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Existence and computation of integral bases 

Erich Lamprecht 

Abstract: The existence of an integral basis of the integral closure O of an integral domain 
o in a finite extension of the field of quotients can be proved either by general algebraic 
considerations or by computation of an o-module basis of O satisfying the conditions of an 
integral basis. In 2. we give new results for the first method, in 3. we illustrate the second 
method for some types of separable extensions of interest. 
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1. Introduction 
Let o be an integrally closed integral domain with the quotient field K and O be its 
integral closure in a finite field extension L of K and {LJ} = {utr, ...,t-Jn} a JC-basis 
of L of integral elements such that D is a free o-module with basis {LJ} then this 
basis is called an o-integral basis of D. If o is a principal ideal domain, then there 
exist integral bases for all finite separable extensions. We will give some results 
concerning the question of existence and of computation of integral bases in the 
case of Krull domains o, i.e. 

= f)°> ( ì . i ) 

is the intersection of discrete valuation rings op with the additional finiteness 
condition ([2],§1 and [8], §2): 

x 6 K,x ^ 0 => x £ op for almost all p. (1.2) 

Dedekind domains or polynomial rings over principal ideal rings are examples of 
Krull domains. 

The following two criteria can be used: 
a. If o is a Dedekind domain and L a separable extension of K then a JC-basis 

{UJ} of o-integral elements is an integral basis exactly when for the discriminant of 
the basis holds 

d({w}) = X>0(L/K) = H DpCL/tf), (1.3) 
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if op(L/K) denotes the local discriminant at p. -
b . A If-basis {cD} of o~integral elements of the field L is an integral basis over 

the Krull domain o if and only if it is an integral basis for all localizations op (see 
[5], Proposition la and [11], Korollar 2.1). -

By use of these two criteria we reduce the investigation to local considerations. In 
2. the existence of an integral basis for separable extensions of polynomial rings can 
be shown by theoretical considerations without any algorithm for the computation: 
this implies several applications. In 3. for special types of extensions the existence 
of an integral basis can be shown in the following way: we construct special bases 
and use the above mentioned rules for the proof of existence. 

2. Existence of integral bases 

Let OQ denote a principial ideal domain; this includes the cases (i) Oo = Z or (ii) 
o0 = k[x] (a polynomial ring over a field) or (hi) o0 = op (a discrete valuation ring). 
Now we consider rings of polynomials in X\, ...,£„ 

R = o0[xi, . . . ,£„], (2.1) 

over Oo and their normal closures OL in finite separable extensions L of the field of 
quotients of R. R is noetherian, integrally closed and OL is a finitely generated I?-
module. We want to apply the following result of Suslin which proves a conjecture 
of J.P.Serre: 
Theorem of Suslin-Serre( [10], page 243).Every finitely generated projective It-
Module M is free. 

If we know that OL is a projective jR~module then by use of the result of Serre-
Suslin OL is jR-free and consequently there must exist an integral basis. In the case 
n = 1 R.Kramer [3] shows the following 

Theorem 2.1. Every finite separable extension of R has an integral basis if n = 1? 

i.e. 
R = o0[x1}. (2.2) 

Proof of the Theorem. 1. According to [1] (Chap.I. 2, no.8, Lemme 8 (ii) ) a 
finitely generated It-module M has a finite presentation. If m is a maximal ideal 
of I? then the corresponding local ring Itm is also noetherian and Mm = Itm <8># M 
is also a finitely generated jRm-module; consequently Mm has a finite presentation. 
According to [1] (Chap.II, "?3, no.2 and Corollaire 2 of Prop.5) the homomorphism 

tm : (mRm) <S> Mm -> Mm, ^>2mi ® ai *-> ] C m * * a* (2-3) 
i i 

is injective iff Mm is a flat Rm-module. M is flat iff Mm is flat for all maximal 
ideals m of R ([1], Chap.II. ? 3 , no.4, Corollaire of Prop. 15). If (2.2) holds for 
all maximal ideals of R then according to [1], (Chap.H. "?5, no.2, Cor.2) M is a 
projective It-module (these conclusions also hold in the case (2.1)). 



Existence and computation of integral bases 123 

2. Now we consider the special case R = 0o[xi] of (2.2) and M = DL and 
demonstrate for all maximal ideals m of R that the homomorphism im into Mm = 
DL,m = I?m <8» DL in (2.3) will be injective. Then the Suslin-Serre theorem shows 
the freeness of the jR-module DL and the existence of a relative integral basis. - A 
slight modification of the proof of [8] (Theorem 19.5, p. 157) gives the following 
structure of m 

mRm = {q,p{xl))1 (2.4) 

where p{x\) € R[xi] are prime and irreducible polynomials and q G R either a 
prime element of R or zero. The set V of all the prime elements p{x\) and q -
unique up to units of o0 - determines the system of the discrete valuations of the 
Krull domain It. For every m we have to evaluate the kernel of tm, i.e. 

