Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Eva Tesafikova

On equation y” — ¢(t)y of finite type, 1-special, with the same central dispersion of
the first kind

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 28 (1989), No.
1, 191--226

Persistent URL: http://dml.cz/dmlcz/120216

Terms of use:

© Palacky University Olomouc, Faculty of Science, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/120216
http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM
1989 MATHEMATICA XXVIII VOL. 94

Katedra biofyziky a nuklearni mediciny
lékarské fakulty Univerzity Palackého v Olomouci
Vedouci katedry: Doc.MUDr. Milo$ Wiedermann, CSc.

ON EQUATION y”—q (t) y OF FINITE TYPE,
1-SPECIAL,
WITH THE SAME CENTRAL DISPERSION
OF THE FIRST KIND

EVA TESARfkOVA

(Received April 30, 1988)

In the central dispersion theory of linear second order
differential equations treated at length by O.Borf@ivka in [1]
there were investigated the properties of bothsided oscilla-
tory equations of the type

y" = a(t)y 4 (a)

having the same fundamental central dispersion of the first
kind on their definition interval. By central dispersions of
the first kind of (q) we mean thereby the functions mapping
the zeros of an arbitrary solution y of (q) onto the zeros of
the same solution.

In [3] and [4] there is introduced a certain generaliza-
tion of concepts relating to central dispersions (q) of finite
type m 2 2, l-special, on an open definition interval j =
= (a,b), q(t)e C(O)(j) (hereafter (q(l))) by means of defi-
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nitions of special central dispersions. There are also dis-
cussed conditions and properties of such generalizations. The
generalization of the 1st kind central dispersions may be
summed up in the following definition . The letter Z refers

to a set of integers.

Definition 1.
By a (zm+k)-th central dispersion of the first kind for
z€z, k = 0,1,...,m=1 of the equation (q(l)) we mean a function

(/k for te&(a,a;_,)

ézm+k

y-(m-k) for te(a,_,.b)

where S/(t) is the first kind central dispersion in terms of
the definition [1], and the points a; are the zeros of the
1-fundamental solution of the equation (q(l)) forming the
1-fundamental sequence (a(l)) of this equation in the follow-

ing ordering
a,<al<a2< <am_1< b

The following text is devoted to a fuller account of the
set of carriers of (q(l)) with the same fundamental special
central dispersion of the first kind é(t) = él(t), i.e. we
shall try to find a relation between the carriers q,q of
(q(l)), (a(l)) for which 4 (t) = é(t) is holding throughout
the domain of definition of these functions. Evidently, this
equality may be fulfilled only if the equations (q(l), (5(1))
are l1-special, of type m, m £ 2 on a common definition inter-
val j = (a,b), where - ® = 3<b = + o, with the same 1-fun-
damental sequence (a(i)).

In view to the fact that the functions ¢k(t) form for
k=0,1,...,m-1 a finite cyclic group c(®) generated by the
element é(t) on 5(1): i.e. on the interval j except for the
1-fundamental sequence (a(l)), it automatically also follows
from the rnircidence of the fyundamental dispersions__é(t) =
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é(t) the equality of other dispersions ék(t) é (t) for
all k considered. The function é (t) is coincident for all
equations (q( )) with the same def1n1t10n interval j. Because -
of the properties of the elements of the finite group, the
converse implication of the coincidence of the fundamental
dispersions is not always garanteed due to the coincidence of
the higher order dispersions. The equality é (t) = ék(t)
implies the equality f (t) = f (t) only in such a case when
each element of the group G is expressible as a power of
the element ¢k' i.e. exactly if k is not a number with a
common factor m,

The reply to the question what the magnitude of the set
of carriers of equations (q( )) with the same special central
dispersion looks like, follows from the statement of the fol-
lowing

Theorem 1 o

Let s be an arbitrary point of the interval j = (a,b),
m 2 2 be a natural number. Let next V(t) be a function de-
fined on the interval (a,s) having the following properties:
1) Pryect®
2) Yr(ry>o
3) P> ! (1)

4) lim_Y(t) =
tas &

5) on the interval (s,b) there is defined an inverse m-tipes
composite function V (""'1)(1:) for which lim " (m- 1)(1;) =
= a holds. t-s”
Then there exist to every function ¢ (t) defined by
V(t) for te(a,s)
dty = , (2)
Y"1ty  for te(s,b)

infinitely many solutions of the functional equation
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L(t) +Tsign & for te(a,s)

a[d ()] = . (3)
A(t) - (m-l)z'sign A’ for te(s,b)

by means of the phase function & (L # 0, 0(6(3(3)(j)), which
may be expressed as a l-st phase of the equation (q(l)).
Proof. Let us first assume m> 2. We will show that in
this case the interval (a,s) may be expressed as a union of
the disjunct intervals (ar1aq), <a1,az),..., {a,_o18) such that

a, = lim, Ve, ay = V(al),..., ap_y = s = V(am_z),
tra
and the function V'(m~1)(t) realizes the schlicht mapping of
the interval (s,b) onto (a,a;).

Because of the properties 1) through 5) of the function
V(t) the function ¢_(m"1)(t) is increasing on the interval
(s,b) belonging to the class c(3) and having a positive deri-
vative. Next it holds that the function ¢_(m_1)(t)< t and
realizis the schlicht mapping of (s,b) onto (a,r), where r =
= lim (/-(m'l)(t) for t+b™, a<r<b,

From the property 5) follows the existence of the limit

and the validity of
lim+¢(m—1)(t) =s ,
taa

and thus also the existence of

lim ¢(l)(t) = a, fori=1,2,...,m-1 ,
+ i
tsa

where a; is a real number, = s, From the property 3 the-

a
m-1
reby follows the following ordering for the points ay

a < a; < a1 < b for i =1,2,...,m=1 .,

From the existence of the limit and from the validity of



lim ¢_(m_1)(t) =a,
tes

follows also the existence of the limits and the validity of

lim, ¢ o 1im QML= (M-D)] Loy (i) o,
tast V t§s+ w [v tea’ ¢ m-i-1
i=1,2,...,m=1, where ag = a, vo(t) =t .

