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A TRANSMISSION PROBLEM

Irena Rachunkova
(Received February 25,1991)

Abstract. Let T ,Ii (i=1,2,3) be compact intervals and
I=IlU IZU 13. We consider the equation (Di) u;'=fi(t,ui,u;)
subject to the condition Pi on Ii for i=1,2,3, where P1 and P3
are boundary or initial conditions and P2 is a transmission
condition. We prove the existence of a Car-solution to the
transmission problem (Di,Pi;i=1,2,3) on I. Our method of proofs
is based on the topological degree theory. We obtain the
existence results without growth conditions of Nagumo-Bernstein

type.

Key words: transmission condition, four-point,
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INTRODUCTION

Notations. Let ICR be a compact interval. We write c*(1)
for the space of c* functions u:I-R with the norm

k
llullk=Zmax(lu“)(t)l:tez}, AC*(I) denotes the set of real
i=0
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functions having absolutely continuous k-derivatives on I, for
pz1, LP(I) is the space of functions u:I-R such that |ul® is
Lebesgue integrable on I with the norm HuHLp=(§Iu(t)|pdt)Vr
car(IxR®) signifies the set of functions f: IXR®SR satisfying the
local Caratheodory conditions on IXRZ, i.e. the map ¢t->f(t,x,y)
is Lebesgue measurable on I for each x,yeR, the map
(x,y)»f(t,x,y) is continuous on R®° for almost each (a.e.) ter,
for each p>0 there exists hpGLl(I) such that

|xl+|yl<p=lf(t,x,y)|5hp(t) for a.e. teI.

Formulation of Problem. Let a,b,c,deR, a<c=d<b, I =[a,c],
12=[c,d],13=[d,b], and fiECar(IiXRz), i=1,2,3. We consider the
equation

(Di) ué’ = fi(t,ui,u;)
subject to the condition Pi on Ii(i=1,2,3), where P1 and P; are
boundary or initial conditions and PZ. is .a transmission
condition. ,

We shall find conditions for the existence of a function
uEACI(I), which is a Car-solution to the transmission problem
(Di,Pi;i=1,2,3), i.e. u=u; verifies Pi and fulfils (Di) for a.e.
tEIi, i=1,2,3.

Let us suppose that P1 has one of the three following forms

(P.l.l) ui(a) = 0,
(P1.2) u(a) =0,
(P1.3) ui(c) - u](a) = 0.

Similarly for P3 we will choose one of the forms

(P3.1) “3(b) = 0,
(P3.2) u;(b) = 0,
(P3.3) ua(b) - u3(d) = 0.

Then, for c<d, P2 has the form
u(c)=u(c), u_(d)=u_(d),
(le) { 1 2 2 3
ui(c)=ui(c), u) (d)=u(d),
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while, for c=d, it is
ul(c)=u3(c), ul(c)=u3(c)

(P2.2) {

(Dz) is omitted.

Let us put f(t,x,y)=fi(t,x,y) for a.e. teli and each x, y€R,
i=1,2,3, and consider the equation
(D) u’' = f(t,u,u’) on I.
Clearly fecar(IXR®) and ueAc'(I) is a Car-solution to the
transmission problem (Di,Pi;i=1,2,3), iff u is a Car-solution to
the boundary value problem (D)'P1'Pf

1.AUXILIARY RESULTS

Problem (D),PI,P3 will be studied by means of topological
degree arguments and therefore we remind some notions and
results (see [1]).

Let X,Y be real vector normed spaces and domLcX a vector
subspace. A linear map L:domL-Y will be called a Fredholm map of
index zero , iff dim kerL = codim imL <o and imL is closed in Y.
If L 1is a Fredholm map of index =zerc, then there exist
continuous projectors P:X-X and Q:Y-Y such -that
(1.1) imP=kerL and kerQ=imL
and X=KerLeKerP, Y=ImLeImQ as topological direct sums.
Consequently, the restriction Lp of L to domLnKerP is one-to-one
and onto ImL, so that its (algebraic) inverse

(1.2) Kp: ImL - domLnKerP
is defined.

