Jitka Machalová
Chipman pseudoinverse of matrix, its computation and application in spline theory

Persistent URL: http://dml.cz/dmlcz/120405

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
Chipman Pseudoinverse of Matrix, its Computation and Application in Spline Theory

JITKA MACHALOVÁ

Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic
e-mail: pmachala@iol.cz

(Received January 18, 2000)

Abstract

In this paper are given definition of Chipman pseudoinverse, which is generalized Moore–Penrose matrix, some its properties and algorithms for its computation. One example for its application in spline theory is shown at the end.

Key words: Chipman pseudoinverse of matrix, rank factorization, generalized Greville algorithm, optimal property of some cubic spline.

1991 Mathematics Subject Classification: 65F05, 41A05

1 Introduction

Consider the system of linear equations

\[Ax = b, \]

where \(A \) is a regular matrix of size \(n \times n \), \(x \) and \(b \) are column vectors of size \(n \times 1 \). Then there exist just one solution \(x_0 = A^{-1}b \).

Let \(A \) be a singular or non-square matrix of size \(m \times n \) and \(b \) a vector of size \(m \times 1 \). We attempt to find a least-squares solution of the equation (1), in other words a solution, which minimize norm of the residual vector

\[\|Ax - b\|, \]

(2)
and which has minimal norm among all these vectors.

Now we consider the Euclidean norm

\[\| x \|_2 = \sqrt{x^T x}, \]

\textbf{Theorem 1.1} Consider the matrix equations (1) with a matrix \(A \) of size \(m \times n \) and a vector \(b \) of size \(m \times 1 \) and Euclidian norm (3). Then there is just one least-squares solution \(x_0 \) with minimal norm. This solution is formed as

\[x_0 = A^+ b, \]

where matrix \(A^+ \) is Moore–Penrose inverse of \(A \).

\textbf{Proof} See [10].

\textbf{Theorem 1.2} To each matrix \(A \) there exists exactly one Moore–Penrose inverse \(A^+ \).

\textbf{Proof} See [10].

Now let \(N \) be a \(n \times n \) symmetric positive definite matrix (p.d.s.) and denote

\[\| x \|_N = \sqrt{x^T N x}. \]

In next section we solve matrix equation

\[Ax = b \]

with matrix \(A \) of size \(m \times n \) and vector \(b \) of size \(m \times 1 \) and consider the norm (5). So we attempt to find a least squares solution of the equation (6). This least squares solution is formed by using Chipman pseudoinverse of matrix \(A \), which is defined in next section.

\section{Definition and properties}

The following definition and theorem were published in [9].

\textbf{Definition 2.1} Let \(A \) be a \(m \times n \) matrix, \(M \) a \(m \times m \) symmetric positive definite matrix and \(N \) a \(n \times n \) symmetric positive definite matrix too. The matrix \(A^+_{M,N} \) of size \(n \times m \), which satisfies the axioms

\[AA^+_{M,N}A = A \]

\[A^+_{M,N}AA^+_{M,N} = A^+_{M,N} \]

\[(M A A^+_{M,N})^T = M A A^+_{M,N} \]

\[(N A^+_{M,N}A)^T = N A^+_{M,N}A, \]

is called the Chipman pseudoinverse of matrix \(A \).
Theorem 2.2 Basic properties of $A_{M,N}^+$.
- If A is zero matrix, then $A_{M,N}^+ = AT$
- If M, N are identity matrices, then $A_{M,N}^+ = A^+$
- If A is square regular matrix, then $A_{M,N}^+ = A^{-1}$
- $(A_{M,N}^+)^{+}_{N,M} = A$
- $(A_{M,N}^+)^T = (A^+)_{N^{-1},M^{-1}}$

Proof Using definition it is easy to prove this statements.

If matrix B is full column rank or full row rank, then there is a simple way for computation its Chipman pseudoinverse with just one p.d.s. matrix.

Theorem 2.3 Let B be a matrix of size $m \times r$, rank(B) = r, M be p.d.s. matrix of size $m \times m$ and denote

$$B_{M}^+ = (B^TMB)^{-1}B^TM. \quad (11)$$

Then B_{M}^+ is Chipman pseudoinverse of B corresponding to matrix M and any symmetric matrix N of size $r \times r$.

Proof Matrix $B_{M,N}^+$, with a p.d.s. $r \times r$ matrix N, must satisfy equations (7)–(10). Using (11) it is easy to prove, that axioms (7)–(10) hold.