With respect to the continuity of the function V(t) on
the interval (a,s) then follows

. i . i-1 .
a; = lim_ ¢ = lim ¢(¢( )) = lim Y(t) = V(ai_l)
t»a t»a taa +
i-1
for i = 2,3,...,m=1, It remains to prove a, = r.
From the validity of
. i . i-1 .
%1m_ Yr(t) = lim_ ¢[V (t)] = lim_ f(t) = ;.1
»a t»a t2a
1 1 1
for i =1,2,...,m-1, where a_ = b, we obtain the equality

m

Lim_¢™(e) = b,
tray

whence on account of the fact that

1im Y™ty = b ,
ter” / 4

we get also the equality a, = r.

In assuming m = 2 we will show that the function V(t)
intermediates the schlicht mapping of the interval (a,s) onto
(s,b). Denoting again

. . -1 S
a; = lim, Pty o ro= lim_ ¢ (t) , 4
tra t»b :

we see that the function V(t) intermediates the schlicht
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mapplng of the interval (a,s) onto (ai,b), and the function
¢ (t) intermediates the schlicht mapping of the interval
(s,b) onto (a,r). From this evidently follows ay = s =r.

The phase function satisfying the functional equation (3)
for m2> 2 may be hereby obtained by the following construction:

f(t) for teca  ,,9)
f(a_ ) +€F for t = s .

L(t) = n-2 (4)
o([é(t)] -ET for tej, pro i=1,2,...,m-2

A[(t)] + €(m-1)F  for te(s,b)

where i = <ai_1,ai) for i = 2,3,...,m-2, g = (a,al), f(t) is
an arbitrary function defined on <am_2,s), being everywhere
increasing or everywhere decreasing on this interval, f(t)€

e c(3) <a,_5,s) with the derivative f°(t) # 0, where £ =

= sign f“(t), which in the left neighbourhood of the point s
satisfies the properties

lim_ f(t) = f(a, o) + €T ,

tes
. -
a

lim_ £7(t) = L Cn2) ,
tes é( _2)
) " 1 ey
lim_ f"(t) = . .
tes” é'(am_z) é (t) )am-2

I o+] o+
lin_ £777(t) = ——2 [ R a3 )J ,
tas” (s, ) Lty  $(v) s

m-

In the case when m = 2 we have a = a. We thus need to

m=-2
consider the function f(t) having the above properties on the

interval (a,s) only, and instead of the functional values

~
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f(a), ¢'(a), we need to consider the limit of these functions
at the point a on the right.

The phase function X obtained by the above construction
(4) really represents the first phase of the equation (q(l))
since the oscillation of the phase O(X ) satisfies the required

relation

o) = llim_ok(t) - lim d(t)] = llim_-([é(t)]-
t+b t¥a tas
- lim &[$(t)] = [lim_o(t) + ET - lim & (t) -
tes t9s t+s

+ Em-T| = [EnT| =T .

It follows from the proof of Theorem 1 and from the pro-
perties of the central dispersions in terms of the definition
stated in [1] that the function é(t) defined by (2) with the
aid of the function V(t) with the properties 1) through 5)

(1) corresponds to the definition of the fundamental special
dispersion of the first kind § relative to the equation (q(l))
with the 1-fundamental sequence 81485, 00048, 4 = S. On account
of the fact that through an arbitrary phase of (q(l)) its
carrier q is uniquely determined by

- gt ] - &P(r) = qe),

where {d ,tl means the Schwarzian derivative of the function
K at the point t€ j in terms of the definition stated in [1],
it becomes apparent that there exist infinitely many equations
(q(l)) with the domain of definition j, for with the function
é(t) satisfying the assumptions of Theorem 1 represents the
fundamental special central dispersion of the first kind.

Let us look now at the fundamental properties of the
function é(t) defined by (2) with the aid of the function
w(t) possessing the properties 1) trough 5) (1). There are
the following properties fulfilled:
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1) the domain of definition of the function é(t) forms
(a,s) U (s,b)

2) the range of values of the function é(t) forms
(a,ay) u(al,b)

3) é(t) is on the intervals (a,s), (s,b) an increasing
function belonging to the class C(B), with a derivative
d(t) £ o0

4) lim_¢{(t) = b lim, $(t) = a (5)
tss t»s

5) the function QS(t) intermediates the schlicht mapping of
the intervals

(ai_l,ai) onto (ai,ai+1) for i = 1,2,...,m=-1

(a,_1:2) onto (a,ay) ,

where .

a = a0< a; = 1_12+¢(t)<a2 =§(al)< cesoa@p 4 =8 =
=¢(am_2)<b = a,

t for all te(s,b)

n

6) $"H(t)

The above properties are likewise sufficient properties
that the function f(t) could be taken for a fundamental
special central dispersion of the first kind of (q(l)) as evi-

denced by the following

Corollary 1.

Suppose a;,a,,...,8; 4 1s an arbitrary point sequence of
j = (a,b) satisfying the following ordering

afaj<a, <. &ay 4 <b

Then to every function é(t) satisfying on j the properties

1) through 6) of (5) there exist infinitely many solutions of
the functional equation (3) through the phase function

K ( 0(';5 o, 0(60(3)), which may be interpreted as the first pha-

se of the equation (q(l)) on the interval j. Consequently, the-
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re exist infinitely many equations of type (q(l)) on the in-
terval j, for which the functioncé (t) represents the funda-
mental special central dispersion of the first kind.

Proof. Denote now

Wt) for te(a,a,_4)
vy = .

‘/-(m—l)(t) for ts(am_l,b)

and show that the functiontﬁ (t) satisfies the assumptions of
Theorem 1, i.e. that the function W(t) possesses on the in-

terval (asa 4 = s) the properties 1) through 4) (1) and that
W—(m-l)(t) = V_(m—l)(t) holds on the interval (s,b) under
the validity of lim yl(m-l)

lidity follows from a more comparison. Besides, there is a

(t) = a for t+s™. However, the va-

preassigned possibility of the appropriate separation of j.

Consider now a function Qﬁ(t) satisfying the assumptions
of Theorem 1, The symbol(2§ will denote a set of all carriers
of equations (q(l)) with the same fundamental special central
dispersion equal to the function é(t). It follows from our
foregoing consideration that the set Qé is of the continuum

magnitude.