^m(y) = q • ai + p - a2 = 0 for y = g <g> ax +p®a2, a i , a 2 G D L , m . (2.5) 

If q 7~= 0 then tm{y) = 0 iff a2 = ~q
p
ai. - Otherwise for q = 0 the injectivity of tm 

is obvious. - If we can show 
— € D L , m (2.6) 
P 

then 2/ = g<S>ai-(0'p)<g>-^- = g ( 8 > a i - g 0 E | 1 = g <g> ai - g (g> ai = 0 demonstrates 
the injectivity of tm. 
Let vp and vq be the normalized discrete valuations of R corresponding to the prime 
elements p, q and let v<# and VQ respectively be corresponding extensions in L then 
vv(a) = 0 f° r a ^ extensions. This implies 0 < v<#{a2) = v<${q) — v<#{p) + ttvp(a ~-
1) and v<#{p) < v^{a\). This holds for all such ^3 and we obtain (2.6) and the 
theorem, rj 

Remark 1. Let o be an arbitrary noetherian Krull domain with quotient field K 
and L — K[a] a finite separable extension where a satisfies the monic irreducible 
polynomial f[T] 6 [T] with the discriminant d = d{f) and let DL be the integral 
closure of o in L. Then we only have to check the maximal ideals m 3 d for 
the projectivity of the o-module DL . But this does not yet show the freeness. -
According to examples of Kaplansky, Ojanguren and others the above method of 
proof can not work for n > 1; and this method gives no computation of a base. 

The above mentioned cases (i), (ii) and (iii) correspond to the following essential 
special cases of this theorem, namely (i') R = Z[xi], (ii') R = k[x,a:i] and (iii') 
R = op[xi]. - (iii') can be applied for reducing mod p and lifting respectively of 
integral bases of function fields. 

Let L be an algebraic function field of one variable over the exact field of con­
stants k and x £ L be transcendental over k such that L is finite and separable over 
k{x). A discrete valuation v<$ of L with non-trivial restriction vPo in k is called a 
functional extension of vPo to L if the reduction of L with respect to ^3 - i.e. the 
residue field L - is also a function field over k, the reduction of k mod po- p denotes 
the restriction of *p in K. 

Definition, ty and v<$ respectively are called x-regular-inertox x-good\ithe following 
holds: (a) p of k{x) has only one extension ^3 in L and ^3 is inert over K = k{x)\ 
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(/?) k is the exact field of constants of L; (7) L and L have the same genus g(L/k) = 
g(L/k). 

In this situation we have the following rings 

oPo[x] C op C fc[x], op, D<$ valuation rings of K and L respectively, 

Dy,x = D L D D<p, DL integral closure of k[x] in L . (2.7) 

D<n)X is also a Krull domain and the integral closure of oPo[.r] in L. - If ty is rr-regular-
inert then by use of reduction theory of divisors (see [3], p.8) and differentials 
[4] and the Hurwitz-formula for differents 5)(L/K) = 5)x • 3D00 and discriminants 
o(L/K) = Dx • Doo of L over K and L over K and the corresponding reduced terms 
we have 

V(L/K) = S)x • .Doo - £>(L/I<-) - £)* • £00, (2.8) 

ö ( L / / 0 = 0, • Ooo = 0(L/ff) = Öx • 0; 0 0 • 

Doo denotes the poo-part of the different and T)x the part of the x-integral places 
in the different and analogously for the discriminant Dx,Doo and the reduced divi­
sors £) x , . . . and terms in the reduced fields D-j,.... - In the following we use the 
assumption 

^l = -0*, Dx" = ox. (2.9) 

Almost all x-regular-inert <P satisfy the condition (2.9); by discriminant conditions 
the exceptions can be described. - By use of Theorem 2.1 in the case (Hi') we obtain 

Theorem 2.2. Let the extension L over k(x) satisfy the condition (2.9) for an 
x-regular-inert ^3 and {UJ} = {u!i, ...,cjn} an integral basis of D<$iX over OPQ[X] -
and also of DL over k[x] - then the residues {&} = {u>7, ...,toVi} yield an integral 
basis of Dj; over k[x]. - If on the other hand an integral basis {UJ} of DL over k[x] 
is given, then there always exists an integral basis {<Di, ...,cDn} O}DL over k[x] such 
that UJV = UJV for v = 1, . . . ,n. This result can be used for the computation of an 
integral basis of DL over k[x] if we know an integral basis of Dj over k[x]. - We 
mention some further applications. 