Let L:domL-Y be a Fredholm map of index zero and let QcX be
an open bounded set. A continuous (not necessarily linear) map
N:X-»Y will be called L-compact on { iff the maps QN:{l»X and
KP(I—Q)N : 015X are compact.

Note.

1.71 and 80 will denote the closure and the boundary
of QcX,respectively.

2.0ne can show that L-compactness of N does not depend
upon the choice of P,Q.

- &7 -



3.Since dim kerL = dim imQ <o , there exists an isomorphism
(1.3) J: imQ-kerL. .
Let us consider the maps
N*: Tix[0,115Y, (x,A2)-N"(x,2)

with N*(.,1)=N, and
(1.4) NO=JQN"(. ,0): kerL-kerL.

Theorem 1 (Mawhin Continuation Theorem). Let L:domL-Y be
a Fredholm map of index zero and let QcX be an open bounded set.
Let N* be L-compact on ix(o,1]. Suppose
a) for each a€(0,1), every solution x of Lx=AN*(x,A) is such
that x¢8qQ,

b) ON*(x,1)#0 for each xekerLndq,

c) the Brouwer degree d[Ns,anerL,o]:o.
Then the equation Lx=Nx has at least one solution in domLn{l .
Proof.See [1,p.29].

Corollary. Let kerL={0}, let QcX be an open bounded set
with 0eQ and such that Lx#AN"(x,A) for each xedomLndQ and each
A€(0,1). Then the equation Lx=Nx has at least one solution
in domLnQl.

2. A FREDHOLM MAP L

In what follows let Xx=c'(I), Y=L1(I); and
domL={x€AC'(I):x satisfies Pl,P3}
(2.1) L: domL-Y, x-x''.

Lemma 1l.Let i, je{1,2,3} and Pl=(P1.i), P3=(P3.j).

Then L is a Fredholm map of index zero.

Proof.a) If i=1 or j=1, then kerL={0}, L is one-to-one and
onto Y,so that L is a Fredholm map of index zero.

b) Now, let i, je€{2,3}. Then kerL consists of all constant
functions and therefore
(2.2) dim kerL = 1
and imL is the set of all functions yeY for which there exist
functions xedomL verifying the equation x'’'(t)=y(t) for a.e. teI.
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Let us put for yeY

b
(2.3) 7. g §yesae
(2.4) ¥ .= L LT ¥ p(e)aea
-4 Yoo (b+d)/2-a L b-a , . ¥ S
- _ 1 1 c b
(2.3)  Tar Brer [ e 3 3 v(vatas |
b s c s
(2.6) A [B%E § 0 y(t)atas - —= § I y(t)atds ]
’ o d a a a

where c0=(b+d)/2 - (c+a)/2.

Then, for i, je{2,3}, imLz(er.-?i =0}. In all the cases we
have
(2.7) dim Y/imL = 1
An application of the Lebesgue convergence theorem will prove
that imL is closed in Y for i, je{2,3}. Lemma is proved.=s

3. PROJECTORS P aND Q

Let P=(P1.i), P=(P3.j), i,je{1,2,3}. Then, by Lemma 1, there
exist continuous projectors satisfying (1.1). If i=1 or j=1,then
P=Q=0, where 0 is a zero mapping. Let i=2, j={2,3} or i=3, j=3.
Then we can put :
(3.1) P:X-X, x-x(a); Q:Y»Y, y»§‘d ,

For i=3, j=2 we can put

(3.2) P:X-X, x-x(b); Q:Y-Y, yeylz ,

We can easily prove the following .

Lemma 2. The maps P,Q defined by (3.1) or (3.2) are
continuous projectors satisfying (1.1).