The symbol I will denote a set of all solutions of these
equations. We know that arbitrary solutions vy, Y 6 I having one
zero in common, have all their zeros in common. It also follows
herefrom that all equations (q(l)) for ge Qé have the same
1-fundamental sequence (a ) coinciding with the sequence
given at 5) (5). Consider next an arbitrary point ce&€ j. By a
bundle of solutions I of the set Q; with a node ¢ we mean a
set I.C1I of all solutions of (q(i)) for ge Qf having a zero
at c. We know that all elements of the set I have all their
zeros in common, which we will call the nodes of the bundle

I.. The set I, is thus uniquely determined by its arbitrary.

In the sequel we will investigate the properties of the

elements of the set I_ belonging to the set of all carriers
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Qé . We will derive these properties by means of results ob-

tained in three lemmas below.

Lemma 1.

Consider a differential equation (qg) on j = (a,b),
q GC(O)(j) such that every its solution has at least m Z 2
zeros in j. Let y be an arbitrary solution of this equation

and the points CisCprenesCp be consecutive zeros of the so-

lution y. Let the point x4 for i = 0,1,...,m be arbitrary
points from j, for which y(x5) # 0, satisfying the following
orderina

St x0<vcl<;’x1< 02<><2< vee & Cr-1< Xno1< ¢ < X (6)

Let g, (t) be a function defined on the interval <xo,xm> except

for the points C11Cpseee,Cp @S

m

: 1 1 1

gm(t) =3 - £ ) ¢ > (7)

S Y (t) i=1 Y (Ci) (t-Ci)
Then there exist Riemann integrals of this function

*m . Sm
f g,(t) dt, f g, (t) dt
o €1

and it holds &
Xm m
1
f gp(t)dt = > ——— [ cotg & (x;) *
i=1l y “(c.)
X i
"0 . n
SIGwE O 2D 1 1
~ + cotg di(xi_l)] + Zz: ") +
DS w L EVAT i=1 y*"(c;) Ley - x4

R —_ ] ' (8)
;o Y ; X = C.
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o _
f g, (t)dt =E —t [- cotg o(i(xi) +

4 2
A i=1 y " (cy) Cm = ©4
1
m-1
1 1
Lo [Cc’tg Kign(X3) = ] '
i=1 y "(ci,q) €4 7 Cis1

where A is the first phase of (q) determined by initial con-

ditions

A;(ey) = 0, Ai(cy) =1, o(;(ci) =0, (10)

Proof. The existence of the integral fm gm(t)dt and the
*0
validity of (8) is proved in 18 § 5 in [1]. It thus remains to
prove the validity of (9). We proced hereby from the limit
formulas derived in 18 § 5 [1]:

C
1
.2 1 1 1
y “(cq) - = ' dt =
1xf [yzm v 2 (ep) (t-cl)Z]
= cotgo((xo) - 1 (11)
Xo—Cl
y—2(c )jxl [ 1 _ 1 . 1 Idt =
1 2 2 2
& yo(t) v T(cq) (t-cq)
= - cotgo((xl) + (12)
Xl—Cl

where & is the first phase of (q) determinde by initial con-

ditions

X(c;) =0,  A(cg) =1,  L(cy) =0 .

201



The validity of (9) will be proved by an inductive method.
2

1) first we derive the value of the integral gz(t)dt,
c1

where

gp(t) = 5 — - : 5 - L :
2 Yo(t) v (o) (t-00)® vy ¥(ey) (t-cy)?

Relations (11), (12) yield

X

1
1 1
j g,(t)dt = —5—ro [- cotg o(l(xl) + ] +
Cl Y (Cl) Xl-cl
1 1 1
e madlod I
y (oy) bxgme,  cq-cy
G 1 1
J g,(t)dt = —— [cotg Ay(xq) = ] +
X4 v (e3) X17%
. 1 i . 1
o2 '

y T(ey) b eymey Xxg-cy

where o(l, 0(2
tial conditions of (10).

are the first phases of (q) satisfying the ini-

From this directly follows the validity of

o

2
f g,(t)dt = %- [- cotgd 4 (xq) + E ] +
Sy v (cg) €2-Cy
1
+ —— [cotg p(z(xl) - 1 ],
Y (02) 01—02

and thus also the validity of (9) for m = 2,

c
m-1
2) Assume the validity of (9) for the 1ntegralf 9p-q (t)dt
c
1
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[o]

m
and prove it for the integral ‘f gm(t)dt°

It holds

€1

Sm Sm-1 Am-1 Gm
f gm(t)dt =‘r g,(t)dt + f gm(t)dt + X g,(t)dt,

¢ €1

from which

Cm-1

X
m

Crno1 m-2
E 1
f gm(t)dt = £ —
¢, i=1 y""(cy)
m-2
1
+ cotg &, .(x.) -
— 2 [ i+l 7
i=l y 7 (ci41)
+ '21 1 1
y (cp) Cn-1"C%m c,-C

Applying (11) and (12) we obtain

-1

[- cotg o(i(xi) 4 —
c

¥m-1 1
gp(t)dt = ———r [ - cotg xrn—l(xm—l) +
m-1 v " (eqoq)
1 =
+
-1"Cnp (C ) -C;
1 1fm i
- __1__]
Cm-1"C3
i 1 1
§ gp(t)dt = —> [cotg«km(xm_l) - ] +
-1 y (ey) Xm-1"Cm
m-1
1 1 1
i [ ]
(c ) FCpTCi Xpo1TCi

frdm which we conclude
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m=-1

(o
fm g, (t)dt =Z——-1—-— [- cotg & (xy) +
c

n .2
i=1ly (ci) Cn~Cy
1
m=-1 1
1
T et -]
i=1 y (ci+1) C1=Ci41

which was to be demonstrated.