Theorem 2.4 Let C be a matrix of size $r \times n$, rank(C) = r and N be p.d.s. matrix of size $n \times n$ and denote

$$C_{N}^+ = N^{-1}C^T(CN^{-1}C^T)^{-1}. \quad (12)$$

Then C_{N}^+ is Chipman pseudoinverse of C corresponding to matrix N and any symmetric matrix M of size $r \times r$.

Proof The proof is similary as in precedent theorem.

Theorem 2.5 (Rank factorization) Let A be a non-zero matrix of size $m \times n$, rank(A) = r, M be p.d.s. matrix of size $m \times m$ and N p.d.s. matrix of size $n \times n$. Then there exist matrices B of size $m \times r$ and C of size $r \times n$ such that

$$A = BC, \quad \text{(rank factorization)}$$

$r = \text{rank}(B) = \text{rank}(C)$ and

$$A_{M,N}^+ = C_{M,N}^+B_{M,N}^+. \quad (13)$$
Proof If A is $m \times n$ matrix of rank r, then there exist not unique regular square matrices D and E, such that

$$DAE = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

which give the representations

$$A = D^{-1} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} E^{-1}$$

where B is $m \times r$ matrix of rank r consisting of the first r column vectors b_1, \ldots, b_r of matrix D^{-1} and C is $r \times n$ matrix of rank r consisting of the first r row vectors c_1, \ldots, c_r of E^{-1}.

We can see, that matrices B, C always exist for each matrix A, but they are not unique.

Matrices $C_{M,N}^+$ and $B_{M,N}^+$ exist and are given in two precedent theorems. Hence

$$A_{M,N}^+ = N^{-1}C^T (CN^{-1}C^T)^{-1} (B^TMB)^{-1} B^TM. \quad (14)$$

Using (14) it is easy to prove that matrices $A, A_{M,N}^+$ satisfy equations (7)–(10).

Theorem 2.6 Let A be a $m \times n$ matrix. Let M p.d.s. matrix of size $m \times m$ and N p.d.s. matrix of size $n \times n$ are fixed. Then there exist just one matrix $A_{M,N}^+$.

Proof By Theorem 2.5. Chipman pseudoinverse $A_{M,N}^+$ really exists for each matrix A. So now we show, that if X and Y are Chipman pseudoinverses of matrix A for fixed p.d.s. matrices M and N, then $X = Y$.

Matrices X and Y satisfy equations (7)–(10). Using these equations we have

$$X = XAX = N^{-1}NXAX = N^{-1} (NXA)^T X = N^{-1} A^T X N T X$$

$$= N^{-1} A^T Y A^T X N T X = N^{-1} A^T Y X N N^{-1} A^T X N T X$$

$$= N^{-1} (NYA)^T N^{-1} (NXA)^T X = N^{-1} NYAN^{-1} NXAX = YAX$$

$$Y = YAY = YM^{-1} MAY = YM^{-1} (MAY)^T = YM^{-1} Y A^T M T$$

$$= YM^{-1} Y A^T M A X = YM^{-1} Y A^T (MAY)^T$$

$$= YM^{-1} Y A^T M A X = YM^{-1} (MAY)^T AX = YM^{-1} MAY AX$$

$$= YAY AX = YAX$$

So $X = Y$.
Theorem 2.7 Consider the matrix equation (1) with a matrix A of size $m \times n$ and a vector b of size $m \times 1$. Let $x_0 = A^+_{M,N}b$. Then for each vector x of size $n \times 1$, $x \neq x_0$ is

(i) $\|Ax_0 - b\|_M < \|Ax - b\|_M$
or

(ii) $\|Ax_0 - b\|_M = \|Ax - b\|_M$ and $\|x_0\|_N < \|x\|_N$.

Vector x_0 is called M-least-squares solution of equation (1) with minimal norm (5).

Proof See [10].

3 Iterative algorithm

In [10] are given several computational methods for generalized inverses, but not all of which may be suitable for numerical computations. Some of them are useful in theoretical investigations. One of them, rank factorization, is described above. In next section is shown Generalized Greville algorithm, which is based on Greville algorithm, see [1]. In [5] is given universal iterative method for computing generalised inverses. So for computing Chipman pseudoinverse we get the following four theorems. Their proofs are given in [5] too.

