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Contraction Mappings in b-metric Spaces 

S . CZERWIK 

Abstract. Some generalizations of well known Banach's fixed point theorem in so-called 
b-metric spaces are presented. 

1991 Mathematics Subject Classification: 47H10 

1. Some problems, particurarly the problem of the convergence of measurable 
functions with respects to measure lead to a generalization of notion of metric. 
Using this idea we shall present generalization of some fixed point theorems of 
Banach type. 

Lex X be a spece and let R+ denotes the set of all nonnegative numbers. A 
function d : X x X —> R+ is said to be an b-metric iff for all x, y, z 6 X and all 
r > 0 the following conditions are satisfacted: 

d{x, y) = 0iffx = y (1) 

d{x, y) = d{y, x) (2) 

d{x, y) < r and d{x, z) < r imply d{y, z) < 2r. (3) 

A pair {X, d) is called an b-metric space. 

Lemma 1. The condition (3) is equivalent to the following one: 

d{x, y) < r and d{x, z) < r imply d{y, z) < 2r. (4) 

for all x, y, z £ X and all r > 0. 

Let us consider the following condition: 

d{y, z) < 2d{x, y) -f 2d{x, z) for all x, y, z 6 X. (5) 

Of course, the condition (5) is weaker then (3). In the sequel we will call a function 
d : X x X —> R+ an b-metric iff the conditions (1) (2) and (5) are satisfied. For 
T : X -> X we denote by Tn then n-th iterate of T. 

2. Now we present following 

Theorem 1. Let {X, d) be e a complete b-metric space and let T : X —> X satisfy 

d[T(x), T(y)} < <p[d(x, y)), x,y€X, (6) 

where if : R+ —> R+ is increasing function such that lirnn-+coiPn{t) = 0 for each 
fi.xed > 0. Then T has exactly one fixed point u and 

limn-+00d[Tn{x), u] = 0 



S. Czerwik 

for each x G X. 

PROOF: Take x G X and e > 0. Let n be a natural number such that (pn(e) < 4" 1 . 
Put F = Tn and z* = Fk(x) for k G N (the set of natural numbers). Then for 
x, y 6 X and a = </?" we have 

d[F(i), F(y)] < <pn[d(x, y)] = a[«f(x, y)]. (7) 

Therefore, for fc G N 
d(;Zjt+i, Xjt) —* 0 as k —> oo. 

Let k be such that d(xk-\-], #*) < e * 4 - 1 . Then for every z G K(zjt, £) -= {y G A : 
d(**> V) < ^} we get 

d[F(*), F(xk)] < a[d(xk, z)] < a(e) = tpn(e) < e - 4 " 1 , 

d[F(xjt), a;*] = c?(xjt+i, Xjt) < e • 4" 1 

whence 
d[F(xh), Xk]<2(e.4~' +e.4-l)=e, 

which means that F maps K(xk, e) into itself. Consequently 

d(xm, xs) < 4e for m, s > k 

and the sequence {xk} is a Cauchy sequnce, so there exists u £ A" such that Xk —> u 
as k —> oo. Furthermore, by the continuity of F (see (7)) 

u = Zirajb—oo-cjfc+i = Kmjb—oo^x/t+i) = F(u), 

i.e. u is a fixed point of F. Since a(t) = v?n(<) < t for any r > 0, it is clear that F 
has exactly one fixed point. Moreover, by (6) T is continuous so we have 

T(u) = Umk^ooT[Fk(x)] = liml-.00F
h[T{x)] = u 

and u is fixed point of T as well. It is obviuos by (6) that such point is only one. 
Since for every x G X and every r = 0, 1, . . . , n — 1 

Tnk+r(x) = F*[Tr(z)] - > u a s ^ o o , 

so Tm(x) —> u as m —• oo for every x G Ar. This completes the proof of our 
theorem. D 

For ordinary metric spaces analogous result is contained in [3], p . 12, 

Theorem 2. Let Z be a topological space and let (X, d) be a complete b-metric 
space. Let X x X be continuous and satisfy for each z G Z 

d[T(x, z), T(y, z)] < ad(x, y) for all x, y G X, (8) 

where 0 < a < 1. Then for each z G Z there exists an unique fixed point x(z) of 
T, i.e. T[x(z), z] = x(z) and the function z —> x(z) is continuous on Z. 
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PROOF: Put 

T1 (x, z) = T(x, z), T n + 1 = T[T\x, z), z], n = 1 , 2 , . . . 

