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Reducing operators of special generalized grammars were
introduced by M.Novotny in the paper [1]. The hint to writing
this paper was the monography [2]. In this paper beside other
results a question is solved, how the reducing operators be-
have at surjective homomorphisms of special generalized gram-
mars and at correspondences inverse to such homomorphisms.
But some theorems which were proved in monography [2] only
for mappings can be proved more generally for certain cor-
respondences between special generalized grammars. These cor-

respondences will be called important correspondences.

The concept of a homomorfic correspondence is more ge-
neral than the concept of a homomorphism. Homomorphic cor-
respondences of relational systems were introduced in the
paper [3].

At the last time, the expressions "special generalized



grammar” and "special grammar" are replaced by the expres-
sions "pure generalized grammar" and “"pure grammar", res-

pectively. In this paper we shall use further the last
mentioned expressions.

1. Important correspondences between sets and free monoids

The symbol v¥* will denote the free monoid over V, A
will denote its unit element. If x = xlxz...xnev#and n>»o
is an integer, we put |x| = n, further we put ’/'Li= 0. Let
V,U be sets. If :‘)2 v¥ xU*, then fis called a correspondence
between V¥ and UX. 1f M & vt is finite, we put Q[M]-—- {x'e U'F,
there exists x€& V¥ such that (x,x")e } For every corres-
pondence ? bet\iveen v 1and u* we define the inverse cor-
respondence ?— by §)— = {(x',x); xev¥ x e vt (x,x)e }

If ? is a correspondence between u* and v®and @ is a cor-
respondence between V* and wW¥, we put &¢ Q= {(x,x”); xe u¥,
x" "€ W*and there exist x e V¥ such that (x,x')e? , (X7, x7T)
es’}, 60? is called the product or the superposition of the
correspondences ? and G

1.1. Definition. Let V,U be sets, let be a correspondence
between VX and U¥. Then we say that

a) is a correspondence of V¥ onto U*, if §>[v"]= u¥
and g_l [U‘]: v

b) ? is length preserving, if ,x] = Ix'l for each
(X.X')ég) ’

c) g is stable, if (x,x')ee » (Y.y")e @ imply
(xy,xy e @ and if xev¥, u’, vie u*, (x,u’ viee
imply the existence of u,vé V¥ such that (u,)e @ ,
(v,v')ee and x = uv,

d) © is strongly stable, if both @ and ?_1 are stable,

e) Q is an important correspondence of v¥ onto U¥, if it
is length preserving and is strongly stable.
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1.2. Lemma. Let V,U be sets, let U be finite, let @ be a
correspondence between v¥ and U¥ which is length preserving.
If M€ v¥is a finite set, then @[M] is a finite set.

Proof. Weput N=OifM=pandN=max{lzl, zem}, if
M# P. Let t'egﬁ[M], then there exists t €M such that
(t,t7)e @ , which implies [t°] = |t] € N. As U is finite,
also Q[M] is finite.

1.3. Lemma. Let V,U be sets and let @ be an important cor-

respondence of V¥ onto U¥. Then ?_1 is an important corres-
ponderice.

P r oo f. Evidently Sb—l is a correspondence of U¥ onto V¥
which is length preserving. As ( —1) 1 =@ and ? is strong-
ly stable, also §“ is strongly stable.

1.4. Lemma. Let U,V,W be sets, let g be a correspondence of
U* onto v¥ which is length preserving and stable and @ a
correspondence of V* onto W¥ which is length preserving and
stable. Then =G’a§) is a correspondence of U* onto w#

which is length preserving and stable.

Proof. It is evident that 72" is length preserving.

a) If (x,x")e? , (y,y ")e7T , then there exist elements
x", y'€ v¥ such that (x,x")e® , (x",x"")e v and
(v.y))e §". (y",y"")e 6. As the correspondences @ ,
G’ are stable, we have (xy,x'y )€ @, (xy' ,x 'y e
and as x'y’€ V¥, we have (xy,x" 'y ")eT.

-

b) If xeut, u”",v''e W* and (x,u" v’ ")e T, then there
exists x“ & V™*such that (x,x")€P and (x",u" v e .
As G is stable, there exist u’,v’€ V* such that
(u",u"Y)es, (v, v )ee and x” = u'v’. Hence
(x,u’v')e @ and, as P is stable, there exist u,v & u*
such that (u,u’)e @, (v,v')e @ and x = uv. Therefore
there exist u,v& U* such that (u,u”)e'?’, (v,v“)e'?’
and x = uv.
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1.5. Corollary. Let U,V,W be sets, let @ be an important
correspondence of U* onto v¥*and v an important correspon-
dence of V* onto W¥. Then 77 = O"af) is an important corres-
pondence of U* onto w¥.

P roof. This follows from Lemma 1.3. and Lemma 1.4,

1.6. "2iinition. Let e be a correspondence of V onto U. For

x€V*and x’€ U¥we put (x,x')éf*, if either x =2 = x~,
or x| = x| =m21, x = XgXpeo X, x* = xj'_xé... xr;,

x;€V, xj'_éU and (xi,x;)e? for i =1,2,...,m.

1.7. Lemma. Let V,U be sets, let © be a correspondence of V
onto U. Then @y is a correspondence of V¥ onto u* which is
length preserving, is stable and for which f*/) (vxU) =§
holds.