Theorem 3.1 Let B be a matrix of size $m \times r$, $\text{rank}(B) = r \geq 2$, let M be p.d.s. matrix of size $m \times m$. If $q \geq 2$ is an integer, then for iterative process

$$V_B = B^TMB, \quad \alpha = \frac{2}{\text{tr}(V_B^TV_B)}, \quad Y_0 = \alpha V_B^T,$$

$$T_k = I - Y_kV_B$$

$$Y_{k+1} = (I + T_k + T_k^2 + \cdots + T^{q-1})Y_k \quad k = 1, 2, \ldots$$ (15)

$$X_{k+1} = Y_{k+1}B^TM$$

we get $\lim_{k \to \infty} X_k = B^+_{M,\cdot}$. (I denotes identity matrix and $\text{tr}(A)$ denotes trace of matrix A (sum of diagonal elements).)

Theorem 3.2 Let C is a matrix of size $r \times n$, $\text{rank}(C) = r \geq 2$, let N be p.d.s. matrix of size $n \times n$. If $q \geq 2$ is an integer, then for iterative process

$$V_C = CN^{-1}C^T, \quad \alpha = \frac{2}{\text{tr}(V_C^TV_C)}, \quad Y_0 = \alpha V_C^T,$$

$$T_k = I - Y_kV_C$$

$$Y_{k+1} = (I + T_k + T_k^2 + \cdots + T^{q-1})Y_k \quad k = 1, 2, \ldots$$ (16)

$$X_{k+1} = N^{-1}C^TY_{k+1}$$

we get $\lim_{k \to \infty} X_k = C^+_{\cdot,N}$.
Theorem 3.3 Let A be matrix of size $m \times n$, rank(A) = $r \geq 2$, M be p.d.s. matrix of size $m \times m$, N be p.d.s. matrix of size $n \times n$ and let us put rank factorization $A = BC$, where matrix B is of size $m \times r$, C of size $r \times n$ and rank(A) = rank(B) = rank(C). If $q \geq 2$ is an integer, then for iterative process

$$V_A = B^T MAN^{-1}C^T, \quad \alpha = \frac{2}{\text{tr}(V_A^TV_A)}, \quad Y_0 = \alpha V_A^T$$

$$T_k = I - Y_k V_A$$

$$Y_{k+1} = (I + T_k + T_k^2 + \cdots + T_k^{q-1}) Y_k \quad k = 1, 2, \ldots$$

$$X_{k+1} = N^{-1}C^TY_{k+1}B^TM$$

we get $\lim_{k \to \infty} X_k = A_{M,N}^\dagger$.

Theorem 3.4 Let A be matrix of size $m \times n$, rank(A) = 1 and $A = BC$ its rank factorization. Then using notation from the preceding theorems there is

$$A_{M,N}^\dagger = \frac{1}{\text{tr}(V_A^TV_A)}N^{-1}C^TV_A^TB^TM,$$

with p.d.s. matrices M, N of corresponding size.

Proof See [5].

4 Partition of matrix

In this section we give definition of operation \ast and partition of matrix, which are used in the Generalized Greville algorithm for computation Chipman pseudoinverse. This algorithm we give in next section. Let $\mathcal{M}_{m,n}$ be a set of all $m \times n$ matrices.

Definition 4.1 Let $A \in \mathcal{M}_{m,n}$, $N_m \in \mathcal{M}_{m,m}$ be p.d.s. matrix and $N_n \in \mathcal{M}_{n,n}$ be p.d.s. matrix too. Define

$$A^\ast = N_n^{-1}A^TN_m.$$

Lemma 4.2 Let $A, B \in \mathcal{M}_{m,n}$ and N_m, N_n be p.d.s. matrices of corresponding size. Then

$$(A^\ast)^\ast = A$$

$$(AB)^\ast = B^\ast A^\ast$$

$$(A + B)^\ast = A^\ast + B^\ast$$

Proof Using definition it is easy to prove this statements.
Lemma 4.3 Let \(a \) be a non-zero vector of size \(1 \times n \) and \(N_1, N_n \) are p.d.s. matrices of corresponding size, which define \(a^* \). Then
\[
a^+_{N_1,N_n} = a^* (aa^*)^{-1}
\] (19)
is Chipman pseudoinverse of \(a \).

Proof Using (19) we have
\[
a^+_{N_1,N_n} = N_1^{−1} a^T N_1 (a N_n^{-1} a^T N_1)^{-1} = N_1^{−1} a^T N_1 N_n^{-1} (a N_n^{-1} a^T)^{-1} = N_n^{-1} a^T (a N_n^{-1} a^T)^{-1},
\]
and this is owing to (13) Chipman pseudoinverse of vector \(a \).