Lemma 2,

Consider a differential equation (q) on j = (a,b),
q sC(O)(j), such that each its solution has at least m zeros
m22in j. Let Y, (t) for k = 0,%1,...,%n-1 be the k-th
central dispersion of the first kind in terms of the definiti-
on stated in [1]. Let y be an arbitrary solution of (q), x be
an arbitrary point at the interval j such that y(x) # O and
let, respectively, to the right and to the left of it lie at
least in case 1) k zeros, in case 2) lkl+ 1 zeros of the so-
lution y. Let c be a zero of the solution y satisfying the
inequality x<c< ¥(x) and V_l(x){c<x, respetively, Define
the function

.2 k ‘(c
f(t) = .Y?_(S.)._Z___l{l;!_z. ‘ (13)
yo(t)  i=0 (t-¥,(c))

on the interval j except for the zeros of the solution y for
k =1,2,,0e,m-12 or k = =1,-2,,,,,-(m-1), Then there exist Rie-
mann integrals

(/k(x)

1) f fl_glt)de (14)
X

‘/k(c) 2 :
2) f £ (t)dt _ (15)
A : ,

where € = sign k and it holds
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fie () $ \ )
1) f__(t)dt = “(c) - . (16
f k-t i=0 (/)1 [Vi(C) -x  Yi(e)-§ (x) ] e

X
(o) O R AC
Z)f f(tyde = -2~ —y p L
A Yole)r i=0 Y .(c) - ¥i(e)
fiiee)

- . (17)
(/0(0) - Vi+€(c)

Proof. 1) To derive (16), we proceed from (8). With respect
to the assumptions given, there are satisfied the conditions of
the preceding Lemma for Xg = X, X = l/k(x), c, = c at sign k =1
or X, = X, Xg = Vk(x), C = € at sign k = -1,

Thus, for positive, with the following ordering of points

x<c < Y(x)< ‘/(C)< <L/k(x)

there holds

Y (x) k-1
= - 2 2 : 2] de =
J yo(t)  i=0 y (Y, (e))(t-¥ (c))

k-1

1 [ 1 _ 1 ] .
190 vy 2(Pen b fe)-x Y (e)- Y ()
k-1

1

+;m [— cotg o(i((fi+1(x)) +

+ cotg o(i(‘,i(x))] ' ‘ (18)

where o(i is the first phase of (q) satisfying the initial
conditions

Ki(F(e)) = 0, & (Y(e)) =1, Ki(¥;(e)) =0 . (19)
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From this making use of (5) from 3 § 13 [1] to express the de-
rivatives of the central dispersions at the zero c of,the so-
lution vy

.2
Yr(e) = —Y (c) (20)

.2
Yy (#(c))
and also the fact that the points y2+1(x), yi(x) are always
l-conjugate, we come directly to (16).

For a negative value of k the sequence

Y0 < fia (@)<Y (< vv < Vg e)a Yy (x) < e <x

corresponds to the assumptions of the foregoing Theorem.
Consequently

0

1 _ E ' 1 dt =
[yz(t) i=k+1 y""(vi(c>)(t-¢i(c))2]

0

VL(X)

1 [ 1
i=k+1 y’z(yi(c» Vi(c)- Vk(x)

1
- - . (21)
Vi(c) - X ]

Applying (20) and on multilying the equation by -1 we come with
the value € = -1 to the equality (16).

2) Similarly, in proving (17) we proceed from (9).
For k being positive, we may express (9) as

Y .(c) k
1 Z: 1
- dt =
J yo(r) T8 v E(Y () (t-F(e))? )
k-1

. 1
190 vy 2 (f, ()

[- cotg £, (¢, ,1(x)) +
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+ ————-—1——] +
P lc)= Y, (c)
k-1

1

———————fcotg &, (Y. (X)) -
+ 5 Y‘2(¢i+1(c)) [ i+l i+l

1

%(C) = Vi_,.l(c) ]

Using (20) to express V;(c) we deduce the relation

Yicte

[

k. .
@ s O 1
y2(t) 150 (t-¢,(c))

k-1

=Z<f;(c)[- cotg & (¥;,4(x)) +
i=0

e o
Yi(c) - ¥i(c)
k-1

$2 o) [eota kyy (f,000) -
il=

)[ v 2(c)

1

ote) - fi,a(e) ]

’

which, in expressing V;+1(t) in the form of derivative of a

composite function at the point t = c, goes over into the form

(c) k-1
k
/ fl (t)dt =§1=0: ‘/;(c) [— cotg &, (f,,,(x)) +

o]

+ P7(Pi(e)) cotgdy  (Pi, ()] +
k=1 . .

i—:[ pie) Yl
i=0 - Y (e)-¥(c)  Yole)=¥ 1)

+

] (22
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where di is the first phase of (q) satisfying the initial con-
ditions (19). From this and from the Abel functional equation
di+1(¢3+1) = X (P) + T we see that

n

Rea(fie)) = =T, Al (fi(e))

Aisg(Fi(e))

SCUACHY
9" (fi(e)) (23)

Hence, by relation (4) § 7 [1] for the expression of the first
phase of (q) determined by the initial conditions, there follows
from (19) and (23) for the phases xi, ;.10 Where i 6{0,1,...
L..,k-lz, and for all te j the following relation

‘

- PT(Pi(e)) tgk, (1)

RECAC) '
FRS dhLS SRS
2 (g, o 07l

tg D(ia-:l‘(t) =
-1 +

which may by rearranged into the form

. "(¢;(c))
- cotgd,(t) + V (yi(c)) cotgok, 4 (t) = —-;— (;'(yl(c)) .
i
(24)

Applying (24) in (22) and expressing the quotient as

prce) ¢ficen  Yrae) gice
MUAG) Yi.(t) i)

we come to the validity of (17) proved.

For k being negative, the sequence
V() < P() < Y1 ()< Pppa (X< e <P ()< Py ()< e %

satisfies the assumptions of the preceding Lemma. Hence, it
holds
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[‘jo

1 dt]:

Ky (¢ (c))(t-F(c))?

-T—l -
[y (¢) 4

1]

Vk(c)

o

1
= e ———————— - tg £ . i
i=k+l y'Z(YQ_l(c)) [ cotg ek 1 (5 4(x)) +

+ L ]+

Vo(c) - l/i_l(c)

2

— |
i=k+l y 2 (¥, (c))

cotg &, (P 1 (x)) -

Y (c) = ¢ (c)

whence, applying (20) and expressing (/i'_l(t) in the form of a
derivative of a composite function at the point c, we obtain

c k+1
/ f (t)dt = -§i=o:Y;(c) [— cotg o(i(yi_l(x)) +

A

+

Y2 (Yi(e)) cotgh, 4 (Y _1(x)) -

k+1

) EE::[ Y:(c) ) Y 10 ] ,

i0 b Y (c)- Yi(e)  Poe)- ¢, _4(c)

(25)

where OQi is the first phase of (q) determined by the initial
conditions (19). From the above conditions and applying the
Abel functional equation we obtain

U RGP
IR(AC) (26)

Ki_l(sﬂi(c)) =7, d;_l(Vi(C))
Ky 1 (Pi(e))

n
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By relation (4) § 7 [1] for the expression of the first phase
of (q) determined by the initial conditions, there follows from
(19) and (26) for the phases di, &i—l' where i 6{0,—1,...