Let us take n such that an < 2" 1 . By Theorem 1 for every z G Z,Tn has exactly 
one fixed point x(z). Since we have 

T[x(z), z] = T[Tn(x(z), z), z] = Tn[T(x(z), z), z] 

so T[x(z), z] is also fixed point of T n but in view of the uniqueness we get 

T[x(z), z] = x(z), 

i.e. x(z) is a fixed point of T. By (8) one can proof that T has only one fixed 
point for every x G Z. 

Now let e > 0 be given. The continuity of T implies that Tn is also continuous. 
Let z2 G Z be arbitrarily fixed. Therefore exists a neighbourhood U of 22 such 
that 

d[Tn(z2), zx), Tn(x(z2), z2]<e- 2 ^ ( 1 - 2a") 

for z\ € U. Consequently we have for z\ G U 

d[x(z\), x(z2)] = d[Tn(x(z\), z\),Tn(x(z2), z2)] < 

< 2 • d[Tn(x(zx), z\), Tn(x(z2), z\)] + 2>d[Tn(x(z2), zx), Tn(x(z2), z2)] < 

< 2and[x(z\), x(z2)] + e(l - 2a n ) . 

Finally we get 
d[x(z\), x(z2)] < e for z\ in U 

which proves the continuity of x and completes the proof of the theorem. Q 

Now we shall prove the following 

T h e o r e m 3 . Let a : (0, oo) —> [0,2_ 1) he decreasing function. Let (X, d) be a 
complete b-metric space and let T : X —> X be a transformation such that 

d[T(x), T(z)] < a[d(x, z)](d[x, T(x)] + d[z, T(z)]) (9) 

for all x, z G X, x ^ z. If moreover, T is continuous or a is a constant function, 
then T has a unique fixed point u G X and limn^OQd[Tn(x), u] = 0 for each 

xex. 
PROOF: Let 

yn:=d[Tn(x),Tn+l(x)],n = l,2, ...,xeX. 

We may assume that yn ^ 0- Then by (9) we get 

un+i < a(yn)(yn + 2ln+i) < 2~1(un + yn+\) 

whence 
yn+i <yn, n = 1, 2, . . . 
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So {yn} is a decreasing sequence. Let y = /zmn_0 0t/n . We shall prove that y = 0. 
Suppose that y > 0. Then 

2/n+i < a(y)(yn + yn+i) 

and consequently y < 2a(y)y, which is impossible since a(y) < 2" 1 . This proves 
that y = 0. Now we will show that {yn} is a Cauchy sequence for every x £ X. 
From (9) we get for m, n G N 

d[Tn(x), Tm(x)} < \(d[Tn-l(x), Tn(x)} + d[Tm-\x), Tm(x))). 

There exists an no such that for m, n > n0 

d[Tn~\x), Tn(x)] < e and d[Tm-\x), Tm(x)). 

and hence 

d[Tn(x),Tm(x)}<±(e + e) = e 

for all m, n > no. Thus {yn} is a Cauchy sequence and in view of completeness 
of X there exists an u € X such that Tn(x) —• u. We can check that T(tt) = w. 
Really, we have 

d[u, T(u)) < 2d[u, Tn+\x)) + 2d[Tn+\x), T(u)}. 

If T is continuous, then the right hand side of the inequality tends to zero as 
n —* oo, which proves that T(tt) = u. On the other hand, if a = const., then 

d[u, T(u)} < 2d[u, T n + 1(x)] + 2a[d[Tn(x), Tn + 1(x)] + d[u, T(u)}) < 

< 2d[u, Tn+l(x)} + 2ayn + 2ad[u, T(u))). 

Letting u —* oo we get 
d[u, T(u)) < ad[u, T(u)), 

i.e. d[u, T(u)) = 0. 