Definition 4.4 Let \(A \in M_{m,n} \), \(N_m, N_{m_1}, N_{m_2} \), be p.d.s. matrices of corresponding size, \(m_1 + m_2 = m \), \(E_{m_1} \in M_{m_1,m} \), \(E_{m_2} \in M_{m_2,m} \), such that
\[
E_{m_1} E_{m_1}^* = I_{m_1}, \quad E_{m_2} E_{m_2}^* = I_{m_2}, \quad E_{m_1}^* E_{m_1} + E_{m_2}^* E_{m_2} = I_{m}.
\]
(20) \hspace{20cm} (21)

Let the matrices
\[
B = E_{m_1} A, \quad C = E_{m_2} A.
\]
(22)

Then the \(m \times n \) matrix
\[
\begin{pmatrix}
B \\
C
\end{pmatrix}
\]
(23)
is called \((m_1 + m_2, E_{m_1}, E_{m_2})\)-partition of matrix \(A \).

Remark 4.5 For each matrix \(A \in M_{m,n} \) and fixed p.d.s. matrices \(N_m, N_{m_1}, N_{m_2}, m_1, m_2 \), such that \(m_1 + m_2 = m \), matrices \(E_{m_1}, E_{m_2} \) always exist. In Theorem 4.8 will be given instruction for finding these matrices in general case. For fixed \(m_1, m_2, E_{m_1}, E_{m_2} \) is \((m_1 + m_2, E_{m_1}, E_{m_2})\)-partition of matrix \(A \) unique.

Now we show one example of \((m_1 + m_2, E_{m_1}, E_{m_2})\)-partition of matrix \(A \), when p.d.s. matrices \(N_m, N_{m_1}, N_{m_2} \) are identity matrices of corresponding size. Let
\[
E_{m_1} = (I_{m_1} O_{m_1,m_2}), \quad E_{m_2} = (O_{m_2,m_1} I_{m_2}).
\]

Then
\[
E_{m_1}^* = \begin{pmatrix}
I_{m_1} \\
0_{m_2,m_1}
\end{pmatrix} \quad \text{and} \quad E_{m_2}^* = \begin{pmatrix}
0_{m_1,m_2} \\
I_{m_2}
\end{pmatrix}.
\]

It can be easily seen that the relations (21), (22) hold.

Let
\[
B = E_{m_1} A, \quad C = E_{m_2} A.
\]
In this case matrix \(B \) is formed from the first \(m_1 \) rows of matrix \(A \) and matrix \(C \) is formed from the \(m_1 + 1, \ldots, m \) rows of matrix \(A \).
Owing to Definition 4.4 $m \times n$ matrix
\[
\begin{pmatrix}
B \\
C
\end{pmatrix}
\]
is $(m_1, m_2, E_{m_1}, E_{m_2})$-partition of matrix A.

Theorem 4.6 (Singular value decomposition) Let A be a matrix of size $m \times n$, $\text{rank}(A) = r$. Then there are exist unitary matrices U of size $m \times m$ and V of size $n \times n$ such that
\[
A = UDV^T,
\]
where $D = \begin{pmatrix} D_1 & 0 \\ 0 & 0 \end{pmatrix}$ is matrix of size $m \times n$, $D_1 = \text{diag}(d_1, \ldots, d_r)$ is regular matrix of size $r \times r$ and d_1, \ldots, d_r are singular values of matrix A.

Proof See in [3].

Remark 4.7 If A is symmetric positive definite matrix of size $n \times n$, then its singular value decomposition is
\[
A = UDU^T
\]
and singular values $d_1 > 0, \ldots, d_n > 0$.

