourhood of the point Ty-

The aim of this paper is to find sufficient conditions
for the oscillation of solutions, or for the oscillation of
the derivative of solutions, or for the oscillation of the
second quasiderivative of solutions of (1) on an interval
ﬁx' 00 ), respectively.

2. Lemmas
Let u, v be the solutioﬁs of the differential equation
(p(t)z")" + q(t)z = 0

(defined on J) satisfying the initial conditions u(tl) =1,
u’(ty) = 0, v(t;) = 0, v(ty) =1 at a point t = t, €J. Then

Y = CquT + Couv 4 Cpv is a solution of the differential

equation
(P(t)(P(t)Y")") " + 4p(t)a(t)y” + 2(p(t)a(t))’y = 0 (2)
and y(ty) = ¢4, Yy (ty) = cp, (p(t)y'(t));=t1 = -2c,q(ty) +
+ 2c,p(ty). Setting
a(t) = max{lu(t)l,lv(t)l}', b(t) = max{lu'(t)l,lv'(t)l} ,
o(t) = |a(t)]a®(t) + p(t)bP(t) for tea.
Lemma ¢ ([1]). Suppose
§= o uP(t) + cpu(t)v(t) + cgvi(t)
is a solution of (2) and set & =|c;| + le,l + lc,l. Then

ly(o)] & ota®(t), i
ly“(t) € 2 a(t)b(t),
l(peeyy (e)) 7| & 2 c(t), tea.
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Lemma 2 ([1]). Suppose T€ J. Then equation (1) is
equivalent to the integral equation

x(t) = ¢
1 2 .
= y(t)+ —5— f (u(t)v(s)-u(s)v(t)) f(s,x(s),x (s),
2p(ty) T

(p(s)x"(s))")ds (3)

in a class of functions {x;xe Cl, px‘ & Cl}, where y is

a solution of (2) satisfying the same initial conditions

at the point t = T as the solution x of (1) (that is

y(T) = x(T), y(T) = x"(T), (P(t)Y (t)){g = (P(t)x"(t))gap)-
3. Oscillation of solutions and their derivatives

on a halfline

Theorem 1. Let

‘ -
Ft.xg.x5,%5) 5 Fy(t) for (t,x,%5,%5) €D, x4 >0, (4)
N ..
f(t,xl,xz,x3) = Fy(t) for (t,x;,x5,x3)€ D, x,<0, (4°7)
where F F

1+ F, are integrable functions on every interval,
which is a part of J and

t
limsup (—1)i 21 [ (u(t)v(s) - u(s)v(t))zFi(s)ds = 00,
t—> 00 a“(t) ¢

o

i=1,2. (5)

Then every solution of (1) defined of a halfline [tx' o 3J
is oscillatory.

+

Proof. Let x be a solution of (1) defined on [tx' ©)C3J
and let x not be an oscillatory solution. Then there exists
aT€[t,, o) either with x(t)>0 or x(t)<0 for t ¥ 7.

Let y be a solution of (2) satisfying the same initial
conditions at the point T as the solution x. From Lemma 2
then follows the validity of equality (3) for t ¥ T,
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If x(t)> 0 for t 2 T, then

NN N t - €112 s
2a2(t)p2(t1) S(u( Jv(s)-u(s)v(t))“F, (s)ds for t T T,
' (6)

According to Lemma 1 there exists an« € R:

lycey] £ oa?(t), tea

and therefore ¢

Liminf { YL 1 f c B} 2 -

e 0 (az(t) ! 2a2(t)p2(t1) tovi o) Fl(S)ds} i
>

- 00,

which with respect to (6) contradicts the inequality

liminf 2{t)l_ 2 o,

t—» 00 a (t)

T, then

v

If x(t)< 0 for t

() r oy() o, .
a%(t) (t)

1

2a2(t)p2(t1) (u(t)v(s)-u(s)v(t))F, (s)ds for t 2 T (7)

+

A e— t o

and from the relations

t
14 y(t) 1 - 2 =
tﬂ‘foup{az(t) 2a%(t)p?(ty) (v uervie) Fz(s)ds} i
T .
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in contradiction to (7) above.