Remark 2. Let ^3 be an x-regular-inert functional extension of po of k in L and let 
the field F be given according to 

k C K = k(x) C F C L, L separable over K, (2.10) 

and let the restriction ^3; of ^3 in F also be x-regular-inert. Then similar conditions 
for the reduction of integral bases {UJ} of L over F and for the lifting of integral 
bases of L over F can be given. 

The following theorem shows an improvement of the criteria b . in section 1. 

Theorem 2.3. Let On be a Krull domain with the field of quotients k and L a finite 
separable extension of rank n of the rational function field K = k(x) and let D be 
the integral closure of Oo[x] in L. Then the field basis {UJ} = {UJI, ...,ujn} of L over 
k(x) is an integral basis for D over 0 = OQ[X] iff {UJ} is an integral basis for Dtn)X 

over oPo[x] for all primes po of o0. According to [3] (Satz II.5) it is sufficient to 
consider only the primes ^3|po dividing the basis discriminant of {UJ}. 
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3. Computat ion of integral bases 

On the other hand we have the following situation: If o is a noetherian Krull domain 
of higher dimension, i.e. a polynomial ring (2.1), then there exist several types of 
field extensions with integral bases. In these cases explicite formulas of computation 
for the bases can be given. We prove the local integral bases property and apply 
the localization method mentioned in criteria b of section 1 and in [5]; this shows 
the property of a global integral basis and gives formulas for its computation. 

We consider algebraic extensions of the field of quotients K of o of the kind: 

L = #(2/1,2/2,. . . J fym), (3.1) 

yjj14 = B^ € K, n = lcm(ni, . . . ,nm) (n = l , . . . ,m) , char (If) \ n. 

Let cn be a primitive n-th root of unity. If en £ K then L is called a Kummer-
extpnsion of exponent n. We may assume that n ^ n ^ - i , n = n m , no — 1 and 
that all the £?M are integral elements of a Krull domain o of K. According to [5], 
Theorem IVa we have 

Theorem 3.4. Let K = A,(xi,...,xm) be a rational function field, k the field of 
quotients of the principal ideal domain On containing the n-th root of unity and L 
he a Kummer-extension of exponent n then the integral closure DL of o always has 
an integral basis.- More general if o is a Krull domain of a separable extension F of 
K and if n is a unit in o and if the Kummer-extension L of F has a distinguished 
generation, then also an integral basis of DL over o can be calculated. 

Remark 3. The integral basis consists of products of powers of the elements 2/p 
modified by factors of the elements B^, i.e. it has the form 

m 

{•••i n y{» ' K1....^ •••} f o r i < v* < *M> /* = ! . •••>m; (3-2) 
p=i 

the elements bix ,...,tm £ K are suitable factors of B^ in (3.1). If these elements can 
be constructed in K the generation is called distinguished. 

If en $ K an extension (3.1) is called a raa^cai-extension (multi-radical-extension) 
of K. Applying the theory of local fields the existence of integral bases can be proved 
in a similar way for m = 1, i.e. for a single equation. This is shown in [6]. The 
following theorem contains the results for a radical equation of prime degree p, i.e. 
yP = B G o, also if p is not a unit in o. This gives an improvement of theorem 3.1 
for this case. 

Theorem 3.5. Let K = k(x\, . . . ,xm) be a rational function field, k the field of 
quotients of the principal ideal domain Oo and L a radical extension of prime degree 
p, then the integral closure DL of o = 0n[xi, ...,xn] always has an integral basis. -
More general if o is a Krull domain of a separable extension F of K and if L is a 
radical-extension of F of prime degree p with a distinguished generation, then also 
an integral basis of DL over o can be calculated. 
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Remark 4- In the rational čase we may assume that 0 < vp(B) < p for all p of o. 
We háve to consider two subcases: 
(a) If vv(B) > 0 for all p\p then we obtain a modified power basis of the form 

{u} = {1,..., if • g;\ ...}, (i/ = 1, ...,p - 1), (3.3) 

with suitable factors gv G o of J3. - If char(i^) = p or if Oo D Q all p are of this 
kind. 
(b) If Vp(B) = 0 for some p|p we need the following corresponding numbers 

ep = u p (p), ej = e p - — - , (3.4) 

/3P = max(/J G No | 3a p G o such that vp(a£ - B) = /?). 