Theorem 4.8 Let $A \in \mathcal{M}_{m,n}$ and N_{m_1}, N_{m_2} are p.d.s. matrices, $m_1 + m_2 = m$. Moreover, let us put singular value decomposition
\[
N_i = U_iD_iU_i^T \quad \text{for } i = m_1, m_2, m.
\]
Let the matrix $D_m = \text{diag}(d_1, \ldots, d_m)$, then denote
\[
D_m^{(1)} = (\text{diag}(d_1, \ldots, d_{m_1}))^{-1} \quad \text{and} \quad D_m^{(2)} = (\text{diag}(d_{m_1+1}, \ldots, d_m))^{-1}
\]
and
\[
E_{m_1} = U_{m_1}
\begin{pmatrix}
[D_m^{(1)}]^{-1/2} & 0_{m_1,m_2}
\end{pmatrix}
U_m^T
\]
\[
E_{m_2} = U_{m_2}
\begin{pmatrix}
0_{m_2,m_1} & [D_m^{(2)}]^{-1/2}
\end{pmatrix}
U_m^T.
\]
Then matrices E_{m_1}, E_{m_2} satisfy (21), (22), and for
\[
B = E_{m_1}A, \quad C = E_{m_2}A,
\]
matrix
\[
\begin{pmatrix}
B \\
C
\end{pmatrix}
\]
is $(m_1 + m_2, E_{m_1}, E_{m_2})$-partition of matrix A.
Proof We must prove that matrices E_{m_1}, E_{m_2} satisfy statements (21), (22). Because

$$E_{m_1}^* = N_{m_1}^{-1}E_{m_1}^T \left[D_{m_1}(1)^{1/2}0_{m_2,m_1}\right] U_{m_1}U_{m_1}^T$$

(27)

and similarly

$$E_{m_2} = N_{m_1}^{-1}E_{m_2}^T N_{m_2} = U_{m_2}^T \left[D_{m_2}(1)^{1/2}0_{m_2,m_1}\right] U_{m_2}^T,$$

(28)

we have

$$E_{m_1}E_{m_1}^* =$$

$$= U_{m_1} \left[D_{m_1}(1)^{-1/2}0_{m_1,m_2}\right] U_{m_1}U_{m_1}^T \left[D_{m_1}(1)^{1/2}0_{m_2,m_1}\right] U_{m_1}^T = I_{m_1}.$$

Similar for E_{m_2}.

5 Generalized Greville algorithm

In this section we give the Generalized Greville algorithm for computing Chipman pseudoinverse $A_{M,N}^+$ of matrix $A \in M_{m,n}$ for fixed p.d.s. matrices $M \in M_{m,m}, N \in M_{n,n}$.

Greville algorithm (see [1]) for computing Moore–Penrose inverse A^+ of matrix A is based on computing Moore–Penrose inverse A_k^+ of matrix A_k, where A_k is formed from the first k-rows of matrix A, $k = 1, \ldots, m$.

Computing Chipman pseudoinverse $A_{M,N}^+$ of matrix A is based on computing Chipman pseudoinverse for matrices A_k, where matrix A_k will be defined in Theorem 5.1 as partition of matrix A_{k+1}, $k = 1, \ldots, m - 1, A_m = A$. We use informations from Theorem 4.8, in which are given instruction for finding partition of $m \times n$ matrix A by using singular value decompositions of p.d.s. matrices $N_{m_1}, N_{m_2}, N_m, m = m_1 + m_2$. Also for finding matrix A_k we need p.d.s. matrices N_{k+1}, N_k, N_1. Altogether in algorithm we will need, except p.d.s. matrices M, N, sequence $\{N_i\}_{i=1}^{m-1}$ of p.d.s. matrices, $N_i \in M_{i,i}$. In k-th step of Generalized Greville algorithm we compute for matrix A_k its Chipman pseudoinverse $A_k^+ = A_{N_k,N}^+$.

On sequence $\{N_i\}_{i=1}^{m-1}$ of p.d.s. matrices is from theoretical investigations no requirement, but for numerical computation, because this algorithm use inverse of N_k, is in place to N_k be good conditioned.
At first we give algorithm for general sequence of p.d.s. matrices \(\{N_i\}_{i=1}^{m-1} \) and this algorithm we prove. In case, when we use sequence of identity matrices \(\{I_i\}_{i=1}^{m-1} \), this algorithm is more simply. In \(k \)-th step we compute for matrix \(A_k \) its Chipman pseudoinverse \(A_k^+ = A_{k,i}^+ N \). This is showed in Remark 5.3.

Theorem 5.1 (Generalized Greville algorithm) Let \(A \in \mathcal{M}_{m,n} \), p.d.s. matrices \(M \in \mathcal{M}_{m,m} \), \(N \in \mathcal{M}_{n,n} \) are given and \(\{N_i\}_{i=1}^{m-1} \) be a sequence of p.d.s. matrices, where \(N_i \in \mathcal{M}_{i,i} \).