Now, let us consider the Nemyckii operator
(3.3) N:XaY, x>f(-,x(-),x"(-))

Lemma 3. Let QcX be an open bounded set. Let N and Q be the
maps (3.3) and (3.i), ie{1,2)}, respectively.

Then the map QN: {I»Y is compact.

_49_



Proof. Since 0 is bounded and feCar(IXR?), there exists
heL'(I) such that |f(t,x(t),x'(t)|sf(t) for a.e. teI. Then,
using the Lebesgue convergence theorem we get that N is
continuous. Moreover, since QN({1) is bounded in Y and dim
imQ = 1 (see (2.7)), ON(TI) is relatively compact, .which
completes the proof. =

4. AN INVERSE MAP KP

We shall study map (1.2) in the cases P1=(P1.i), P3=(P3.j),
i,je{1,2,3}. If i=1 or j=1, then
b
(4.1) K = L': YadomL, y» § G(t,s)y(s)ds,
a
where G is the Green function of the problem
x'"'=0 ,(P1.1i),(P3.j), i=1,je{1,2,3} or j=1,ie€{2,3}.
Let i=2, j={2,3}. Then

s
(4.2) KP : imL-domLnkerP, y- § Sy(t)dtds,

a a

For i=3, j=2 we get

o

b
(4.3) Kp : imL-domLnkerP, y-» § Syt dtds,
t s

Finally, for i=3, j=3 we have

(4.4) Kp : imL-sdomLnkerP, y- - %E% } }y(t>dtds'} ;y(t)dtds,
a a a a

Lemma 4. Let i, je{1,2,3} and P1=(P1.i), P3=(P3.j). Let
QcX be an open bounded set and let L and N be the maps (2.1) and
(3.3), respectively. Then N is L-compact on (.

Proof. According to Lemma 3 it is sufficient to prove that
KP(I-Q)N:ﬁ»X is compact. This assertion can be proved by
standard arguments using the Lebesgue Convergence Theorem and
the Arzela-Ascoli Theorem in all the cases i, je{1,2,3}.m

Lemma 5. Let QcX be an open bounded set and Ilet
f*ECar(IX(szlo,l])). Then the assertion of Lemma 4 is valid for
the map
(4.5) N  : TOx[0,1] 5 Y, (x,A)-£7(-,x(-),x"(-),2).
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Proof. Lemma 5 can be proved in a similar way as Lemma 4.
In the space Xx[0,1] we work with the norm l(x,a)}{ = Mxﬂcx + A,
[}

5. AUXILIARY THEOREMS OF THE LERAY-SCHAUDER TYPE

Let us choose a function f eCar(IX(R°x[0,1])) such that
f*(t,x,y,l) = f(t,x,y) for a.e. teI and for each x,y € R,
and consider the set of the equations

(5.1a) u'’ = Aaf(t,u,u’,a), aelo,1].
I. A case of non-resonance.

Theorem 2. Let i=1, je€{1,2,3} or j=1, i€{2,3} and let
Px=(P1.i), F3=(P3.j). Let there exist an open bounded set QcX
containing the zero-function and let for each Aa€(0,1), every
Car-solution u of the problem (5.1%),P1,P3 fulfil u ¢ 8Q.

Then the problem (D),Pﬂfg has at least one Car-solution
in Q. v

Proof. According to Lemmas 1-5, the assertion of Theorem 2
follows from Corollary of Part 1, where L and N* are given by
(2.1) and (4.5), respectively.=

II. A case of resonance.

Let us put ¢(t,x)=f*(t,x,0,0)‘on IXR and, for i, je{2,3}
(5.2) glj(x)=31x)xj, for xeR.
(see (2.3)-(2.6).)