Proof.

a) g/‘* is a correspondence between V¥ and U¥* according t»
the definition of g.y‘ .

b) (2,2’)€g’(. Let xg V¥, x # 2 be an arbitrary string.
Then there exists an integer p> 0 and elements X, €V
for i=1,2,...,p such that x = xlxz...xp. As f is ?
correspondence of V onto U, there exist elements xi€ U
such’that (x%,xi)éf for i=1,2,...,p. Put x = XgXoen
...x then x“¢ U* and (x,x")€ @x . Analaogously it can
be. proved that for each x € U* there exists x € V¥ such
that (x,x")e Cx -

c) Let (x,x')ng,,., then ,xl = ’x'[ according to the defi-
nition of @x.

d) If .(x,x')ég*, (y,y')é_f*, x = 2€V¥ then x” =2 and
(ly,ﬂy')efﬁ, because 2y =y, Ay = y . Analogously
for y =2 € V*or x" =a€ U*or y" =2 €u*
1f x =A€VEnd there exist u”, v € U* such that
(A, u'vie ©n, then necessarily u” = v’ =2, which
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implies the existence of u = v =4 ev* such that
(u,u')é,g*, (v,vHe ©xand uv = 2 .

If (x,x")€@s (VY )EQx: X #2 , Yy #2 , then there
exist integers m >0, n>0 and elements X;€EV, y,€V,

xi'é_U, yiéu for i = 1,2,...,m, j =1,2,...,n such that
X = XgXpee e Xy x’ = xj;xg...xrl‘ and (xi,xi’)ég,
y = y1y2...yj, y = y1y2"'yj and (yj,yj)ég. According

to the definition of @x the condition (x1x2....xmy1y2...
<Y X1X2---XmY1Y2---yn)é g* holds, which is
(xy,xyHe Ox -

1f xev¥ «x A, u,v'eE u¥, u’ A , V'#2 and
(x,u’v’)€ @x, then there exist integers p>0, r>o0,

s >0 and elements xiév (i=1,2,...,p), queu (j=1,2,..
cear), vlzéu €k=1,2,...,s) such that x = XqXpe X

u =’uj:u%. .ur:, vV = v1v2...vs. As (x1x2...xp, u1u2...
...urvlvz...vs)eg,@we hav? p=r+ s and (x;,u)e@
for i =1,2,...,r, (xr+j,vj)é‘§ for j =1,2,...,s.
Denote u = XgXpeeeX, V = xr+1xr+2...xp; then

(u,u’)e [ (v,vie g',,,and X = uv.
For the case x€V¥, x #4 , u’, vieu* v #a, v
and (x,u’v’)e g% it suffices to put u = x, v =3 . For
the case x€V* , x #a , u”, vie u*, v =2 , v  #4
and (x,u’v’)e@*we put u =2 , v = X.

-

=4

e) As vV £ v*, U € U¥ then x€V, x €U and (x,x')e‘.?
implies (x,x")€ @y and therefore @ £ @x N (vxU).
If xev¥, x"€Uu* and (x,x")e@pN(VxU), then |x] = |x’|=
= 1 and therefore (x,x')e_g .
Altogether, we have g?,.n(VxU) =@ .

1.8. Corollary. Let V,U be sets, let @ be a correspondence of
V onto U. Then @ is an important correspondence of v¥* onto

u¥ and Q«N(VxU) =@ holds.

1.9. Remark. Let V,U be sets, let f be a surjection of V
onto U. Then fx (2 ) = A and for. each xeV¥, x = XgXpeeaX
integer m ¢ 1, and X;€V for i = 1,2,...,m we have fgx(x) =
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= f(x))f(x;)...f(x;). Evidently fy is a surjection of v
onto U¥ .

1.10. Corollary. Let V,U be sets, let f be a surjection of V

onto U. Then fy is an important correspondence of V* onto u*,
f = fN(VvxU) and f;l is an important correspondence of U*

onto V¥,
P roof. Its follows from the assertions 1.8 and 1.3.

1.11. Lemma. Let V,U be sets, let @ be a correspondence of
v* onto U¥* which is length preserving and is stable. Then

(@ N (VxU))y =¢ - .

Proof. Let (x,x )& @ . Then either x = 2 = x", or there
. . > . . P

exists an integer m £ 1 and Xl"fZ:""Xme Vv, xi,xz,...,xmeu

such that x = XgXpeoeXpy X0 = XgXge e X The stability of ©

implies (xl,xi)egn(VxU) and (XpXge. o Xo, xéx:,:...xn")ég.

By induction it is easy to prove that (Xi.Xi)égﬂ(VXU) for
i=1,2,...,m and therefore (x,x )& (8N(VXU))y. Let
(x,x')e(gn(VxU))‘. Then either x =2 = x°, or there exists
an integer m 2 1 and Xq,Xps..+ X €V, x{,xz',..,.,xr;éu such

that x = XgXpewaXp, X = XgXgee Xy and (x;,x;)€Q for i =

=1,2,...,m. The stability of @ implies (x,x7) = (XgX5eue
...xmxi'xé...x[;‘)eg .
1.12. Definition. Let % denote the class of all corresponden-

ces between pairs of sets with the following property: If V,U
are arbitrary sets and @ is a correspondence between V and

U, then g? is a correspondence of V onto U.

Let 2} denote the class of all important correspondences
between pairs of free monoids.
Let A be the cco. : horwaan H and M such that for

e

an arbitrary correspondence ¢ of V onto U we have A(g) ) =

= @ -
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tet B be the correspondence between % and ¥V such chat for
an arbitrary important correspondence @& of K* onto L* we
have B(G ) = G N (KxL).