1. Denote \(A_m = A, N_m = M \).

Let us compute for \(k = m, m-1, \ldots, 2 \) matrices

\[
A_{k-1} = E_{k-1}^{(k)} A_k \quad (k - 1) \times n \\
a_k = E_k^{(k)} A_k \quad 1 \times n
\]

where matrices \(E_{k-1}^{(k)}, E_k^{(k)} \) are computed by using singular value decompositions of p.d.s. matrices \(N_k = U_k D_k U_k^T \), \(N_{k-1} = U_{k-1} D_{k-1} U_{k-1}^T \), \(N_1 = U_1 D_1 U_1^T \).

Let the matrix \(D_k = (d_1, \ldots, d_k) \), then denote

\[
D_k^{(1)} = (\text{diag}(d_1, \ldots, d_{k-1}))^{-1} \quad \text{and} \quad D_k^{(2)} = 1/d_k
\]

and

\[
E_{k-1}^{(k)} = U_{k-1} \left(\begin{bmatrix} D_{k-1} D_k^{(1)} \end{bmatrix}^{-1/2} 0_{k-1,1} \right) U_k^T \\
E_k^{(k)} = U_1 \left(\begin{bmatrix} 0_{1,k-1} & D_{1} D_k^{(2)} \end{bmatrix}^{-1/2} \right) U_k^T.
\]

2. Put

\[
A_i^+ = N^{-1} A_i^T (A_1 N^{-1} A_1^T)^{-1} \quad (29)
\]

3. Let us for \(k = 2, 3, \ldots, m \) compute \(n \times k \) matrices

\[
A_k^+ = \left[\begin{bmatrix} E_{k-1}^{(k)*} & E_k^{(k)*} \end{bmatrix} \left(\begin{bmatrix} (A_{k-1}^+)^* - d_k b_k \end{bmatrix}_{b_k} \right) \right]^*, \quad (30)
\]

where

\[
d_k = a_k A_{k-1}^+, \quad (31) \\
c_k = a_k - d_k A_{k-1}, \quad (32) \\
b_k = \begin{cases} \left((c_k^T N c_k)^{-1} (c_k^T N \right) & \text{if } c_k \neq 0 \\
(1 + d_k d_k^{-1})^{-1} d_k (A_{k-1}^+)^* & \text{if } c_k = 0. \end{cases} \quad (33)
\]
Then matrix $A_{N_k,N}^+ = A_k^+$ is for $k = 1, 2, \ldots, m$ Chipman pseudoinverse of matrix A_k. For given matrix A and p.d.s. matrices M, N is matrix $A_{M,N}^+ = A_m^+$ its Chipman pseudoinverse.

Proof Proof is based on the mathematical induction proving axioms (7)–(10) for Chipman pseudoinverse of matrix A_k.

Remark 5.2 Chipman pseudoinverse $A_{M,N}^+$ is independent on sequence of p.d.s. matrices $\{N_i\}_{i=1}^m$, this sequence is given only for computing partitions of matrices $A_k, k = m, \ldots, 2, A_m = A$ and their Chipman pseudoinverse $A_{N_k,N}^+$.

Remark 5.3 Now we describe in more details the *Generalized Greville algorithm* for matrix $A \in \mathcal{M}_{m,n}$, p.d.s. matrices $M \in \mathcal{M}_{m,m}$, $N \in \mathcal{M}_{n,n}$ and sequence p.d.s. matrices $\{I_i\}_{i=1}^m$. Construction of matrices E_{k-1}, E_k using singular value decomposition of p.d.s. matrices I_k, I_{k-1}, I_1 are given in Remark 4.5.

Algorithm:

1. Let $M = U D U^T$, where $D = \text{diag} (\lambda_1, \ldots, \lambda_m)$ is singular value decomposition of matrix M.

 Then owing to theorem 5.8 is $(m - 1) \times m$ matrix

 $$A_{m-1} = E_{m-1} A = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \ldots & 0 & 0 \\ 0 & \sqrt{\lambda_2} & \ldots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & \sqrt{\lambda_{m-1}} & 0 \end{pmatrix} U^T A$$

 and vector $1 \times m$

 $$a_m = E_1 A = \begin{pmatrix} 0_{1,m-1} & \sqrt{\lambda_m} \end{pmatrix} U^T A.$$

 For $k = 1, 2, \ldots, m - 1$ denote a_k the k-th row of matrix A_{m-1} and

 $$A_k = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix}$$

 the submatrix formed from the first k rows of matrix A_{m-1}.