Remark 1. If assumptions (4°) and (5) for i=1 (or (47 ")
and (5) for i=2) are fulfilled, then it follows from the proof
of Theorem 1 that any solution x of (1) defined on YF , @)

X
does not take only positive (negative) values in a neigh-

bourhood of oo .

Remark 2. If the assumptions of Theorem 1 are satisfied
and x is a solution of (1) defined on Bx' © ), then not only
the solution x but also its derivatives x”, (px’)~ are
oscillatory.

It will be apparent from the following example that the
fulfilment of assumptions in Theorem 1 does not guarantee the
existence of any solution of (1) on the halfline J.

Example 1. Suppose

{0 for t € [0, %),
f(t) =

e'sint for t¢ BT, ®).

Equation x* 77 = -6xx" "2 4 f(t) has a solution x = J1 -t
defined on the interval [0,1) and p=1, g=0. Setting t; = 0
and u(t) = 1, v(t) = t, F,(t). = Fy(t) = f(t) for t€[0, @)
yields

1 for té[O,l),
a(t) = { .
t for t ¢[1, ®), s

and for te[ff, 00 )

t t
21 g(u(t)v(s)—u(s)v(t))ZFi(s)ds = 35 S(t-s)zessins ds =
a (t) t
¥
et

¥ 2
—--—z(sint+c05t)‘e—z-(L-Tt+t+}_-T+
t 2

2
L]
)
2t 2 2
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t
where i=1,2. Since lim sup 9—5 (sint + cos t) = ®,
t —> o 2t

t
lim inf §~§ (sint + cos t) = - @, the assumptions of Theorem
t — oo 2t

1 are fulfilled, whereby the solution x = Vl - t of the
equation considered, is not defined on the halfline {O, ).

Theorem 2. Suppose q(t) £ 0 for t€3J and

<
f(t'xleZ’x3) = Fi(t) for (t,xl,xz,xs)é D, x2>'0, (87)

..

)

v

f(t,x Fz(t) for (t,xl,xz,x3)€ D, x2< 0o, (8

1+%21%3)
where Fl' F2 are integrable functions on each interval, which

is a part of J and
s

Lin sup (-1)* (t)a D) [ f[p(s)(u (s)v(T) -
- u(T)v(s))® - a(s)(u(s)v(T) - : (9)

- u(?)v(s))z]pi(r) d?ds = @, i =1,2,

Then the derivative x° of each solution x of (1) defined on
a halfline [tx, @ )(CJ, is oscillatory.

Proof. Suppose x is a solution of (1) defined on
[%x’ ®)<J and its derivative x  is not oscillatory. Then
there exists a T 2 t, being either x (t)>0 or x (t)< 0 for
t 2 T. According to Lemma 2, there exists a solution y of (2),
satisfying the same initial conditions at the point t = T as
the solution x, so that equality (3) holds for t 2T,
A slight modification of this equality yields

(p(t)x"(t))" = (p(t)y’(t))" +

t .
vt ([peercu vs) - uov (0)2-ace) (u(e)v(s) -
pT(ty) T
- u(tvis)?]L fsx(s).x (). (p(s)x (8)) )ds (10)
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whence, on integrating (10) from T to t (2 T,

t s

L S S[p(s)(u'<s)v(f)—u<t)v‘(s))2—

x(t) = y(t)r ———
P(t)P7(ty)

~a(3) (u(8)V(T)-u(T)V(8)Z] F¥, (). x" (), (p(¥)x " (7)) )4 ds.

(11)
If x"(t)>0 for t 2 T, then we get from (11) and (8°)

x“(t) ¢y (t)y
a(t)b(t) a(t)b(t)

t s .
+ 1 S . N _ (VT 2 _

p(t)a(t)b(t)p2(t,) o torvmr-umion

T

- a(s)(u(s)v(T) - u(T)v(s))2]. F,(T) dTds. (12)

According to Lemma 1 there exists ano € R:

ly“(t)] &€ < a(t)b(r), t€3

and consequently from (9)
t

s
lim sup [ y(t) + 2 S S[b(s)(u'(s)V(T) -
t —> oo |a(t)b(t) p(t)a(t)b(t)

TT

W(eIV(T))2 - a(s) (u(e)v(T) - u(T)v(s))?]Fy(7) dTds =

- o ,

which, with respect to (12), contradicts the fact that

lim sup x(t) 2 0.

t — oo a(t)b(t)

In applying (8°7), it may likevise be proved that the
assumption x (t){ O for t 2 T leads to a contradiction.
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Remark 3. If the assumptions of Theorem 2 are fulfilled
and x is a solution of (11) defined on a halfline [t

, @),
x
then not only x” but also (px’) " is oscillatory.