Finally, to prove the last part of the Theorem, let us assume that 

T(tti) = Mi, T(w2) = w2, tti 7- tt2, m , tt2 e X. 

Therefore we may write 

cf(tt1,tt2) = d[T(tt1), T(t t 2)]< 

< a[d(uu u2))(d[uu T(ux)) + e*[tt2, T(tt2)]) = 0 

which means that u\ = u2 and finishes the proof of the Theorem. • 

For related problems in metric spaces see [5]. 
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Example 

Let 

Г x = lM)' 
Then 

\T(x) - T(z)\ < i ( | x - T(x)\ + \z - T(z)\) 

for x, z G [0, 1], i.e. T satisfies the condition (9) but T is not continuous. 

3. Let us consider complete b-metric space (Xi, di), i = 1, . . . , n. Let X :~ 
X\ x ... x Xn and let d : X x K —• 1?+ be the function defined as follows 

cř(ж, 2) = ^ГidĄxi, ZІ), (10) 
І ~ I 

where x = (#;, . . . , xn), z = (z\, ..., z n ) G K and r,-, i = 1, . . . , n are given 
nonnegative real numbers. 

One can easily see that 

d(x, z) = 0 iff x = z and d(;r, z) = d(z, x) for every a:, z 6 K. 

Moreover, we have for x, y, z, G X 

n 

d(x, z) < ^2ri[di(xi, yi) + di(yi, Zi)] = 2d(x, y) + 2d(y, z), 

which gives then inequality 

d(x, z) < 2d(x, y) + 2d(y, z), 

for all x, y, z, G X. This means that the the function d is an b-metric in X. If all 
spaces (Xi, di), i = 1, . . . , n are complete then the space (X, d) is also complete 
with respect to the b-metric d. 

Using this idea we get the following theorem for system of transformations. 

Theorem 4. Let (Xi, di), i = 1, . . . , n be complete b-metric spaces. Let ai%k, 
i, k = 1, . . . , n be nonnegative real numbers such that transformations Ti : X —• 
Xi, i = 1, ..., n fulfill the inequalities 

n 

di[Ti(x), Ti(z)} <J^aijkdk(xk, zk) (11) 
.=1 

for all x = (x\, . . . , xn), z = (z\, ..., zn) EX. If, moreover, the absolute values 
of the characteristic roots fo the matrix [aiik]™ k=z are less then one, then the system 
of equations 

Ti(x\, . . . , xn) = Xi, i = 1, . . . , n 
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has exactly one solution u = (u\, . . . , un) G X given by the formulas 

Ui = Ums-*ooX9i, i = 1, . . . , n , (12) 

x j + 1 = Ti(xf, . . . , xn) , t = 1, . . . , n, s = 0, 1, . . . , (13) 

where x® 6 K», i = 1, . . . , n are arbitrarily fixed. 

PROOF: From Perron's Theorem ([2], p. 354) we conclude that there exists positive 
numbers r,, i = 1, . . . , n satisfying the system of inequalities 

n 

^ n a j , * < rfc, fc = l, . . . , n (14) 
»=i 

(see also [1] and [4]). Take 

v := maxke{lf ...,„} I r^1 ^ na,, * < r* J , 

then (14) implies 

0 < v < l (15) 
n 

5^naifJb <rk < vrk, fc = 1, . . . , n. (16) 
»=i 

Let d be defined by formula (10). It has been mentioned that (X, d) is a complete 
b-metric space. Now let us consider the mapping T : X —• X defined by T(x) = 
(T\(x), , . . . , Tn(x)) for x E X . We are able to check that T si a contraction map. 
Indeed, in view of (10), (11) and (16) for x, z £ X we get 

d[T(x), TOO] = E?=i n*[T<(*)f r,(*)] < E?=i n E L i *.*«**(**, **) = 
= E , n = i ( E L i r .a., *)<**(**> **) = £ t

n=i vrfca,-, *(**(:**, **) = vd(x, z) 

Taking into account (15) and applying Theorem (1) for (p(t) = t; • t we obtain our 
assertion. O 
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