1.13. Theorem. The following assertions hold:

(1) BA = idgy .
(ii) AB = idg .

P roof. For each @€ ??Z, where g7 is a correspondence of
V onto U we have BA(gz') = g,. N (vxU) = g’ according to 1.8.
For each@'e‘.%, where & is an important correspondence of
v¥onto U¥, we have AB(Q' )} = (&N (VxU))y =G according to
1.11.

2. Reducing operators and homomorphism of pure generalized

grammars _and pure grammars

If V is a set and S € V¥, R € v¥xv¥, then the ordered
triple G = <V,S,R> is called a pure generalized grammar.
If the sets V,S,R are finite, then G = <V,S,R> is called
a pure grammar. By the symbol Z we shall denote the class
of all pure generalized grammars, by the symboel G we dencote

the class of all nure arammars.
In [1] the reader finds the definition of the reducing

operator on Z and all concepts which are necessary for the

definition of the language o (G) generated by the grammar

G = <V,S,R:) , GE€Z (or GEG) and also the definitions of all
. S

used norms ](y,x){R, “(S)ESOH iy ”(y,x}” R’ ”Z“R , The

definition of a relational system and the definition of

similar relational systems can by found in [1]

2.1, Definition. Let G€2,6 = {V,S,R> . Put B(S,R) = {fs;
s€S and the condition t €S, t #=) s(R) implies jti2 Jsi}
A6 = {v,B(S,R),R) . Put Z(S,R) = {(y,x)€R and there exists

z€%(G) such that max {lyl, |xI} € ||z 2} ) 5'0 = {V.5,2(5,R)> .
In the paper {1] the following is proved: If [" is the

monoid of all transfourmations of the class Z generated by
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means of the set i/&,{'} with the operation of composition,
then 7 has exactly five elements & = idz,/b,f, 7’:%{ ,
J =f/5 and each element of a [T is a r"e—ducing operator on
Z. For G = <V,S,R> , GE€Z we have therefore 7"' G =
={Vv,B(s,2(8,R)), Z(5,R)>, dG =<V,B(S5,R), Z(B(S,R),R)) .
In this chapter we shall study the following problem:

tet 6 = {v,5,R>, H = {U,P,Q>, G,HEZ, @ be a cor-
respondence of V onto U, F'={e,/5 ,5" ,r,f}, lender which
conditions does the following assertion hold. For an arbitrary
operatoro(ef', the condition X GEG implies [is equivalent
to] X HEG.

2.2. Definition. By a describing relational system of a pure

generalized grammar G = <V,S,R> we shall mean a quadruple
9: (v¥,S,R,& (G)), here V¥ is the support, the first
relation is always unary, the second relation R is always
binary and the third relation ¢ (G) is always unary relation
on vk,

2.3. Definition. Let 6 = {,5,R>, H =<U,P,Q)>, G,HEZ,
let ¢ be a correspondence of v¥ onto U¥ which is length
preserving and stable. Then @ is called:

1° weakly 1-preserving, if x €S, (x,x')eg imply x’€ P,
weakly 2-preserving, if (y,x)€ R, (y,y )e Q .
(XIX')GQ imply (V’rx‘)eq '

weakly 3-preserving, if x €4 (G), (x,x')eg imply
x'€b(H),

l-preserving, if SD is weakly 1-preserving and if x’€ P
implies the existence of x&$S such that (x,x")€ @ ,
2-preserving, if F is weakly 2.preserving and
(v",x")e Q implies the existence of (y,x)€ R such that
(Y-Y‘) € g)' (X,x’)é? '

3-preserving, if @ is weakly 3-preserving and if
x€X(H) implies the existence of x€<&5(G) such that
(x,x)e ¢ .
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3° semistrongly k-preserving, k€£1,2,3§, if SO is
k-preserving and g’*l is weakly k-preserving,
4° strongly k-preserying, k€{1,2,3}, if both §> and 80_1

are k-preserving.

2.4. Lemma. Let 6 = {,5,R), H = {U,P,Q), G,HEZ, let
e an important correspondence of V¥ onto U¥ which is
2-preserving. Then the following conditions hold:

(i) if sev¥, t'e u¥, (t,t')€@Q and if s = t(R), then
there exists s’€ U¥ such that (s,s")e ¢ s” ==t 7(Q),
and ,(s’,t')lQ < l(s,t)IR.

(ii) If sev¥ t €Uk, (t,t')ega and if there exists an
s-derivation (ti)§=0 of the string t in R, then there
exist strings s”, tiéu* (i=1,2,...,p) such that
(s,s')é'g\’ . (ti,tj'_)ego for i=1,2,...,p and (t£)§=0
is an s’ -derivation of the string t” in Q. Further

cy\P p
leeBollg € llces)faoll g hotas.
(iii) If sev¥, t'eu¥, (t,t")e @ and if s #5 t (R), then
U¥ such that (s,s’)é_f?, s” #>t7°(Q),

”(S't)" R

there exists s’&€

and ”(s',t')]l 0

LI

Proof.
(1) If sev¥, t € U™, (t,t')ega and if s == t(R), then there
exist u, vEV¥*, (y,x)€ER such that s=uyv, t=uxv and ,(s,t)lR =
= max {ly] ’ lxl} . As §7 is an important correspondence of V¥
onto U* and (t,t')égv' , there exists u’,v’€ uU*, x“€ U* such
that (u,u')e? . (V,v')E? , (x,xN)e ¢ and t7 = u'x"Vv’.
Further, there exist a string y € U* such that (y,y")&€¢@ .