....—(k—l)‘, t € j, the following relation
- ¥ (Y. tgk, (¢t
tgk; _,(t) = r'l;.ii;?zc)? AL .
-1 + 2 f=="7r " tgdl(t)

S UAC))
This relation rearranged into the form
- cotg ok, (t) + Y (Yi(c)) cotg &k, ,(t) =

AUAC))
Yo, (¥, ()

= -3 (27)

with afterwards expression of the quotient
Piee) Yri(Pi(e))  ppan) i)
YY) Y 6y Yo

will be used to the final formation of (25). So, we come to the
expression

“ k+1 .
¢? fk(t)dt = l _Z%iil - [____:féiil____ -
(¢) 2 Yi(ey 1=0 - Y (c) - V(o)
Y _4(c) ]

Yole) - ¥, _4(c)

which on multiplying by -1 for € = -1 proves the validity of
(17). i

Lemma 3.

Consider the equation (q(l)) of finite type m £ 2, l-special
on the interval j = (a,b). Let 4%Xt) be the i-th special
central dispersion of (q 1)), for i = 0,1,...,m-1. Let y be an
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arbitrary solution of this equation, ¢ be its zero. Let x be an
arbitrary point in the interval (a,am_k) such that x<c<¢(x)
or an arbitrary point in the interval (am-k'b) such that
§m—1(x)< c< x. Then there exist Riemann integrals on the left
sides of formulas (28) and (29), for c # an_k formulas (30) and
(31) and there is fulfilled the validity of

é, (x) v 2o KL (o
. LYA() 190 (v -4, (e))
1

= 1
1=0 [ <Ii.<(x)—4> (c)  Potx)-2,(c)

for xe(a,am_k), (28)
resp.
?k(x)[y—Z(c) . i:l . é;(c) ]dt _
p y2(t)  imksl (t-@,(e))?
m
-2 $iof : ]
i=k+1 cﬁk(x) -$, (c) qu(x)-cpi(c)
for xe(am_k,b), (29)
fk(c:) v 2(c) Zk: @ (¢) ]dt-
J [yz(t) 10 (-9, (c))?
_o $ie i[_‘f_}f_’___
2 Prc) =0l (c) -, (c)
_ bj'.+1(c) (30)
Pote) -P,,a(0)

for c e(a,am_k),

211



.2 m
[y (c) Z <b(0) 2]d
y2(r)  imk (=P i(o))
1 ke [ $i(e) )
(§|<(C) i=k+1 @k(c) —4’1(0)
$: 0
i-1
- (31)
$.c) -, _4(c)
for c &€(a

m-k'b)'

where (bm = 4?0 = t for all te j.

Proof. For every equation of type (q(i)), for its arbitrary
solution y and for the points x,c of the mentioned properties
there are fulfilled the assumptions of Lemma 2, i.e. it holds:
1) For all xe(a,a,_,), ce(x,é(x)) such that ((x) # O,

y(c) = O there always exist in the interval j the points Xy =
= Y (x) for i =1,2,...,k and the points c,. = ¥, (c) for i =1,
2,+.e.,k=1, where the function (/i(t) is the i-th central dis-
persion in terms of the definition stated in [1]. There are thus
fulfilled the assumptions of Lemma 2 and the Riemann integral

‘fk(x)
J(' fk_l(t)dt exist for xe(a,am_k), k=1,2,...,m=1, whose

value is given by (16). With respect to the definition of the
special central dispersions there is satisfied V (x) = é (x)
for i =1,2,...,k, @ (c) = P (c) for 1 =1,2,...,k-1, at the
points x and c, from which clearly follows the validity of (28).
2) For all xe(a _,.b), ce(ém_l(x),x) such that y(x) # O,
y(c) = O there always exist in j the points x, = Y’_i(x) for

i =1,2,...,k and the point c; = V_i(c) for i = 1,2,...,k-1,
where V_i(t) is the -i-th central dispersion in terms of the
definition stated in [1] So, with respect to the validity
¢m_1(x) = @_1(x) = V_l(x) there are satisfied the assumptions

212



Yo (%)

of Lemma 2 and the Riemann integral f f_k+1(t)dt exists
X

for x £(am_k,b), k =1,2,...,m=1, whose value is given by (16).
With respect to the definition of the special central dispersions
and to the fact that they form a finite cyclic group of order m,
there is fulfilled ¢ (x) = @ _;(x) for i =1,2,...,k, and
W_i(c) = ¢m-i(c) for i = 1,2,...,k-1 at the points x and c,
from which, with the equality ¢O(t) = ém(t) =t for tej,

there follows also the validity of (29).

3) For all ce(a,am_k), x € j such that y(c) = 0, y(x) # O,
X< C< é(x) there always exist in j the points X = Vi(x),

c, = Vi(c), for i = 1,2,...,k, where Vi(t) is the i-th central
dispersion in terms of the definition stated in [11. So, the
assumptions of Lemma 2 are fulfilled and the Riemann integral
fice)
[ fk(t)dt exists for cc(a,am_k), k=1,2,...,m=1, whose

value is given by (17). With respect to the validity of sﬂi(x)_ =
= éi(x), fi(c) = (pi(c) for i = 1,2,...,k there clearly fol-
lows also the validity of (30).

4) For all x€j, ce(ay_,,b) such that y(x) # 0, y(c) = 0,
cpm_l(x)( c<x there always exist in j points x; = ¥, (x), ¢, =
= )ﬂ_i(c) for i = 1,2,...,k, where Sﬂ_i(t) is the -i~-th central
dispersion in terms of the definition stated in [1]. So, with
respect to the validity of ¢m_1(x) = ¢_1(x) = V_l(x) there
are fulfilled the assumptions of Lemma 2 and the Riemann in-

L/_k(c)
tegral [ fk(t)dt exists for ce(am_k,b),k =1,2,...,m-1,

whose value is given by (17). With respect to the validity of

Y (x) =P (x) Y.(c) =P, (c) for i =1,2,...,k with
the equality ¢o(t) = ¢m(t) = t for t€ j, there also follows
the validity of (31).