Y
Remark 4. If q(t) € 0 for t€J and besides the assumpt-

ions (87) and (9) for i=1 (or (8°") and (9) for i=2) are
fulfilled, then it follows from the proof of Theorem 2 that
the derivative of any solution of (1) defined on a halfline,
does not take only positive (negative) values in a neigh-
bourhood of .

The following example will show that the fulfilment of
assumptions in Theorem 2 does not guarantee the existence of
any solution of (1) on the halfline 3J.

Example 2. Consider a differential equation

P 1 ,4.3 .
X = -3 (3) X X

AL () (13)

on the interval J = [O, o ), where

{0 for té[O,jT-_I,
f(t) =

t?sint  for te(%, o).
>

Let ty = O. Then p=1, g=0, u=1, v=1t and further

{1 for t €f0,1],

t for t €(1, o),

a(t)

b = 1 and assumptions (8°) and (8" ") are fulfilled for the
functions F; = Fy = f. The fulfilment of assumption (9) fol-
lows from the relations

t t

s s
lim sup 1 S gf(T)des = lim sup ES S Y’tzsiﬁ~dTHs =
t— o a(t) ) ) t—> o 23

= lim sup i (6sint - 4tcost - t?®sint - 2t) = ®
t—> o0 °©
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and

t
lim inf —% S § f(T)dTds = - @,
t—» 00 (t)
00
whereby the function x(t) = (:1.--t)3/2 is a solution of (13)
just on the interval’[O,l).

Theorem 3. Suppose

< .
f(t,xl,xz,x 2 Fl(t) for (t,xl,xz,x3)€ D, Xz 0, (147)

3)
f(t,xl,xz,x3)

v

F2(t) for (t,xl,xz,x3)é D, x340, (14°°

where Fl’ F, are integrable functions on any interval being
a part of J. Then every solution of (1) is defined on J.

If moreover q(t) £ 0 for t €3 and

t
lim sup (-1)% 6 ) K[p(s)(u'(t)v(s) - u(s)v'(t))2 -
)

t — o
(15)

@ ,

- q(s)(u(t)v(s) - u(s)v(t)?]F (s)ds

i

1,2,

then for every solution x of (1), its second quasiderivative
(px”)” is oscillatory.

Proof. Suppose x is a solution of (1) on a interval
[ T) and T <o . W1thout any loss of generality we may
assume Fl(t) 0, F2(t) 0 for té.Bo,T ] Let us put

p(s)|a(s)l,

F(t) ={max Fy(t), -F2(t)}, Q(t) = maxy

o
X (t) = (p(t)a(t))” for t€J

and

ACt) = p(t)(p(t)x ()" for te [t ,T ).
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Let tlé [to‘Tx) be such a number that

T, t s
S T I
t1 1 1

Let further ‘jl = [tl,Tx) and
X(t) = T:ésétlx(s)l for t€3,.

1f A(t)D>0 for t€ (a,b)cJ;, then the equality

A(t) = -a(p(t)a(t)x(t))  + 2% (t)x(t) +
+ F(Ex(8),x7(8), (P(E)Xx7(£))7), t€[t,,T))

upon integration from a to t ( 2 a) yields

A(t) = A(a) - 4(p (t)a(t)x(t) - p(a)a(a)x(a)) +

¢ . (17)
+ ij(s)x(s)ds + 5f(s,X(s).X'(S).(P(S)X'(s))’)ds-
@ a t€ [ty T,)
and further on making use of (147) and of the evident
estimates gives
0< B(t) £ A(a) - 4(p(t)a(t)x(t) - p(a)a(a)x(a)) +
t t
+ 2 Sm(s)x(s)'ds + S Fy(s)ds £ p(a) + (18)
a t @ t
+ 2X(t)[4Q(t) + Slo((s)l ds] . S F(s)ds,
t t
: 1 te(ab).