As @ is 2-preserving, (y,x)&R implies (y',x")€ Q. Put

s” = u'y'v’. Then s’ U¥, (s,s")e@ , 8" ==t ({(y",x")}) and
l(s’,t’)‘Q £ max {,Y", lx'!} = max{’y’, IXI} = l(s,t)IR
because gv is length preserving.

(2) If s€Vv¥ t'eU¥ (t,t")e¢@ and if there exists an
s-derivation (ti)§=o of the string t in R, then put t° =

t.
. P
Suppose that 1 £ k £ p and that we have defined ty, .

tk+1' .
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...,t €U¥ so that (ti.ti')e © for i = k,k+1,k+2,...,p and

.o P Lt s Z . .o
t; 4 == t1(Q), [(ti_l,Li)'Q £ (g et for 1= ked,
k+2,...,p . Further we have t, _, ==> t, (R). According to

-

¥ e - ;
‘ ° k-1 € U¥ such that (tk_l,tk_l)é ? .
tp_q =9 t, (Q), and ](tk 1 g # l(tk_l,tk)'R

(1) there exists a string t
-

From this we can define (t{)g_o by induction (backwards).

Put s = té. Evidently s’ € U¥, (s,sf)é.f and (t7)P is an

i’i=0
s ~derivation of the string t = t_ in Q .

Further we have: If p=0, then “(t£)§=ollq =0 = “(ti)§=O”R.
If p>0, then ”(t;)§=0"Q = max “(t;—l'ti)lQ; i=1,2,...,p} <

= max {!(ti_l,ti)lR; i=1,23...,p} = u(ti)?=0 HR and we
have (ii).

(iii) If sev¥, teu¥, (t,t’)e ¢ and if s &> t(R), then

there exists an s-derivation (ti)§=0 of the string t in R
. } p - i

such th?t ’i(ti)i=O"R —ll(s,t)“R . According to (2) there

exist s & U¥, tié&U* for i = 0,1,2,...,p such that

(s,s")e ¢ - (t;,i))e ¢ end (ti)gzo is an s -derivation
of the string t” in Q and ”(t{)gzollo ”(ti)§=ollR holds.

”(ti"‘;ouo, <

}”(ti)gﬁoug = ”(S.t)lR. Thus we have proved (iii).

N

Therefore s’ ==> t7(Q) and ”(s',t')uR

N

N

2.5. lLemna. Let G,HEZ, G = {V,5,R), H = {U,p, 0>, let 4
be an important correspondence of V onto U which is 1-pre-

serving and 2-preserving. Then the following assertions hold:

(1) )] € L and fer 2 el § tor each
veg [L )], (nihep.

(ii)  If is semistrongly l-preserving, then B(P,Q)

¢ [B(S,R)] .

(iii) Let SP have the property that for each z€&J&£(G) there

[[1aY

exists at least one z € 45(H) such that (z,z )€ ?

and "z” 2 = ”z'” 5 . This property is denoted by (W).



If K* is the set of all (y ,x J€ Q, for which exists (v, x)e
€ Z(S,R) such that (y,y’)eja, (x,x‘)ef, then K™ & z(P,Q).

Proof. (1) Let t'€ U¥ be an arbitrary element for which
there exists té"%(G) such that (t,t )& @ . Then there exists
a string s €S such that s &= t(R) and ”(s,t)uR = "t" g
According to 2.4 (iii) there exists a string s €U¥ such that
(s,s)€ @, s” % t7(Q), and u(s',t’)uQ ¢ l(sit)llg. As e
is l1-preserving, we have s € P and therefore t'é-C(H), hence
f)[x(‘G)] & & (H). Further "t'" S £ ”(s',t')uQ £ "(s,t)uR =

= M; . We have proved (i). )

(2) Let t'€ B(P,Q). Then there exists t€&S such that
(t‘,t')&(-)) , because t"€P and g\’ is a semistrongly l-pre-
serving. Let us have s€S such that s 5> t (R). According
to 2.4 (iii) there exists s’€ U¥ such that (s,s')é@ and
s” &5 t7(Q): As ¢ is length preserving and t’€ B(P,Q), we
have ]sf = ls'i = }t',l = lt] , which implies t €B(S,R) and
therefore t'& g [B(S,R)}. '

(3) Let (y ,x")EK ™ be arbitrary. Then (y ,x )€Q and
there exists (y,x)€ Z(S,R) such that (x,x )e @ and
(y.y)e ? . Then (y,x)€& R and there exists z&€ (G) such
that max [lyl, lxll}é "zug . This implies max {ly'l, 'x'!} =
= max{]yl,’xl}é Z"R . But according to the assumption for
each z€ 9 (G) there exists z € (H) such that "2”2 =

= ”Z’"CPQ and (?,z')é? . Therefore for (y ,x")&K" there
exists z € & (H) such that max{]y'i ,lx"}é "z'”g . Hence
(y .,x")€&z(P,Q) and K" & Z(P,Q).