Let us now return to the set Q of all carriers of the
equations (q(l)) with the same fundamental special central
dispersion of the first kind <p(t) and to the bundle I_ of all
solutions y of these equations, having the zero c in common.
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On the basis of.the validity of the foregoing three Lemmas we
are able to express a Theorem collecting together the common
properties of elements from the bundle of integrals I_.

Theorem 2
1) For all elements y of the bundle Ic'belonging to the

set Q there exist Riemann integrals stated on the left sides
of formulas (28), (29), (30), (31) whose values are invariant
with respect to the elements of the bundle I..

2) The quotient of derivatives y“/y” of two arbitrary
elements vy, VGIC is at all modes of the bundle equal to the
same constant 4 .

3) For any two elements y, y€I_ and for all tej,
t # ay_ there is fulfilled the relation

(tv) ., -
) [ \/22(0) - Zzz(c)]dt =0 (32)
Y(T) y(T)

Proof.

1) The first part of this statement immediately follows
from (28), (29), (30), (31), of Lemma 3. The right sides of
these relations do not depend on a concrete element YEL, but
merely on the values of here presented special central dispers-
ions and their derivatives, whereby no dispersion has its point
of discontinuity on the corresponding interval (a,am_k) or

k*b) and all dispersions represent the functions of class

(ag_
C(g) on the given intervals.

2) 'The second part of this statement follows from (12) [4]
giving expression to the derivatives of the special central
dispersions of the first kind at the zero of the solution vy.

This eQidently implies
y(e)  _ _¥(e)
Yy (Pe)) TP
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for c # an k! k=0,1,...,m=1 and thus also

y'(e) . ¥ .
¥ (e)

) —

c)

<| K

for arbitrary two modes c,c of the bundle I

3) From the inequalities (28), (30) or (29), (31) then
follows the validity of (32) for all t € (a,ag_y) satisfying the
inequality t £ c<P(t) or for all t €(a,_,.b) satisfying the
inequality ém_l(t)<c S t. For the other te(a,a; ) there
always exists a zero c of the solution y such that the ine-
quality t S T<@(t) is valid and also for the other t & (ay_y»
there always exists a zero ¢ of the solution y such that the
inequality @m_l(t)<?: S t is valid. Thus relation (32) is sa-
tisfied again for the mode T or G. With respect to the expres-
sion y2(3) = Ay y2(e), VE(E) =47 2(e) or yB(3) = 4,y%(e),

1 i 2
7°2(3) = Ay° (c), where L., L, are constants, the equality
(32) is true for all tej, t # An—k*

b)

The common properties of arbitrary elements y, y of the
same bundle of solutions Ic correspoﬁding to the set Q§ are
collected together in Theorem 2, Now our interest will centre
upon the question whether the given properties of the couple
of solutions y, y with the same zero c of the corresponding
equations q(l), (E(l)) ensure the carriers g, g to belong to
the same set Qs - This question is replied by the following

Theorem 3.

Consider differential equations (q(l)), (E(l)) l-special
of type m on the interval j. Let y and y be arbitrary solutions
of the equations (q(l)) and (E(l)), respectively., Suppose these
solutions have all their zeros in common and that the quotient
of the derivatives y’: ¥° at these zeros is equal to the same
constant A , Suppose further that at least one of the following
relations
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$(t)
11 _
{ [vz(t) T4 R Jar =0 (34)
& (1) M
11 -
[ [yz(?) vy Vz(r)]d‘ "o (39)

is satisfied for all t€(a,a _4). Then the fundamental central
dispersions ¢(t), ; (t) and thus also the functions 4k(t),
;k(t) for ke{o,l,..e,m—l} relating to these equations coincide

in their whole domain of definition.

Proof. If y and Y are solutjons of the equations (q(l))
and (E(T)), respectively, and these solutions have all their
zeros in common, then ék(c) = ;k(c) holds, where is an ar-
bitrary zero of them, c # Ak k e{o,l,...,m-lf . Some we
need to prove the equality ék(t) = ;k(t) for t different from
the zeros of the solution vy, t # a .

1) 1In proving the equality ¢(t) = é (t) on the interval
18, _4) we proceed from (18), Lemma 2. The validity of V(t) =
é(t) on this interval implies the validity of

$(t)

t.

(a

.

1 1 -~
- dt =
[yz(r) y y’z(c)(t'—c)z]

+ -—'zi—[- cotgo(o[tp(t)] + cotg o(o(t)] .

(36)

where __0(0 is the first phase of the equation (q(i)) satisfying
the initial conditions

o(o(c) = 0,. &ki(c) =1, Lg(c) =0 .
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Assuming next, say, the equality (34), we obtain the equality
of integrals

(t) | $ey _, :
f [zzf(fc; ) 1)2]dT =f [—ch B

t (f—C t y (T)
- (—‘:}C-F]dr (37)

for t €(a,a,_4), the zero ce(t,é(t)) and, with the respect to
the validity of (36), also the equality

- cotg o(o(t) + cotg O(O[¢(t)] = - cotgzo(t) +.

+ cotgd o[ P(1)] (38)

where 0( and 0<0 are the first phases of the equations (q(l))
and (q ?) satisfying the above conditions and it holds
'¢(t)€(c, (c)) and thus also é(t)c (c, ¢(c)) On account of
the fact that the points t and ¢(t) are l-conjugate points of
the equation (q(l)), the left side and thus also the right side
of (38) are equal to zero. The points t, ~¢(t) are again l-con-
jugate points of (q( )) and with respect to the validity of
d(t)ye(c,P(c)) we have P(t) = P(t) for all ts(a a _4).
With respect to the validity of ék(t) ¢ (t), k(1:) =

@ (t) on the interval (a,a _,), there is also satisfied

515 (t) = $ ().