2. Put

 $$A_1^+ = N^{-1} A_1^T (A_1 N^{-1} A_1^T)^{-1}$$

3. Let for $k = 2, 3, \ldots, m$ is

 $$d_k = a_k A_{k-1}^+$$

 $$c_k = a_k - d_k A_{k-1}$$

 $$b_k = \begin{cases} (c_k N^{-1} c_k^T)^{-1} c_k & \text{if } c_k \neq 0 \\ (1 + d_k d_k^T)^{-1} d_k (A_{k-1}^+)^T N & \text{if } c_k = 0. \end{cases}$$
Then for \(k = 2, \ldots, m - 1 \) is
\[
A_k^+ = (A_{k-1}^+ - N^{-1}b_k^T d_k N^{-1}b_k^T)
\]
and
\[
A_m^+ = (A_{m-1}^+ - N^{-1}b_m^T d_m N^{-1}b_m^T) D^{1/2} U^T.
\]
Matrix \(A_m^+ \) is Chipman pseudoinverse of matrix \(A \) for given p.d.s. matrices \(M, N \).

6 Optimal properties of some cubic splines

Let us have given function values \(g_i, i = 0, 1, \ldots, n + 1 \) in spline knots
\[
(\Delta x) : \quad x_0 < x_1 < x_2 < \cdots < x_n < x_{n+1}.
\]
The cubic splines \(S_3 (x) \in C^2 \) interpolating prescribed values have two free parameters which can be used for some boundary condition. In spline theory is known, that the minimum of the functional
\[
J(s) = ||s''||^2 = \int_{x_0}^{x_{n+1}} [s''(x)]^2 \, dx
\]
is attained by interpolatory natural cubic spline on the class of interpolants from \(W_2^2 \) (see [6]).

With local parameters \(g_i = s'(x_i) \) and \(M_i = s''(x_i) \), we can state the continuity conditions as recurrences (see in [6])
\[
h_{i-1} M_{i-1} + 2 (h_{i-1} + h_i) M_i + h_i M_{i+1} = f_i, \quad i = 1 (1) n
\]
where
\[
h_i = x_{i+1} - x_i, \quad f_i = 3 \left[\frac{g_{i+1} - g_i}{h_i} - \frac{g_i - g_{i-1}}{h_{i-1}} \right].
\]
Recurrences (32) we can write in vector notation as
\[
AM = f
\]
with tridiagonal matrix \(A \) of size \(n \times (n + 2) \), \(\text{rank}(A) = n \),
\[
A = \begin{pmatrix}
h_0 & 2(h_0 + h_1) & h_1 & & & \\
h_1 & 2(h_1 + h_2) & h_2 & & & \\
& \ddots & \ddots & \ddots & & \\
& & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} & \\
& & & h_{n-1} & 2(h_{n-1} + h_n) & h_n
\end{pmatrix}
\]
and vectors
\[
M = (M_0, M_1, M_2, \ldots, M_{n+1})^T, \quad f = (f_1, f_2, \ldots, f_n)^T
\]
Functional (41) we can rewrite

$$J(s) = \sum_{i=0}^{n} \frac{1}{h_i} \left(M_i^2 + M_iM_{i+1} + M_{i+1}^2 \right) = \frac{1}{6} M^T R M,$$

(37)

with p.d.s. matrix R of size $(n + 2) \times (n + 2)$.

So owing to (5) there is

$$J(s) = \frac{1}{6} ||s''||_R^2$$

We want to find the minimum of the functional

$$J(s) = M^T R M$$

(38)

owing to

$$AM = f.$$

(39)

In other words, we want to find such vector M of second derivatives of interpolatory cubic spline, which minimizes functional (38).

In regard to Theorem 2.7 we can state following

Theorem 6.1 Let us have given spline knots (Δx) and values g_i in knots x_i, $i = 0, 1, \ldots, n + 1$. Then functional (38) is minimized, in the class of cubic splines on the given knotset (Δx) for data g_i, by interpolatory cubic spline, whose local parameters M_i are given as R-least squares solution of equation (39), so

$$\hat{M} = A^+_R f,$$

(40)

where matrix A^+_R is Chipman pseudoinverse of matrix A (see Theorem 2.4). This cubic spline is unique.

7 Numerical results

We compare computing Chipman pseudoinverse of random matrices by given methods:

1. Rank factorization
2. Iterative method
3. Generalized Greville algorithm

Note, that for computing by Rank factorization and Iterative method we must know rank of matrix, but for computing by Generalized Greville algorithm is not necessary.