1f /A (t) <0 for t€(a,b)c J;, then it follows from (17) and
(14°7) that
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0>p(t)2 A (a) - 4(p(t)a(t)x(t) - p(a)a(a)x(a)) +

t t
+ 2 ?x(s)x(s)ds + SFZ(s)ds 2 p (a) - 2X(t)[§Q(t) + (19)
a a
t t
. Sle(,(s)lds] -S F(s)ds, t€(a,b).
1 1

From (18) and (19) it follows that the estimate

[I1aN

t t
]/5(t)l l({,(a)] + 2X(t)[4Q(t) + j.lv((s)lds] + S F(s)ds

1 1
(20)

holds on every
yields

interval (a,b)C3J;, where A (t) # 0, which
t t
)/;(t)l é]ﬂ,(tl)laf 2x(t)[4Q(t) + J.]o((s)lds_] +j'|:(s)ds,
1 1
t€J,. (21)
From the equality

S
t t
x(t) = x(tg) + p(r)x"(ty) S pc(’z) * ,{ P(;S) S pﬂ(‘t(’;) ot ds,
1 t]_ tl

t

we find the estimate to be

t
. d
lx(t)l < ]X(tl)l“ p(ty) [x" ()l St p(:) *
1
t
+S 1 S lﬁJZﬂdwds

) p(s) p(T)
1 1

whence and from (21) we obtain
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t

[x(0)] £ |x(eq)l + pep) [x (el 25
Y
t S “
(w5 | 5 [locep] + 2xa[sae) + fJec ) o) «
t, ty ty
T

+ ‘gF(\))d?]des £ ,x(tl)] +
1

t

t S
stay +Icen| {5y | ooy 9%es +
ty ty

+p(ty) [ty

t Nt

1
s

t v
+ 2X(t) S p(ls) S p—(%PQ(f) +ﬁm(o)l do]d'«:ds .
1

1
t s .
1 1 -
+ [ ) j; WSF(v)dvdods

therefore

2]

® (9)] dv[dT ds +

p(s) ) p(¥)

X(t) & 2x(t) g 1 Z 1 [4Q(7) N
1 f

+ S—~

|
1
t
+1x(t1)|+ p(tl)lx’(tl)lg p?:) +
Y

t

S
<|p e S p(ls) S 5—%—) d7 ds +
t t

and
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~
(3

t S
x(t) £ (1-2( pls) ggﬁv—) (4Q(?) + glo((v)ld\’)d’u‘ds)—l
Y t ty
t
(x(epl + peeg) Ix7 (el 5885+
t
1

t

S
lp ol {5ty ( sy oo +
t t

~
v

t
1 1 .
+S p(s) ) P(%) g F(V)dv dTds), ted,.
t, 1 t

AN—

From the last inequality and from (16) follows the boundedness
of X on Jq - Thus the solution x of (1) is bounded on [to,ij,
and with respect to (21) the function /3 is bounded there, as
well. Then, naturally, there exist (finite) lim_x"(t) and

t—)Tx

lim_x(t). From the continuity of the function f on the set D

T

follows the boundedness of the function f(t,x(t),x (t),

(p(t)x"(t))") on [to'Tx)' and thus the boundedness of the

function A' there, as well. Then, naturally, there exists

a lim_ (p(t)x“(t))” which enables us to extend the solution x
X

of (1) to the right of the.point t = T in contradiction to

T,<®. This proves the assertion that assumptions (147) and

(14°7) guarantee the existence of each solution of (1) on the

halfline J.

Let x be a solution of (1) and its second quasiderivative
(px“)” not be oscillatory on J. Hence, there exists a
T (2 t) with either (p(t)x’(t))"> 0 or (p(t)x’(t))’< 0 for
t 2T, According to Lemma 2 there exists a solution y of (2)
satisfying the same initial conditions at the point t = T as
the solution x, such that equality (10) holds on [T, ).
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Next by Lemma 1

Ity ()7 & k.c(t), tea, (22)
where k >0 is a conhvenient number.