Theorem 3. Let Iﬁ=(P1‘i), Fg=(P3.j) where i, je{2,3}. Let
there exist an open bounded set QcX such that ;
(a) for any A€(0,1), every Car-solution u of the problem (5.11),
PX,P3 satisfies u€dQ,
(b{ for any root x R of the equation gu)(X)=o’ the condition
xoean is fulfilled, where X, is considered as a constant
function on I,
(c) the Brouwer degree d[ghj,A,Olto, where ACR is the set of
such constants c that the constant functions u(t)=c belong to Q.
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Then the problem (D).P’,Pa has at least one Car-solution
in 1.

Proof. According to (3.1),(3.2),(4.5) and (5.2) we have
QN*(x,0)=th(x), and in view of (1.3),(1.4) and (2.2), N5=kgh)
where keR, k#0. Therefore, by Lemmas 1-5, the conditions of
Theorem 1 are satisfied, which completes the proof.s=s

In the next parts, using Theorem 2 or 3, we shall prove
existence theorems for the boundary value problems
(D),(P1.j),(P3.j), where i=j=1 or i=1, j=2 or i=j=3. (The other
possibilities for i, j could be solved similarly.)

6. DIRICHLET PROBLEM
We shall investigate the case of i=j=1, i.e. the Dirichlet
problem

(6.1) u’'= f(t,u,u’") , u(a)=u(b)=0.

Lemma 6. Let geCar(IXRZ) and r,ke€(0,w) be such that

b
(6.2) § lg(t,x,y)ldt = K for each x€[-r,r], yeR
a
and
(6.3) g(t,-r,0)s0 , g(t,r,0)z0 for a.e.tel.
Then the problem
(6.4) u’’= g(t,u,u’) , u(a)=u(b)=0

has at least one Car-solution u, with
(6.5) Hu li=r.
Proof. For meN let us put

g(t,r,0) for x>r+l1/m

g(t,r,y)+lg(t,r,0)-g(t, r,ylm(x-r) for r<xsr+i/m
g(t,x,y)=4{ g(t,x,y) for -rsxsr

g(t,-r,y)-[g(t,-r,0)-g(t,-r,y)Im(x+r) for -r-1/msx<-r

g(t,-r,0) for x<-r-1/m

and consider the auxiliary problem

(6.6m) u''= g;(t,u,u') , u(a)=u(b)=0.

Now choose an arbitrary but fixed meN. We shall prove the
existence of a solution of (6.6m) by means of Theorem 2 and
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therefore we need to study the parameter-set of equations

(6.7x) u' = Ag’:(t,u,u’,x) , u(a)=u(b)=0,
where
g:(t,x,y,A)=Ag;(t,x,y)+(1-k)x and a€[0,1].

Suppose that u is a Car-solution to (6.7a) for some A€(0,1).
First, we shall show that

(6.8) MuH£r+1/m:

Put v(t)=u(t)-r-1/m. Then v(a)=v(b)=-r-1/m<0 and u’'=v' on I. Let
us suppose that there exists toe{a,b) such that v(t0)>0. Then
there exists te(a,b) such that 0<v(T)=max{v(t):teI} and v'(T)=0.
Therefore we can find 8>0 and the interval Is=(?—6,f+6)c(a,b)
such that v’ (t-8)z0, v’'(T+8)<0 and v(t)z0 for each teI,. From
this it follows
V"(t)=u”(t)=xgm(t,u,u’)+(1—A)u=Ag(t,r,0)+(1-A)u>0

for a.e. teIa. Integrating the last inequality, we get

0 2 v (T+8)-v'(t-8) = § v''(t)dt > 0,
I

S
a contradiction.

So, we have proved v(t)s0 on I, which means that u(t)sr+1/m on I.
Similarly, putting v(t)=-r-1/m-u(t), we can prove v(t)s0 on I,
which means u(t)z-r-1/m on I ( see proof of Lemma 7 ). Hence u
satisfies (6.8).

Further we shall estimate u’. Since u(a)=u(b), there exists
aoe(a,b) such that u’(a0)=0. Integrating (6.72) from a, to t, we
have
(6.9) ﬂu’H(Ka,
where K = K+(b-a)(r+l1).