2.6. Definition. Let G,H€Z, 6 = {V,5,R>, H = {U,P,0), let
be a correspondence of V onto U. The correspondence {0 is

called a semihomomorphism of G onto H, if the correspondence
g’,. of V¥ onto U¥ is semistrongly 1-preserving, 2-preserving
and semistrongly 3-preserving. In the case when the corres-
pondence §7 of V onto U is a surjection and §"* has the men-
tioned properties, we call g a surjective semihomomorphism
of G onto H.



2.7. Lemma. Let G,HEZ, G = {V,5,RY, H =<U,P,Q>. If U is
finite and the correspondence SV is a semihomomorphism of G
onto H, then the foliowing assertions hold:

(i) If S is finite, then P is finite.

(ii) If Q* is semistrongly 2-preserving and R is finite,
then Q is finite.

(iii) If B(S,R) is finite, then B(P,Q) is finite.
(iv) If v,Z(S,R) are finite, then Z(P,Q) is finite.

(v)  If V,B(S,R), Z(B(S,R),R) are finite, then B(P,Q),
z(B(P,Q),Q) are finite.

(vi) If v,B(S,Z(S,R)),Z(S,R) are finite and for each
ze &G (G) there exists z € & (H) such that (z,z')eg*

and llz7g = llzll} . then B(P,Z(P,Q)), Z(P,Q) are
finite.

Proof. (1) As Q* is semistrongly l-preserving, we

have Q*[S] = P and thus the assertion (i) follows directly
from Lemma 1.2.

(2) Put N=0O for R=@ and N = max{]yl,lxl; (y,x)eR}

for R # . As R is finite, the definition of N is correct.
Let (y ,x")€Q be arbitrary. Then there exists (y,x)€ R such
that (x,x")e@ , (y,y )€ @ , therefore max{(y',,lx'|}=

= max ﬂyl, lxl} £ N. As U is finite, also Q is finite and
we have (ii).

(3) According to Lemma 1.2 the set Q [(B(S,R)] is finite
and according to (ii) from Lemma 2.5 also B(P,Q) is finite
and we have (iii).

(4) 1If v,Z(S,R) are finite, then according to Lemma 2.4 and
Lemma 2.8 from [1] there exist a number N 2 0 such that
uz" g £ N for each z € X (6). If (y ,x")€ Z(P,Q), then there
» . . Nz . P
exists z €dg(H) such that max{ly | o] x I}f "z u Q- Ase
is semistrongly 3-preserving, for each z"€ &g (H) there
i . P S
exists z€&(G) such that (z,2°)& @xand Iz ”Q £ "z” R €N
according to 2.5 (i). As U is finite, also Z(P,Q) is finite,

*
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which follows from the definition of Z(P,Q). This proves

(iv).

(5) If Vv,B(S,R),Z(B(S,R),R) are finite, then according to
(3) also B(P,Q) is finite. If B(S,R) # @ we put K =

= max{lls'ug(P'Q). s’€ Q[E(S,R)]}. If B(S,R) = P, we put

K = 0.

As U,B(S,R) are finite, also @ [B(s.R)] is finite by to
1.2 and therefore the definition of K is correct.

According to.2.4 and 2.8 from [1] there exists a number

N 2 0 such that ”z" 2(S'R) 3 llz[[ gggzg,)R),R)é N for each
z.e L (G).

Let z°’€ & (H) be arbitrary. Then there exists z&< (G) such
that (z,z")e€ Qs because @ is a semihomomorphism of G onto
H. According to Lemma 3.2 from [1] there exists s€& B(S,R)
such that s =% z (R) and “(s,z)”R = uzug(s'R). By to 2.4
(iii) there exists s € U¥ such that (s,s’)& @ and s~ &=
% 2°(Q) and simultaneously "(s',z')"Q £ "(s,z)uR =

= “z” E(S'R) £ N. According to 3.2 from [ﬂ there exists

t

‘€ B(P,Q) such that t° =% s°(Q) and "(t"s’)“Q =
) ”s‘"S(P'Q) £ K, because B(P,Q) & Q[B(S,R)] by to 2.5 (ii).

Therefore t° Qt) z°(Q) and [/(t',z')”Q < max (”(t’,S’)”Q.
"(s',z')"Q} £ max {K,N} by to 2.3 from |1

As t'é.B(P,Q), according to the definitions of norms
”zo”S(P.Q) P4 "(t"z‘)"Q £ max {K,N} holds. As U is finite,

by to the definition 2.1 also Z(B(P,Q),Q) is finite and we
have proved (v).

(6) Let the sets V,B(S,Z(S,R)),Z(S,R) be finite and for

each z€ & (G) let there exists z°€#&S (H) such that (Z.Z')egb*
and "z'"g = ”2”2 . Then also z(P,Q) is finite by to (iv).

As Q* is semistrongly 1-preserving, for the pure generalized
grammars G, = {Vv,s,2(5,R)) , Hy = {u,P,2(P,Q)) the conditions
for 2.5 (ii) hold, because by to 2.5 (iii) ?* is also 2-pre-
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serving for describing relational systems gi = (V¥,5,2(S,R),
% (6y)) and X, = (U*P,Z(P,Q), % (Hy)). According to Lemma
2.5 (ii) we have B(P,Z(P,Q)) € Q[B(s,Z(s,R))] . By to Lemma
1.2 the set Q[B(S,Z(S,R))] is finite and thus also
B(P,Z(P,Q)) is finite and we have (vi).