2) 1In proving the equality é(t) = é(t) on the interval
(am_l,b) we could analogously proceed from a relation corres-
ponding to (18) for a negative k. This, however, is no more
necessary. From the validity é(t) = $(t) on the interval
(a,a,_4) there namely follows the validity ¢ _,(t) = 4’ 1 (t)

on the interval (ai,b), whence on account of the fact that

(m=-k
) 5 Py (1) = P, B0 = <i>(m Ky (1) =
i1 (t) for t s(am_k,b) also the validity ()
= ;k(t) on the interval (a _,.,b).
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Our further consideration will be directed to investigating
the mutual relation between the carriers of (q(l)), (E(l)) be-
longing to the same set Q¢ . In analogy with [1] we will consi-
der here the following quotient function

Y(t for t € j different from all modes ¢
y(t) of the bundle I,
p(t) =

at all modes c of the bundle I,

for two arbitrary elements y, y of the bundle Ic-and will in-
vestigate the properties of the function so defined.

1) The function p(t) is everywhere positive or everywhere
negative in j according as y (c) : y“(c)>0 or £ O,

Proof. The property follows from the fact that the solu-
tions y(t) and y(t) have all their zeros in common. The solu-
tions y, y have between any two neightbouring zeros either the
values with always the same or opposite signs, accordina as
v (c) : y“(c)>0 or <O.

2) 1t holds p[ P, (t)] = p(t) for all tey, t #a .,

where k €{O,1,,..,m-1} »oag = b.

Proof. The validity immediately follows from (39) and (12)
[4] giving expression to the derivatives of the special dis-
persions of the first kind.

3) The function p(t) belongs to the class c(®) for al1
tej.

Precof. The function p(t) is continuous for all t € j. The
continuity for t different from the zeros c follows from defi-
nition (39), whereby we find on making use of L‘Hospital’s
rule that the limit of the function p(t) is equal to the func-
tional value p(c) at every zero c of the solutions y, Y.
Evidently, the function p(t) (except for zeros c) is continu-
ously twice differentiable and it holds
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W
p = 3 (40)
Y

el
[}

"= (@-ap-2%p, (41)

for t # c, where w = yy~ - y’y. On making use of LHospital’s
rule, we obtain

lim p°(t) = 0, lim p*(t) = 2[a(c) - a(e)]p(e) (42)
t<cC tacC

which, however, corresponds to the values of the derivatives
of the function p(t) at the points c expressed in (39). Con-
sequently, the function p(t) belongs to C(Z)(j).

4) It holds p(c) = O.

Proof. The validity immediately follows from the expresion
of the derivative p’(t) at the zero c of the solutions y, Y.

5) The function p(t) satisfies throughout the interval j
except for t # an_k the following relation

P, (t)

2 ] 1l _dt=o0 (43)

J p2(t)  po(c)” yA(t)

where the function under the integral sign is everywhere con-
tinuous and its limit at the mode ¢ has the value =-p"(c)

 [pPery®(e)] -

Proof. The validity of (43) directly follows from (32) of
Theorem 2. On making twice use of L Hospital®s rule we come to
the limit and to the continuity of the function under the in-
tegral sign.

By means of the quotient function p(t) of the properties
1) through 5) and by an element g of the set Q¢ we may express
another element q of the set Qg as it is stated in the follow-
ing Theorem, The sufficient properties of the function p(t) to
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dering the general form of the carrier g by means of the known
carrier q may be presented here in a somewhat weakened form, as
apposed to the properties 1) through 5).

Theorem 4.

Suppose ¢(t) is the fundamental special central dispersion
of the equation (q(l)), that y(t) is an arbitrary solution of
this equation and that c is an arbitrary zero of the solution y
from the interval (a,am_l). Then all carriers q of the equations
(E(l)) with the same fundamental special central dispersion
equal to the function é(t) are determined by the relation

q = q+ %} + E%— %7 , (44)

where p is an arbitrary function with the properties 1) through
5) .given in (45) below, and where the value of the last summand
2y°’p’:(py) at the point c is given by the quotient 2p"(c):p(c).

1) p(t) #0 for t€j
2) p[P(0)] = p(o) for t €(a,a,_4)
3) p(ryect®(y) - (45)

4) p(c) =0

$ee) 1 1 ] 1
5) - dt = 0O for ce(a,a__,)
I LRy pP(e)! vA(n) n-1

Proof. 1) 1If the carriers q, q are likewise the elements
of the same set Q¢ and the solutions y, y likewise the elements
of the bundle I, belonging to the set Q¢ . then the function p(t)
defined by (39) evidently satisfies the equations 1) through 5)
from (45). Then the validity of (44) directly follows from the
equality (41).

2) Suppose conversely the function p(t) with the properties
1) through 5) stated in (45). Then the function y(t) = p(t)y(t)
represents a solution of the equation (E(l)) determined by the
initial conditions y(c) = 0, y'(c) = p(c)y (c). The property 1)
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ensures hereby the coincidence of the zeros of the solutions vy,
y and along with the properties 2) and 4), utilizing the rela-
tion ¥° = p’y + py”, it ensures the same value of the quotient
of the derivatives y“(c) : y“(c) = p(c) in all zeros c relative
to these solutions, Denote now by F(t) the function under the
integral sign of 5) from (45). We known from the foregoing that
this function is continuous in the interval j, its value is de-
termined by the product p"(c)p-s(c)yl-z(c) at.the point ¢, and
for t # a,_, it satisfies the relation

FlPo] ¢ = Feo).

From this we obtain

$(t)

F(T)dt] =0 for t€(a,a,_4),

and from the validity 5) in (45) also

P (t) $(c)
f F(T)dT = j F(T)dT = O .
C

t

Thus the relation

(1)

/ A1 1
I YAm A4 Fm

is fulfilled in the interval (a,a _,), where A = 1/p(c). So,
the assumptions of the Theorem 3 are fulfilled. From its vali=-
dity we then have EéQé .

Example.
Consider the differential equation
2
voos Ay (46)
(1+t%) ;
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where m 2 2 is a natural number, t€(-w,+m). Inserting

Y, = Vtz + 1 sin(m arctg t)
l/ 2
t© + 1 cos(m arctg t)

into (46), we see that the functions Yy, Y, are independent
solutions of (46) for t € (-oo,+ ™).