Finally, define

Q={xex: lxl<r+2/m , lx'I<K}.
Then, by (6.8),(6.9), u#dQ and according to Theorem 2, problem
(6.6m) has at least one solution u_Eﬁ . ’

In this way, we can get the sequence of solutions (u_):
which is for m=1,2,..., bounded in C'(I) and hence also
equicontinuous in c'(1) by the equation. By the Arzela-Ascoli
Theorem and the integrated forms of the equations (6.6m) one
gets the existence of a converging subsequence whose limit is a
solution u  of problem (6.4) satisfying (6.5).m
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Theorem 4. Let fsear(I=®’) and Re(0,w), ce(0,b-al,
re(o,Re/2] be such that
(6.10) f(t,-r,0)so , £(t,r,0)20 for a.e. teI
(6.11) f(t,x,-R)so , f(t,x,R)20 for a.e. teI, each x€[-r,r]

and
® i
(6.12) § If(t,x,(-1)"R)ldt < R/2 for xe[-r,r],i€{-1,1}.
b-€ ,
Then problem (6.1) has at least one Car-solution u such

that
(6.13) flulsr , Hu’lisr .

Proof. According to (6.12) we can find such a small
positive number €, that

b

(6.14) 5 If(t,x,(—l)iR)ldt+€co<R/2 for ie{-1,1}.
b—€ . :

Let us put

f(t,x,R) + ;§§§T £, for y>R

g(t,x,y) = f(t,x,y) “for -RSy=R

f(t,x,-R) + for y<-R

_Y+R
|y+R1+1 "o
and consider the auxiliary problem
(6.15) u’’‘=g(t,u,u’) , u(a)=u(b)=0.
We shall show that g satisfies the conditions of Lemma 6. Since
fecar(IXR®), there exists heL'(I) such that |f(t,x,y)|<h(t) for
a.e. teI and for each xe€[-r,r], ye€[-R,R]. Therefore
;lg(t,x,y)dts;h(t)dt+co(b-a)=x, for each x€[-r,r], yeR.
a a
Further g(t,-r,0)=f(t,-r,0s0 and g(t,r,0)=f(t,r,0)z0 for a.e.
tel. Hence, by Lemma 6, problem (6.15) has at 1least one
Car-solution u satisfying (6.5). .
Now, we shall prove that
(6.16) Hu’ I=R.
Let us suppose on the contrary that
max{u’'(t):teI}=u’(t )>R.

a) Let toe[a,b).Then there exist 6>0 and Ia=[t°,to+6]c[a,b)
such that u’(t)>R for each t:eI‘s and u’(t0+6)5u’(to).
Then for a.e. teI, we have u"(t)=g(t,u,u')=t(t,u,R)+%7§§:ieo>o.
Thus 0<u'(t°+8)-u’(to)so, a contradiction.
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b) Let t =b. Then u’'(b)>R and by (6.14) we get for any

te[b-¢,b)
b b b
u'(b)-u'(t)= Su'’(s)dss §lu’’'(t)ldts= I!f(t,u,R)ldt+cco<R/2
t b-€ b—E&

which implies u’(t)>R/2 on [b-g,b].
b
Hence rsRe/2< § u’(t)dt=u(b)-u(b-¢c)=-u(b-¢), which contradicts

b—€
(6.5).

Supposing min{u’(t):teI}<-R, we get a contradiction in
a similar way. Therefore u fulfils (6.16).This implies that u is

also a solution of (6.1). Theorem is proved. =

7. MIXED PROBLEM

Now we consider the case i=1, j=2, i.e. the mixed problem
(7.1) u''=f(t,u,u’) , u(a)=0 , u’(b)=0.

Lemma 7. Let geCar(IXRZ) and re(0,o) be such that (6.3) is
fulfilled.