2.8. Theorem. IfG,H€Z,6 = {V,5,Ry , H = {U,P,Q) , U is
finite and ¢ is a semihomomorphism of G onto H, then

(i) If ;seg, then §H£§_,
(ii) if JGé€g, then JHEG,

(iii) if 7-»G€_(_3_ and Q*has the property (W), then 7»H€-§.
P roof. The assertions follow directly from Lemma 2.7.

2.9. Definition. Let G,HEZ, 6 = {V,8,Rp, H = {U,P,Q),
let Q be a semihomomorphism of G onto H. The correspondence

¢ is called a homomorphism G onto H, if g’* is semistrongly
preserving.
In the case when the correspondence @ is a surjection of Vv
onto U and Q¢ has the mentioned properties, we call © a
surjective homomorphism of G onto H.
In the case when @ is a homomorphism of G onto H and Q”l
is a homomorphism of H onto G we say that @ is a strong ho-
momorphism of G onto H. If moreower @ is a surjection of V
onto U, we say that @ 1is a surjective strong homomorphism

of G onto H.

2.10. Theorem. If G,HEZ, 6 = {V,S,R) , H = {U,P,Q), U is
finite and g'? is a homomorphism of G onto H, then the
following assertions hold:

(1) If £G€G, then EHEG . -
(ii) If AGeEG, then AHEG .
(iii) If (G E€G, then fHeg.
(iv) If 5G€G, then SHEG .
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(v) If pPGEG and g’yhas the property (W), then ?AHG,Q .
P r oo f. This follows directly from Lemma 2.7.

2.11, Definition. Let V,U be sets, let f be a surjection of
V onto U for each (x,y)é& vExy® put fupl(xey)) = (Fu(x),
f*(Y))-

2.12. Lemma. Let G,HEZ, G = {V,S,R)» , H =<u,P,Q) and let
f be a surjection of V onto U. Then the following assertions

are equivalent:
(1) f is a surjective homomorphism of G onto H.

(ii) f[s] =P, (R} =0 and £ [X(6)] = &L (H).
P roof. Let (ii) hold. Directly from the definitions it

is easy to see that fy is semistrongly k-preserving for
ké(l,z,:’»} and hence a surjéctive homomorphism of G ontc H.
Let (i) hold. Let x€S and f, (x) = x . As fy is l.preserving,
for each x"€ P there exists x€S such that f, (x) = x.
Therefore we have fy [S] = P.

As fy is semistrongly 3-preserving, analogously f, [‘;}f(G)] =
= & (H) can be proved.

If (y,x)€R, fu(x) = x7, fo(y) = y', then, as f, is Z-pre-
serving, we obtain fee ((y,x)) = (fe(y), fe(x)) = (v, x)&€Q
and hence fy [R] € Q. For each (y',x")€Q there exists (y,x)& K
such that f,, ((y,x)) = (y ,x"), because fy is semistrongly
2-preserving. Therefore we have fy4 [R] = Q.

2.13, Theorem. Let G,HEZ, G = {V,5,R> , H = {U,P,0) and
let f be a surjection of V onto U. Further let fy [S] = P,
fox [R] = Q and f*KX(G)‘j = & (H). Then the following assert-
ions hold:

(1) If EGEG, then £HEG .

(ii) If AGEG, them BHEG .
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(iii) If fGE€G, then §HEG
(iv) If.3G€G, then SHEG .

(v) If »GE€G and if ”f*(z)”g = qug for each z€X(6),
then PHEG. )

P roof. IfV is finite, then U is finite. As 2.12 holds,
the theorem follows from 2.10.

2.14. Remark. The additional condition in 2.13 (v) cannot be
omitted. This is seen from the following example.

2.15. Example. Put U = {a}, V = {a,b}, s = u¥=p, Q= U*xU*,

= au{(a,b),(b,a)}, 6 = {V,5,R>, H = (U,P,Q>, f(a) = a =
= f(b). Then L (H) =.u* & (6) = v*, flv]=u, f[s] = p,
Fax [R] = Q .and fy [%(G)] = .Z(H). Therefore f is a homo-
morphism of G onto H. Evidently P = u¥ = & (H), which
implies ”zug = 0 for each z€ & (H). Hence Z(P,Q) = (A, )
and B(P,Z(P,Q)) = P = U¥ which is infinite. Thus pHEG.
Further we see that s —-) t{( A,a), (a, ), (a,b), (b, a)}
for all s,t €v¥*. Thus l]zuR £1 for each z& &(G) and
especialy [|z " S -1 for each z€V*t - UT. Therefore Z(S,R) =

= {2, 1), (ﬂ. a),(a, &), (a, a) (a,b),(b,a)} , which is
finite. Besides, we have A %> z(Z(S,R)) for each z& V¥,
which implies B(S,Z(S,R)) = {Xa} . Hence ?PG EG.

2.16. Definition. Let V,U be sets, let f be a surjection of
V onto U.
For x*,y € U¥ put f;l(x') = {xév*; fe (x) = x'} and

(Y X)) = {(yex) €VEXVE, £y ((v,x)) = (v ux")}

2.17..Definition. Let G,H€Z, G = {V,S,R>, H = {U,P,Q)> and
let f be a surjection of V onto U. Then the following

assertions are equivalent:
(1) f is a homomorphism of H onto G.

(1) F[P] = s f[Q] = R and 15 [X()] = X (6.

7]

78



P roof. (a) Let (ii) hold. According to Lemma 1.3 f* is
an important correspondence of U* onto V¥, If f_ltP]

holds, f;i is semistrongly l-preserving. Analogously it can
be proved that the correspondence f,~ is semistrongly 3-pre-
serving. If f**[O] R holds, then f;l is semistrongly
2-preserving.

