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Abstract 

We show that if we extend the classical definition of a product of 
functions to a larger class of distributions, then for the distributions of 
the form TTZTQUT and f,]0\a • where a is complex number, we get formulas: 

1 1 1 
(. _ io)<* (. _ i0)ß (. _ г'o)oң./з 

and 
1 1 1 

(• + io)a (--HO)!3 (• -Ho)«+/5' 

when a and j3 are complex numbers, such that Recv > ~ and Re/3 > | . 

Key words : Fourier tronsform, Carleman transform, slowly increas
ing function, distribution. 

1991 Mathematics Subject Classification: 44A15, 44A20, 46F10 

Let us consider the function z —r za for z £ C \ W and a G C (see for example 
[2]) defined as follows: 

za := exp{a[ln|2:] + iargz]} (1) 

35 
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In the upper half plane (Imz > 0) we take 0 < argz < n. In the lower half 
plane (Im z < 0) we take -K < arg z < 27r. For t i n R \ {0} define 

ta for t > 0 , , 
e<oir|-i|a fort<0. l j 

Definition 1 Let I)L2 denote the space of all smooth functions tp such that 
derivatives (pW G B2(M) for k 6 N. 

The convergence in D L 2 is defined by the sequence (|| \\k) of norms: 

I M I * : = ( E l l ¥ > ( m ) l l i » ) for * = 0 ,1 ,2 , . . . 
\m=0 / 

We shall denote by DL2 the space of all linear continuous functional on DL2. 

We investigate distributions of some special form: 

Definition 2 For a G C, such that Re a > 0 we define distribution / * 0 w as 
follows: 

1 f 1 
-_-(<r>) ;— lim / - 7-r-<p(x)dx for each <p G AL2. (3) 

( • - i 0 ) « v ^ *->o+j ( z - s V ) * ^ ; r w 

Similarly: 

Definition 3 For a G C, such that Re a > 0 we define distribution r + L f l as 
follows: 

1 f 1 
~ --T—(v?) :— lim / 7 —— (p(x)dx for each <p G -Dr,2 (4) 

B 

The existence of the above limits (3) and (4) and that these distributions 
belong to DL2 will be proved later. 

Definition 4 By S we shall denote as usually the space of infinitely differen-
tiable functions ip on 3R such that: 

sup \xn(p^k\x)\ < cnk for some constante cnk-
x£R 

A convergence in S is defined by the sequence of norms 

IMIm.fc = max s u p ^ V * 0 ^ ) ! -
°<n<mx€m 

Linear continuous forms defined on S are called tempered distributions. The 
set of tempered distributions is denoted by S". 
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Denote by S0 the space of linear forms T defined on S by formula: 
m „ 

T(<p) = ^ / xkfk(x)(p(x)dxi for some m G N, /fc G L2(M), and every <p G S. 
k=oJ

R 

Of course these forms are tempered distributions. 

The elements of the space S'0 are called slowly increasing functions. 

Definition 5 The Fourier transform F for A G S1 is defined as follows: 

FA(l^) := A(Fip) for <p 6 S. 

It is known that the Fourier transformation is a one-to-one mapping D'L2 on 
SQ, it means 

F(D'L,) = S0 and F^S'o) = D'L, (5) 

and the following theorem (see for example in the book of Beltrami and Wohlers 
[1] th. 1.36, p. 43) holds: 

Theorem 1 Let U, V £ D'L2. Then U * V exists and 

F(U *V) = FU- FV, (6) 

or if U, V £ S'0 then 

F(U • V) = ^-FU * FV. (7) 
Z7T 

It means that for U, V G Sf
0, we have 

U ^V= —F-^FUtFV), (8) 

where F"1 denotes the inverse Fourier transformation. 
This formula may be used to defining a product of other distributions. 

Definition 6 By a product of elements U,V £ Df
L2 we understand; 

U-V:=^-F-\FU*FV), (9) 

if the right side of (9) is meaningful. (Compare [5], p. 106). 

We shall now give the definition of the Carleman transform for slowly in
creasing functions: 

Definition 7 Let / be in S'0. Put 

f fn°° f(t)eitzdt i f l m * > 0 , 
Ff(z)=z\ J V . (10) 

W \-S^f{tyUdt i f l m * < 0 . 