Then the problem
(7.2) u’’=g(t,u,u’), u(a)=0, u’(b)=0
has at least one Car-solution u satisfying (6.5).

Proof. For meN define the function g, in the same way as in
the proof of Lemma 6 and consider the problem

(7. 3m) u”=g;(t,u,u’), u(a)=0 , u'(b)=0
and the parameter-set of problems
(7.4x) u’'=Agr(t,u,u’,1), u(a)=c, u’'(b)=0,

where g: and A are also the same as in the proof of Lemma 6.

Let us suppose that u is a Car-solution to (7.4A) for some
A€(0,1) and let us show that u fulfils (6.8).
Put v(t)=-r-1/m-u(t).Then v(a)<0,v’'(b)=-u’(b)=0 and v'(t)=-u’'(t)
on I. Suppose that there exists toe(a,b] such that V(t°)>0. Then
there exists Te(a,b] such that 0<v(T)=max{v(t):teI} and v'(T)=0.
Therefore we can find 8§>0 and the interval Ia=(?—6,?]C(a,b] such
that v’ (T-8)20 and |v'(t)I=lu’'(t)I<R, v(t)20 for each tel,. From
this it follows v"(t)=-u”(t)=~Ag_(t,u,u')-(1—A)u=-kg(t,-r.0)—

(1-a)u>0 for a.e. teI . Integrating the last inequality from t-5
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to T, we get Ozv'(Et)-v'(T-8)= § v'’'(t)dt>0, a contradiction.
I
3
Therefore v(t)sO0 on I, i.e. u(t)z-r-1/m on I. Similarly (see
proof of Lemma 6) we can prove u(t)sr+l/m on I. Hence u
satisfies (6.8).

Further we can follow the proof of Lemma 6, where a0=b.

Theorem 5. Let feCar(IXR>) and re(0,w) be such that (6.10)
and (6.11) are fulfilled.

Then problem (7.1) has at least one Car-solution u with the
property (6.13).

Proof. Theorem 5 can be proved in the same way as Theorem 4,
only instead of Lemma 6 we use Lemma 7. m

8. FOUR-POINT PROBLEM

Finally, we shall study the case i=j=3, i.e. the four-point
problem
(8.1) u’'=f(t,u,u’), u(c)=u(a), u(b)=u(d).

Lemma 8. Let gECar(Isz) and r,Ke(0,©0) be such that (6.2)
and (6.3) are satisfied.

Then the problem
(8.2) u’’=g(t,u,u’), u(a)=u(c), u(b)=u(d)
has at least one Car-solution u  satisfying (6.5).

Proof. For meN define the function g, in the same way as in
the proof of Lemma 6 and consider the problem
(8.3m) u”=g;(t,u,u’), u(a)=u(c), u(bl=u(d).

For a fixed m we shall use Theorem 3 to prove the existence of a
solution to (8.3m). Therefore we need the parameter-set of
problems .

(8.42) u''=agi(t,u,u’,2), u(a)=u(c), u(b)=u(d),

where g:(t,x,y,A)=Ag;(t,x,y)+(1-l)(x-r/2), r€[0,1].

(a) If we define a set Q in the same way as in the proof of
Lemma 6 with K5=K+2(b-a)(r+l), we can get by the same arguments
like there that for any Ae€(0,1) every Car-solution u of (8.4a)
does not belong to 3Q.
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g(t,x,0,0)dtds -

Q o
¥ ey w

1
(b) 933(X)=% [ b-a
' ]

1

c-a

» a0

§ gl(t,x,0,0)dtds ] =

b s
1 [—%— § S(x-r/2)dtds
d a

_ 1 c 1 _ o
A= : x .a\'(x r/z)dtds]-x r/2.

c-

So fhe equation gxa(X)=0 has just one root xb=r/2 and the
constant function uo(t)=r/2 on I belongs to Q. Thus uoean.