Y

2

We know from [2] that this is a l-special equation of fi-
nity type m on the interval (-o,+ ®), with the 1-fundamental

sequence
cotgL‘%)_&-.’ cotg.ﬁ—m-;r-zn-i'._.’ cotg—?n’_'

and that the function ¢k(t) defined by

@k(t) = tg(arctg t + k"‘\‘ )

for k€{0,1,...,m-1} maps the zero c of an arbitrary solution
Y onto the left lying k-th zero of the same solution, if any.
In the contrary case it maps c onto the right lying (m-k)-th
zero of the same solution. It holds thereby

lim‘ﬁk(t) = + @, lim¢k(t) = -0,
t-o(cotg"-z'—;)_ t:-o(cot:g'-‘%)+

limék(t) = lim¢k(t) = cotg -(E'Tk)i-
t?=00

t++ 00

The functions ¢k(t) satisfy the properties 1) through 6) in
(5), they form a finite cyclic group and represent the special
central dispersions of the equation (46). On the basis of this
example we may formulate the following

Corollary 2.

All carriers g of equations (a(i)) defined in the interval
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(-00,+m) with the same special central dispersion equal to the
function

@(t) = tg(arctg t + —-'Zn'-—)
are determined by the relation

o) = ARl - (47)
(1+t%)%  p(t)

. 2p'u)[ 1

(%) (t2 0 (t + m cotg(m arctg t - m arctg c))]
P +

where c is an arbitrary point of the interval (- o, cotg(¥/m))
and p(t) is an arbitrary function having the following pro-
perties

1) p(t) #0 for t€&€ (~-o00,+ ™)

-~

2) p[tg(arctg t o+ —mL-)] = p(t) for t € (-o0,cotg —Lr‘n—
3) p(t)ec(? for t €(-m,+w®)

4) p'(c) =0

tg(arc{g c+-nT1— . 2
3) _f (=—-= ] dt = 0

A p(t) p(c) (t2+1)sin2(m arctg t-m arctg c)

Proof. The general solution of the equation (46) is expres-
sible in the form

Y = ¢ Vt2+1 sin(m arctg t + 02) ,
where €41 C, are real numbers.
Then

c o
Y’ = . [t sin m(arctg t+cz)+m cos(m arctg t+c2)]

P t2+1
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3 [sin m(arctg t+c2)(1 - mz)] .
t2+1 \

Choosing a particular solution y of the equation (46) in the
form

y = t241 sin(m arctg t - m arctg c) ,

we see that it is a solution satisfying the initial conditions

m

V 02+1 '

and the quotient y“(t) : y(t) is given by the relation
yo(t) o 2
y(t) (t7+1)

y(e) =0, y'(c) =

[t + m cotg(m arctg t - m arctg c)] .

The validity directly follows from the statement of the pre-~
ceding Theorem 4,

Remark.

In the assumptions of Theorem 3 and 4 there were utilized
the definition and the properties of the fundamental special
central dispersion of the lst kind relative to (q(i)) on the
interval (a,a _,)., only, where the function é(t) coincides
with the fundamental central dispersion V(t) in terms of the
definition stated in [1]. The assumption of a one-to-one re-
verse mapping of the interval (am—l'b) onto the interval (a,al)
is not utilized here., For this reason, it is evidently possible
to utilize the wording of the above theorems also for the equa-
tions (q) of finite type, which are not l1-special in their
interval of definition.
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ROVNICE y" = q(t)y KONEENEHO TYPU, 1-SPECIALNT,
s ToUZ sPECIALNE CENTRALNE DIisSPERzE 1.DRUHU

Souhrn

V teorii centralnich disperzi linedrnich diferencialnich
rovnic 2.radu, podrobné rozpracované v monografii [1] 0.Bordvky
byly vysetfovany vlastnosti oboustranné oscilatorickych rovnic
typu

y" = a(t)y (a)

které maji na svém definié&nim intervalu tutéz zdkladni central-
ni disperzi 1.druhu. V &lancich [3] a [4] zavedla autorka jisté
zobecnéni pojml centrdlnich disperzi pro rovnice (q) konecného
typu m 2 2, l-specialni na definiénim intervalu j = (a,b),
q(t) € Co(j), (znacene (q(l))) prostifednictvim definic spe-
cidlnich centralnich disperzi jednotlivych druh@ a diskutovala
podminky a vlastnosti takovychto zobecnéni.

Text tohoto &lanku je vé&novéan bliZz$imu uréeni mnoZiny no-
si¢@ rovnic (q(l)) s touz zdkladni specidlni centrédlni disperzi
1.druhu (t). Jsou uvedeny postadujici vlastnosti obecné funk-
ce, aby tato mohla predstavovat zakladni specidlni centralni
disperzi 1.druhu, je hledan vztah mezi nosi&i q, g rovnic
(q(l)) (a(l)), pro které plati (b(t) = ?6(1') na celém definid-
nim oboru téchto funkci.

&

Pespopue

OB YPABHEHMAX y"=q(t)y  KOHEWHOI'O THUIIA,
1-CIELMANBHEX C TO! XE CAMOR CIELMANBHOR
LEHTPANBHOR IMCHEPCHMER 1-oro POIA

B Teopum nenTpesbHx nucnepcuit nas AuHeRHNX mmdpdepeHnu-
8ABHHX ypeBHeRu#t 2-0ro nopszxe OCHOBBHHOR He& JuTeparype (1]
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paccrenoBaHN cBolicTea ypaBHeHui

y"=q(t) ¥ (a)

C OCUMAMPYDUMMM DemeHusiMm M ¢ To¥t me cemolt nemrparpHot mmcnep-
cue#t 1-oro pome. B crarnax [3] u [41] eeemenn oGoOmenms moma=
Tr# uneHTpPeABHHX mucrnepcult masa ypeaneuus(q) KOHEYHOTro THOE
m > 2 chneuuasbHOT'O H8 NPOMEXyTKe onpermexenus j = (a,b),
q(t)€ Co(j), nocpexcTBOM onpeneneHut CrnenMeNbHNX HEHTPAABHHX
mucnepcu’t oTIZENBHHX DPOJOB M paccrenoBe8HN cBoftcTBa aTHXx 0606~
meRuit.

TexcT aTo# crTarbm KeMepeH K ONpeleJeHMD MHOXECTBE ype&B-
Henu#t ¢ rTot me cemo#t ocHOBHO! cmeumexspHO% mucnepcme# l-oro

pome & (t).
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