Similarly we define the inverse Carleman transform: 

F-if(z) = I - V / - c o / ( ' ) « " * * * i f I m * > 0. { m 

I - * Jo"/(*)«-*•* i f l m * < 0 . 
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We shall base on the theorem which gives posibility to determine inverse 
Fourier transform F~lf for / £ S0. 

T h e o r e m 2 (analogy of th. 4 in [3]) If f E Sf
0, then 

/

oo 
[F^fix + ie) - F-'fix - ie)Mx)dx for <p€DL*. 

-oo 
(12) 

3. 

Let us consider the functions (•)£ and (•)" on E for Re a > —1, defined as 
follows: 

(•)+ = II-(-r (13) 

{•)a- = II • (r (14) 

where H denotes the Heaviside step function and H(x) := H(—x). (Compare 
[4], p. 67). Notice that (•)£ and («)a belong to S0 when Re a > - \ . 

We shall now show 

Lernma 1 The inverse Fourier transform of (•)"_ has a form: 

F-1(-)+ = 5?r(«+')r(a + D p r — (") 

/Or a E C such £ha£ i?e a > — | , where F is Fw/er T-function defined as T(a) = 

P roo f We calculate F""1(0+ by means of formula (12): 

F-1^)"^) = Urn / [ F - M 0 + ( x + f e ) - ^ for^ S A 

Note that 

i ? - i M « ^ ^ / ^ ( f a ) " ( a + 1 ) r ( o + 
0 for I m O O . 

L2-

(16) 

?-(.,?(,) = {-*(.»-'"+"r(« + i) *.;».<«, 

Using it to (16) we have 

-?-1(-)+(v) = J% / 5-[»'(« - fe)]-(a+1)r(a + l)<p(x)dx 
R 

= J-r<a+1>r(a + l) lim / - L—^*)<fe for tp e D 
2TT v e->o+J (a? - ze)***1 v 7 
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This proves the existence of the above limit. By (5) and definition 2 distribution 
/.Joy* belong to D'L2 when Re a > | . 

Lemma 1 is proved. 

Since the function (•)+ has the support in [O.oo), therefore there exist the 

convolution product (•)+ * (•)+. We shall now show: D 

Lemma 2 The following equality holds: 

or1. (or1 *+ß-i •)+• 
T(a) T(P) T(a + /?) 

for complex numbers a and (3 such that Re a > 0 and Re /? > 0. 

Proof For t > 0 we have 

(18) 

or 1 , Q+-1 

r(«) r(/?) 
(*) г( iшlí{t-u)a~luß-ldu- (19) 

By substitution t — u — tw we obtain: 

(•)+ a - 1 3 - 1 

r(o) r(/3) 
fa+p-l 

= n 
on virtue of 

(*) г( <*)T(P) j0 

a+/?-l />1 f . f 
— — - / w°-1(l-w)"-1dw=y± a)T(p) jo r(a 

<*+/?-! 

+ ß) (*), 

f^-ҷi-^-^=ffim. 
jo V ' Г(o + /9)' 

(20) 

(21) 

when Re a > 0 and Re/5 > 0. Of course (18) is true for t < 0, too. 
Now we are ready to formulate our main theorem. 

Theorem 3 The following relation holds: 

1 1 1 

( . - i 0 ) « (.-iO)/ 5 ( . - t O ) « + 0 ' 

/Or eac/j complex numbers a and /?, such that 

(22) 

R e a > 
1 

and Re/?>ì. 

Proof From lemma 1 and lemma 2 we have 

1 1 
*ғ-(• - »o)« (• - ioy 

when Re a > | and Re/? > | . 

= 2тгF 
1 

(. _ iQ)a+ß 
(23) 
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So by the definition 6 we obtain: 

1 1 _1_ 

(• - »0)° ' (• - iO)P ~ 2TT 
p-x P. ~ *F 

(• - ѓ0)<* (• - iO)ß 

= F-lF: 
(. _ ;0)<*+/3 (. __ i 0 ) a + ^ 

for a and /? such that Re a > | and Re/3 > I D 
Similar relation for distributions Tzpjop for a £ C, such that Re a > | , can 

be proved. 
Another equivalent definitions of distributions 7 — h ^ and , * w for a e C 

are given m [4J. 
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