(b) Let (i) hold. Let x’€ P and xéLf;l(x'). As f;l is
l-preserving, this implies x&€S and therefore f;l[(Pﬂ

Let x€8S, as f;l is semlstrongly l-preserving, there exists
x“€ P such that xef* (x”) and therefore f*[S] P, which
implies S £ f 1[1‘ {S]]C f 1[P] Therefore f [P]

Analogously it can be proved that f E%(H)] ;ﬂ(G

If (y,x")eQqQ, xéf* (x* ), yéf* (y") and f is semlstrongly
2-preserving, then (y, x)é(f*l(y ). f* (x" )= :.4((‘/ ,x))GR
and therefore f,r[O] £ R. For each (y,x)&R there exists
(y“,x")€ Q such that x&f, (x ). yéf*l(y ) and therefore

f” [R] ¢ q, which 1mp11es R & f” EC“ [R]]w f“ [e]. And hence

. [o] -
2.18. Theorem. Let G,H€Z, G = {V,5,R> , H = {U,P,Q) , let f
be a surjection of V onto U. If 1 is a homomorphism of H
onto G, then f is a surjective strong homomorphism of G onto
H.

k3

Proof. If f_i is a homomorphism of H onto G, then

accordlng to 2.17 we have f,,‘[s] = fy [f 1[P]] P, f”[R] =

fee [ [Q]] = @ and /[ (6)] = ffs  [L(H]] = &£ (H) and
thus according to 2.12 f is a surjective homomorphism of G
onto H. Altogether, f is a surjective strong homomorphism of
G onto H.

2.19. Theorem. Let G,HeZ, G =<V,5,R>, H = {U,P,Q>, let
f be a surjection of V onto U. Then the following assertions

are equivalent:

(i) f is a surjective strong homomorphism of G onto H.

(i1) f[P] = s and 37 [0] = R .
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P roof. (i) implies (ii) according to 2.17. If (ii)
holds, the correspondences fx and f;l between V* and u*
satisfy the conditions of Lemma 2.5 and thus according to
2.5 (1) the inclusions fy [£(C)] € L(H) and £7% [ (H)]
< %(6) hold.

no

N

From the first inclusion we obtain & (G) € f;l[f* [x(G)ﬂ

[ f;l [& (H)] . Altogether, f;l [£ (H)] =L(G) and f is a
surjective strong homomorphism of G onto H.

2.20. Lemma. Let G,HeZ, 6 = {V,5,R>, H = <U,P,Q>, let f
be a surjective strong homomorphism of G onto H. Then
"z'” g = ”z”g for each z'€Z(H) and zéf;l(z').

Pr oo f. The correspondences fyx and f,;l between V¥ and u*
satisfy the assumptions of Lemma 2.5 and thus according to
2.5 (i) for each z € (H) and zef',;l(z') the inequalitis
”z'”g £ ”z”g and "2”2 £ ”z'ug hold simultaneously and

therefore ”z'”g = “2"2 holds.

2.21. Theorem. If G,H€EZ, G = {V,8,R>, H = {U,P,0), f is a
surjection of V onto U, V is finite and f;l[P] =S, f;*l[Q] =
= R, then the following assertions hold:

(i) If £HeG, then EGEG.
(ii) If AHEG, then AG &G,
(iii) If fH €G, then fGE_G_.
(iv) If SHEG, then 5GEG.
(v) If PHEG, then PGEG.
P r oo f. According to 2.19 f is a surjective strong homo-

morphism of G onto H. Therefore this theorem follows from
Lemma 2.20 and Theorem 2.10.

2.22. Theorem. If G,HE€Z, G = {v,5,R) , H = {U,P,Q) and f
is a surjective strong homomorphism of G onto H, then the
following assertion holds: if ;ﬁG €6, then 70H€_G_ .
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P r oo f. The assertion follows from 2.20 and 2.10.

2.23. Theorem. If G,HEZ, G = V,5,R), H = {U,P,Q), f is
a surjection ,of V onto U, V is a finite set and f;_l[S] = P,
—1[Q] = R, then the following assertions hold:

fyx
(i) £GeG if and only if E£HEQG.
(ii) [AGEG if and only if AHEG.
(iidi) jGé_(_;_ if and only if fHé_C_;_.
(iv) 85 G&G if and only if S H €G.
(v) ’/‘»G €G if and only if 2¢H€§_.
P r oo f. According to 2.19 £l is a homomorphism of H onto

G and f is a surjective strong homomorphism of G onto H.

Hence our assertions follow from 2.21, 2.22 and 2.10.

3. Strong homomorphisms of languages

By a language we mean an ordered pair (V,L), where V is

a set and L £ v*

3.1. Definition. Let (V,L), (U,M) be languages, let gD be a
correspondence of V onto U. We say that @ is a strong homo-
morphism of the language (V,L) onto the language (U,M), if
the conditions x & V¥, x e U¥, (x,x")e ©# imply that the con-
ditions x&L, x’€ M are equivalent. .

3.2. Definition. Let (V,L) be a language. We -put > (V,L) =
{(y,x)é V*xv*, uyvel implies uxvelL for arbitrary u,ve V*}.

3.3. Lemma. Let (V,L), (U,M) be languages, let @ be a strong
homomorphism of (V,L) onto (U,M). Let (y,x)e& V¥xv*, (y',x)e
e U*xU*, (y,y )e @+ (x,x")& € Then (y,x)e& > (V,L) holds
if and only if (y",x")e& >(U,M).