Then there exists an integrál basis ([6],II, Satz 5.4, 5.6 and III, Satz 3.5) of the 
form 

{u} = {1, . . . , (y - a)" • g~\ -..} (i/ = 1, ...,P - 1) (3.5) 

with suitable factors gu G o determined by B where a G o is determined with the aid 
of approximation by the ap . In the speciál čase K = Q this result is mentioned in 
[9],(Kap.III).- The extension L over F is distinguished if the corresponding factors 
gv can be calculated in F. 

Let the íield K of quotients of the Krull domain o be of prime characteristic, i.e. 
char(iť) = p. Then a separable and cyclic extension L of the form 

L — K{y), p(y) =yp-y = BeK( and G o respectively ) (3.6) 

is called an ^rčm-^c/ireier-extension. This is of speciál interest for function fields 
of several variables in prime characteristic p. 

Theorem 3.6. Let K = k(x\1..., xm) be a rational function field over a field k with 
char(fc) = p and L an Artin-Schreier-extension of prime degree p, then the integrál 
closure OL of o — k[xi,..., xn] has an integrál basis.- If K is the field of quotients of 
a generál Krull domain and L is a distinguished extension then there exists again 
an integrál basis. 

Remark 5. In the čase of a factorial ring o the constant term of the equation (3.6) 
can be transformed to 

B=~x7 X"' G, T T P € O ( p = l , . . . , r ) , Xp > 0, (3.7) 

where the 7TP are prime elements of o corresponding to ramified or inseparable 
primes. Then according to [6], III, Satz 4.3 we obtain again a modified power 
integrál basis 

{1,2/t / i , . . . ,2/P"~10P-I}, gP G o, (3.8) 

where the gp are suitable power products of the TXP. - If in the generál čase a 
representation (3.6) can be found the extension is called distinguished and we háve 
the samé result. 
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If en $ K the investigation of abelian extensions of exponent n of the field K of 
quotients of a Krull domain can be reduced to Kummer or radical extensions by a 
method sketched in [7], section 5. We illustrate this method for n = p and consider 
the fields 

Kp = K(ep) and Lp = L(ep), ep = p-th root of unity , [Lp : Kp] = g, (3.9) 

and special radical extensions of Kp (for more general cases see [3]). 

Theorem 3.7. Let K = k(xi, ...,a;m) be a rational function field, ep $_ k, char(k) ^ 
p and L a cyclic extension of prime degree p. Then the integral closure £)L of 
o = kfxi, ...,xn] always has an integral basis.- If in a more general case of K and o 
there is a distinguished cyclic extension L then there exists again an integral basis. 

Remark 6. Let Lp = Kp(y) have the special generation yp — B € o and let g = p — 1 
then there exists the modified normal basis of L over K 

{u} = { l ,u ,c / ( t i ) , . . . ,a p - 2 (w)}, Gal(L/K) = (a), (3.10) 

n = ] T r ' fo) , Gal(Iv-p/X) = <r>. 
i=0,...,p-2 

If # < p — 1 then a more complicated formula for u has to be used; modified versions 
of the integral basis also can be given (see [3], Satz III.5 and Satz III.3). - If K is 
the field of quotients of a Krull domain o where p is a unit of o and if in Kp the 
special form of B can be constructed then the extension is called distinguished and 
an integral basis can be constructed. 

According to these theorems the radical extensions or cyclic extensions of degree 
p of factorial Krull domains o = k[xiy ...,xn] always have an integral basis. This can 
be generalized for single radical extensions of arbitrary degree ([6]) and Kummer 
extensions ([5]). 

If m > 1 multi-radical extensions (3.1) over Dedekind domains in Q or in number 
fields or in other fields can be described as in [9] and in [12] by composition of the 
results of theorem 3.2. Especially in the case of arithmetic function fields over a 
number field the condition that p is a unit of o has to be considered separately. 
A quite similar method gives explicit integral bases for multi-radical extensions of 
exponent p of Krull domains o = k[x\,..., xn]. 

For special abelian extensions of the above mentioned fields the existence can 
also be proved by explicitly given bases. - The same method works for multi-Artin-
Schreier extensions of exponent p because these extensions are distinguished. In 
this case and for abelian extensions we obtain also modified power bases or normal 
integral bases. 

These results suggest the conjecture that for all solvable extensions of quotient 
fields of rings of type (2.1) an integral basis is existing and can be computed by 
explicit formulas. 
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