Denote A_i^+ as Chipman pseudoinverse computing by i-th method for matrix A and fixed p.d.s. matrices M, N of corresponding size. Now let

$$v(1) = \max (AA_i^+ A - A)$$

$$v(2) = \max (A_i^+ AA_i^+ - A_i^+)$$

$$v(3) = \max ((MA_i^+)^T - MA_i^+)$$

$$v(4) = \max ((NA_i^+ A)^T - N A_i^+ A)$$
and \(v = \max_i v(i) \), now \(v_i \) denotes \(v \) computed by \(i \)-th method and \(t_i \) denotes time necessary for computing Chipman pseudoinverse by \(i \)-th method.

Follow numerical computing were given on computer Intel Pentium II, 333 MHz, RAM 64 MB, HDD 4.8 GB for matrices with random numbers from interval \((0,1)\) of size \(m \times n \), with variant rank \(= r \). P.d.s. matrix \(M, N \) are full matrix. Computing Chipman pseudoinverse by Iterative method use \(q = 15 \), see section 3. For computing by Generalized Greville algorithm we use sequence of identity matrices, then we count by algorithm given in Remark 5.3.

<table>
<thead>
<tr>
<th>(m, n)</th>
<th>(r)</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,100</td>
<td>50</td>
<td>1.87 (10^{-10})</td>
<td>1.51 (10^{-10})</td>
<td></td>
</tr>
<tr>
<td>75,100</td>
<td>50</td>
<td>2.10 (10^{-10})</td>
<td>2.52 (10^{-10})</td>
<td>3.74 (10^{-9})</td>
</tr>
<tr>
<td>100,100</td>
<td>50</td>
<td>5.59 (10^{-10})</td>
<td>9.62 (10^{-10})</td>
<td>1.92 (10^{-8})</td>
</tr>
<tr>
<td>150,100</td>
<td>100</td>
<td>4.48 (10^{-9})</td>
<td>2.60 (10^{-7})</td>
<td>2.42 (10^{-8})</td>
</tr>
<tr>
<td>150,100</td>
<td>50</td>
<td>1.15 (10^{-9})</td>
<td>2.95 (10^{-9})</td>
<td>5.89 (10^{-8})</td>
</tr>
<tr>
<td>250,100</td>
<td>50</td>
<td>1.69 (10^{-9})</td>
<td>7.20 (10^{-9})</td>
<td>7.68 (10^{-8})</td>
</tr>
<tr>
<td>250,100</td>
<td>100</td>
<td>5.07 (10^{-9})</td>
<td>1.42 (10^{-7})</td>
<td>3.79 (10^{-9})</td>
</tr>
<tr>
<td>250,250</td>
<td>250</td>
<td>1.26 (10^{-6})</td>
<td>2.68 (10^{-5})</td>
<td>—</td>
</tr>
<tr>
<td>800,800</td>
<td>600</td>
<td>1.15 (10^{-5})</td>
<td>1.24 (10^{-5})</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(m, n)</th>
<th>(r)</th>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,100</td>
<td>50</td>
<td>0.22</td>
<td>5.6</td>
<td>6.97</td>
</tr>
<tr>
<td>75,100</td>
<td>50</td>
<td>0.22</td>
<td>7.69</td>
<td>5.38</td>
</tr>
<tr>
<td>100,100</td>
<td>50</td>
<td>0.28</td>
<td>9.94</td>
<td>6.36</td>
</tr>
<tr>
<td>150,100</td>
<td>100</td>
<td>0.55</td>
<td>16.64</td>
<td>28.18</td>
</tr>
<tr>
<td>150,100</td>
<td>50</td>
<td>0.6</td>
<td>24.11</td>
<td>20.44</td>
</tr>
<tr>
<td>250,100</td>
<td>50</td>
<td>0.99</td>
<td>51.96</td>
<td>34.11</td>
</tr>
<tr>
<td>250,100</td>
<td>100</td>
<td>1.04</td>
<td>31.53</td>
<td>30.48</td>
</tr>
<tr>
<td>800,800</td>
<td>600</td>
<td>3.74 (10^2)</td>
<td>2.87 (10^3)</td>
<td>—</td>
</tr>
</tbody>
</table>

From these two tables we can see, when we know rank of matrix, then computing by Rank factorization gives very good results. Generalized Greville algorithm gives good results too, but this method need more time. This algorithm is in place to use, when we do not know rank of matrix.
References