(c) Finally A=(r-2/m,r+2/m) and d[gla,A,Olto.

We have shown that all conditions of Theorem 3 are
fulfilled which implies that problem (8.3m) has at least one
solution umeﬁ. Further we can follow the proof of Lemma 6.m

Theorem 6. Let all conditions of Theorem 4 are satisfied.
Then problem (8.1) has at least one Car-solution u with the
property (6.13).

Proof. Theorem 6 can be proved in the same way as Theorem 4,
only instead of Lemma 6 we use Lemma 8.m

‘ 9. EXAMPLES

Example 1. Let us consider three equations

(9.1) u ' =eU¥ (uP+(u’ )P+3t3-1),
(9.2) u'=e"™ (u"+(u’ )°+3t%+5),
and ’

(9.3) u' ' =eY(ut+(u’ )P+3t3-1).

Further 1let wus put I=[0,1], c=104, Il=[0,s], Iz=[c,1—c],
13=[1—c,1]. We want to prove the existence of a function
ueac*(I) which satisfies equation (9.1) on the initial part of I
(i.e. for a.e. teIl),equation (9.2) on the middle part of I
(i.e. for a‘e; tEIz) and equation (9.3) on the end part of I
(i.e. for a.e. tEIs)‘ Moreover u has to satisfy on I1 the
condition

(9.4) u(0)=u(e)
and on 13 the condition
(9.5) u(l-e)=u(1l)
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We shall use Theorem 6. Let us put
exy(x5+y3+3t2—1) for a.e. tEI1

£f(t,x,y)={ eX¥(x"+y°+3t%+5) for a.e. ter,

eX(x5+y®+3t%-1) for a.e. ter,

where x,y€R. Then fecar(IXRZ) and for r=2, R=20 f satisfies
conditions '(6.10), (6.11) and (6.12) which implies the existence
of a solution u of our problem (9.1)-(9.5)

In the same way we could prove the existence of a solution
u of equations (9.1)-(9.3) satisfying

(9.6) u(0)=u(1)=0
or
(9.7) u(0)=u’(1)=0.

Example 2. Let us consider the equations (9.1) and (9.2)
and let us put I=[0,1], e=10", I =[0,e], I,=[e,1-¢],I=[1-¢,1].
We want to prove the existence of a function u€ac'(I) which
satisfies equation (9.1) on I and I, and equation (9.2) on I,
and moreover it fulfils the condition (9.7). We can put

e*Y(x°+y’+3t?-1) for a.e. teru I,
f(t,x,y)=

XY (x"+y°+3t%+5) for a.e. tel,

Then similarly as in Example 1 we can show that for r=2, R=20,
fecar(IXR?) fulfils (6.10) and (6.11). So the existence of a
solution to the transmission problem (9.1),(9.2),(9.8) follows
from Theorem 5.

Notice that in this case f does not fulfil (6.12) and so we
can not §et the existence of solutions of problem (9.1),(9.2),
(9.6) or problem (9.1),(9.2),(9.4),(9.5).

Example 3, Let I1=[0,10], =102 Let us consider two

equations

2h1+(u')le+2ﬂ)

(9.8) u’'=h (t)(u
(9.9) u’’=h(t)(u™ 4 (u’ )*)

where k,neN, k<n and hx,hZELi(I) are positive with
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10 1
§ h (t)dt<
10-€ 4-10

Let us put

2k+1 2n+1

hl(t)(x +y“ "+2n) for a.e. te[0,1-¢)

f(t,x.y)={

2k+1 2n+1
)

hz(t)(x +y’ for a.e. te[l-g,1]

and for each x,yeR. Then fecar(IXR®) satisfies for r=R=10 the
condition (6.10)-(6.12). Therefore there exists a function
ueac’(I) which fulfils (9.8) on [0,10-¢] and (9.7) on [10-¢,10]
and moreover it satisfies (9.4),(9.5) (or (9.6) or (9.7)).
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