Proof. If (y,x)€>(V,L), u’, v'e u¥, uy'v'eEM, we
choose arbitrary u,veVv¥ such that (u,u’)e Qs (v,v')e_@,,
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which is possible according to 1.8. Then (uyv,u’y’v’)e& g,
and hence uyvé&€l. This implies uxvé&LlL according to the de-
finition 3.2 and obviously (uxv,u’x“v’)& @¢ and hence
u’x’v'€M. We have proved (y“,x")& >(U,M). The rest of the
assertion can be proved analogously.

If (v,L) is a lang‘uage, then evidently an ordered triple
(V,L,) (V,L)> is a pure generalized grammar, It is well-
known that it generates (V,L). See 5.2 and 5.3 in [1]

3.4. Corollary. Let (V,L) and (U,M) be languages, let @ be
a strong homomorphism of a pure generalized grammar <V,L,

Y(Vat)) onto (UMD (UMD

3.5. Definition. A language (V,L) is called grammarizable if

there exists a pure grammar <V,S,R> which generates (V,L).

3.6. Theorem. A language (V,L) is grammarizable if and only

if & Kv,L) (V,L)) €6,
P roo f. See Theorem 5.7 in [1] :

3.7. Corollary. Let U,V be finite sets, let (V,L), (U,M) be
languages, let @ be a strong homomorphism of (V,L) onto
(U,M). If one of these languages is grammarizable, then so
is the other.

P roof. According to3.4 Q@ is a strong homomorphism
{v,L, > (v,L))> onto {uU,M,> (U,M)> . According to 2.8
&<V,L) (V,L))EG if and only if §<U,M, D> (U,M)>EG. The
assertion follows from 3.6.

3.8.- Example. Let V = {a,b,c} , let @ be the correspondence
of V onto V such that @ = (a,a),(b,a),(c,b),(c,c)}, L =

= {ambcm,m 2 O} , M= {a"l+ X, xe{b,c}', Ix| = m}. Then @
is a strong homomorphism of the language (V,L) onto (V,M).
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The first of these languages is generated by a pure grammar
<V,{b},{kb,abc)}> and hence it is grammarizable. This
implies that also the other language is grammarizable, we
recognize this according to 3.7 without constructing any of

its pure grammars.
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REDUKCE A KORESPONDENCE CISTYCH ZOBECNENYCH GRAMATIK

Souhrn

V praci je vyreSena otazka, jak se chovaji redukujici
operatory &istych zobecnénych gramatik (které zavedl prof.
M.Novotny) prfi jistych homomorfnich korespondencich mezi té-
mito gramatikami. Pojem homomorfni korespondence je zaveden
jako zobecnéni pojmu homomorfismu &istych zobecnénych grama-
tik. véty, které se tykaji silnych homomorfism@ ¢istych zo--
becné&nych gramatik a korespondenci k nim inversnich jsou pak
specialnimi pripady obecnéjsich vét o vyznaénych koresponden-
cich mezi &istymi zobecnénymi gramatikami. Dale je pak v pra-
ci dokazano, Z2e jestliZe je dan silny homomorfismus mezi dvé-
ma jazyky (V,L) a (U,M),V,L jsou koneéné a je-li jeden z
téchto jazykl gramatizovatelny, je gramatizovatelny i druhy
jazyk.
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PELVKINA ¥ YACTVMUYHHE MYJBTMOTOBPAXEHMA UMCTHX

OROBMEHHHX T'PAMMATHE

Peapome

B paGore paspelieH BOmpoC, KakK OTHOCATCH peAylupyRmye
OnepaTopH uYMCTHX OOCOOmMEHHHX rpaMMaTuk ( KOTOpHe BBeXOJ
npod. M. HoBoTHHI) npu onpeleseHHHX roMOMOpPPHHX MyJbTH-
oToOpaEeHusX MEXIy OSTUMM rpamMmaTuxemu. [loHATHe roMomopd-
HOI'0 MyJbTHOTOOpEXEHMS BBEJEHO Kak O0O00OlMeHMEe NOHATUS TOMO-
mopPuaMa uucTHX OOCOOCWEHHNX rpammaTuk, TeopeMH, KOTODHE
KacabTCs CUJIbBHHX roMOMODPM3MOB YMCTHX OGOGMEHHWX I'paMMa-—
TUK M MyJabTrOTOOpaXeHuil, o6paTHHX K 3TMM roMoMopduamam
npeicTaBasibT yacTHHe cayuau OGoxee obUKUX TEOPEMOB O OTJM-
YMTEJbHHX MyJbTUOTOOpaXEeHMSX MeXAy uMcTHMM OC0OmeHHHNMH
rpaMMaTHKaMi .

Jlaree B paGoTe nokxasaHo cJejypllee - eCJU CylleCTByeT
cuabHEIA roMoMmopdusM Mexny LBymMs sauHkamum (V,L) wu (U,M), V,U
KOHeyHHe MHOXeCcTB&, M ecJM OIUH M3 STUX SABHKOB NpelcTaBiseT
rpaMMaTusupypuMil fS3HK, IOTOM NpelcTaBJsSeT I'DaMMaTH3 Py DM
S3HK M BTOpOii. .
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