Let (p(t)x“(t)) >0 for t 2 T. Then from (11), (147")
and from q(t) £ 0 for t€3J we obtain

((O)x"(t))" ¢ (p()Y(E))"

(23)
c(t) o(t)
t
¢ —2—— [[p(e)u()v(s)-u(o)v (6))® -
c(t)p(ty) I

a(t) (u(t)v(s)-u(s)v(t))Z]Fy (s)ds, € 2 T.
Because of (15) and (22) we have

lin sup [Lﬂiﬁli_iill_ .

t — o0 c(t)

t
+ —_—_iﬁ_‘“' S [P(t)(U’(t)V(S)-U(s)v'(t))2 -
c(t)p™(ty) 7

2
- a(e)(u(t)v(s)-u(s)v(t))?]F (s)ds = - @,
which, however, contradicts the fact of (23) with respect

Lin sup LRLEVCCEN 5 g

t — o c(t) B

to

We can similarly prove that the assumption
(p(t)x (t)) < 0 for t ¥ T also yields a contradiction.
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OSCILACE RESENT A JEJICH DERIVACT NELINEARNE
DIFERENCIALNE ROVNICE 3.RADU

Souhrn

Je vySetrovana nelinedrni diferencialni rovnice 3.{adu
(P(t)(p(t)x")")" + 4p(t)g(t)x” + 2(p(t)a(t)) x =
= f(tx,xT, (p(t)x")7), (1)

kde p, qec®(3), paect(a), feco(D), p(t)>0 pro t€J a J =
= [t,, @), D= IxR3.

Necht x je (napravo) maximalni tedeni rovnice (1) defino-
vané na intervalu [tx,Tx) (Ty £ ® ). Rekneme, Ze Fedeni x (de-
rivace x  rFedeni x; druhd kvaziderivace (px’)  FeSeni x) je
oscilatorické, jestliZe v kazdém levém okoli bodu T, existuje
nulovy bod funkce x (x7; (px")").

V praci jsou uvedeny podminky, které jsou postadujici
k tomu, aby kazdé Fedeni x rovnice (1) (derivace x° FeSeni x;
druha kvaziderivace (px”)  FeSeni x), které je definované na
poloprimce [tx' ® ), bylo oscilatorické.

KOJIEBAHME PEWEHMJ ¥ MX NPOM3BOLHHX HEIMHEAHOIO
JVSPEPEHIMAJIEHOI'O YPABHEHUA 3-I'0 NOPAILKA

Peanue

Jiayuaercs HexuHeliHoe auddepennmespiHoe ypepHeHue 3-ro
nopsgka
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(P(E)(P(t)x")")" + 4p(t)a(t)x” + 2(p(t)a(t)) x =
= f(t,x,x', (p(t)x')’)r (1)

rie p, q€C°(3), paect(d), fecO(p), p(t)y0 Aas
t€R 4 J = [t ,e), D= IxR3.

lycrs x (HanpaBo) nmoJaHoe pelleHue ypaBHeHus (1) onpe-
LeJeHHOE H& UHTepBaJse [tx,Tx) (T, £ 00 ). Pemenune x
{npousBonHas x’ pemeHus X; Bropas KBesunpousBolHes (px’)’ pe-
meHMS X) HasHBaeTcHd koJselbJaKmeecss, ecayu B KakJoit seBoit okpecT-
HocTu Touku Ty, cymecrByer HyaeBas Touka QyHkumm x ( x’;

(px’ )’) .

B pa6oTe npuBOASTCH AOCTATOUHHE YyCJOBUS IJS TOro, uTOGOH
Bce pemeHus X (npousBolHNEe X' pemeHuii X; BTOPHE KBASUNpPOUS~-
Boxuse(px’') ' peweHuit x) ypaBHeHus (1), KOTOpHE ompexexe-

HH HE& IOJynpsaMoit [t ® ) OHau Koxebapmuecs.

x?
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