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A characterization of tame Hilbert-symbol 

equivalence 
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Abstract: We prove that two number fields are tamely Hilbert-symbol equivalent if and only 
if they have isomorphic Knebusch-Milnor exact sequences for the Witt groups of quadratic 
forms. 
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1. Introduction 

A Hilbert-symbol equivalence between number fields K and L is a pair of maps 
(t, T) in which 

t:K*/K*2 —> L*/L*2 

is an isomorphism of square-class groups, and 

T : QK —> QL 

is a bijection between the set of places of K and those of L, preserving Hilbert 
symbols in the sense that 

(a,6) p = (ta,tb)Tp 

for all square-classes a,b € K*/K*2 and all places p of K. 

We recall that there is a Hilbert-symbol equivalence between K and L if and 
only if the Witt rings W(K) and W(L) of quadratic forms are isomorphic ([5]). If 
(t,T) is a Hilbert-symbol equivalence, then T always maps real infinite places to 
real infinite places, finite places to finite places, and dyadic places to dyadic places 
(see Lemma 4 of [5]). 

The equivalence (t, T) is said to be tame at the finite place p if 

ordp a = ordrP ta (mod 2) 

Supported by the State Committee for Scientific Research (KBN) of Poland under Grant 2 P03A 
024 12. 



192 Kazimierz Szymiczek 

for all square classes a e K*/K*2; otherwise (t,T) is wild at p. We say that (t,T) 
is tame when it is tame at every finite place p of K. 

It was an early observation that tamely equivalent fields produce isomorphic 
Knebusch-Milnor exact sequences. ^Frorn this it follows immediately that tame 
Hilbert-symbol equivalence preserves the integral Witt rings of the fields and also 
the 2-ranks of ideal class groups. In this paper we prove the converse: if two 
number fields have isomorphic Knebusch-Milnor exact sequences, then they are 
tamely Hilbert-symbol equivalent. Thus we get a complete characterization of 
tame Hilbert-symbol equivalence in terms of the Knebusch-Milnor sequences. 

2. Knebusch-Milnor exact sequence and tame equivalence 

Tame Hilbert-symbol equivalence between number fields K and L can be natu­
rally interpreted in terms of the Knebusch-Milnor exact sequences for K and L. In 
this section we explain the Knebusch-Milnor sequence and we discuss in detail the 
connection with tame Hilbert-symbol equivalence. 

Knebusch-Milnor sequence 
For a number field K let OK be its ring of integers and C(K) the ideal class group 
of K. Write VLK for the set of all finite places of K. For each p G VLK, let Kp be the 
p-adic completion of K, and Kp the residue class field of Kp. Then, with p running 
over all finite places of K we have the following Knebusch-Milnor sequence for the 
Witt groups W(OK),W(K) and W(K~P) : 

0-> W(OK)^W(K)^]]LW(KP')^C(K)/C(K)2 -»0 . (1) 

p 

Here i is the natural injection. We recall now the definition of &K- First consider 
the composition 

dp : W(K) —> W(KP)-%W(K~P) 

where the first arrow is the natural surjection and the second arrow is the second 
residue class homomorphism. The latter can be defined only after fixing a prime 
element TT in Kp. Then every element a 6 W(KP) can be written as 

a = ( a i , . . . ,afc,6i7r,... ,6m7r), 

where a,i,bj are units in KP) and we set 

d;(a) = (bu...,bm)eW(K~p), 

where b is the canonical image of the p -ad ic unit b in the residue class field Kp. 
Notice that this construction does not distinguish between dyadic and nondyadic 
primes. When p is a dyadic prime, then W(KP) = {0,1} = Z/2Z, and 

dp'(a) = ordp dis a + 2Z = m + 2Z, 
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where d isa is the discriminant (signed determinant) of a. For any fixed a G W(K) 
we have dp(a) — 0 for almost all primes p. Hence the map 

dK:W(K)—>]1W(K;), 8K(a) = (<9p(a)) 
P 

is well defined and is said to be the boundary homomorphism. 
It remains to recall the definition of A. Let rj = (np) G U p W(KP). We set 

A(*7)=[npe("p)]cw2-

Here e : W(KP) —> Z/2Z is the dimension-index homomorphism, and the square 
brackets are used to denote the ideal class in C(K). 

The proof of the exactness of the Knebusch-Milnor sequence is found in [4] and 
[6]. Milnor and Husemoller concentrate on the exactness of the sequence (1) at 
W(K) (cf. [4], Cor. (3.3), p. 93) and give hints on how to prove the exactness at 
the next group in the sequence. Scharlau ([6], Theorem 6.11, p.227) gives a proof 
for the latter. 

Tame equivalence 
When the equivalence (£, T) is tame, then we have the following commutative dia­
gram with exact rows 

0 -> W(OK) -> W(K) -̂ -> UpW(K^) -> C(K)/C(K)2 -> 1 

i 1* b _ i (2) 
0 -> W(OL) -> W(L) -^ UpW(LTp) -> C(L)/C(L)2 -> 1 

where the first two vertical arrows are ring isomorphisms and the remaining two 
vertical arrows are group isomorphisms. The isomorphism Tp sends the group W(KP) 
of the upper coproduct onto the group VV(LTp) of the lower coproduct. Thus Tp 
acts coordinate-wise according to the matching of coordinates supplied by the map 
T. This is one of the results proved in earlier versions of [5] and omitted in its final 
printed version. Czogaia reproduces this proof in his recent paper [2]. Czogala 
asked the following question: 

Suppose K and L are Hilbert-symbol equivalent fields and there is a commu­
tative diagram (2). Does it then follow that K and L are tamely Hilbert-symbol 
equivalent? 

It turns out that in order to answer this question it is necessary to make it 
more specific. First of all, the isomorphism Tp (defined in a 1989 version of [5]) has 
always been viewed as a group isomorphism. The truth, however, is that Tp is a ring 
isomorphism. The coproduct Up^ r(-c-'p) has the ring structure with multiplication 
defined coordinate-wise. Although OK certainly is not a ring homomorphism, when 
K and L are tamely Hilbert-symbol equivalent one can easily show that the additive 
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isomorphism Tp is a ring isomorphism (see Remark 2 below). Hence we are led to 
the following modification of Czogala's question: 

Suppose K and L are Hilbert-symbol equivalent fields and there is a commutative 
diagram (2) in which <p and Tp are ring isomorphisms. Does it then follow that K 
and L are tamely Hilbert-symbol equivalent? 

The answer is yes, and this will be shown in section 4. Here we recall some 
fundamentals about Hilbert-symbol equivalence and we explain why Tp is a ring 
isomorphism. 

Lemma 1. Let (t,T) be a Hilbert-symbol equivalence between K and L. 

(a) There is an associated ring isomorphism tp : W(K) -> W(L) satisfying 
ip(a) = (ta) for all a G K*. 

(b) For each p G FIK there is an induced ring isomorphism (pp : W(KP) ~> 
W(LTP) satisfying <pp(a) = (ta) for all a G K*. 

Proof. For any p G QK the group isomorphism t induces a map 

tp •. K;/K;2 -4 LTp/L*T\ 

which is a local symbol-preserving group isomorphism. Now t and tp can be used 
to define the associated ring isomorphisms ip and (pp satisfying ip(a) — (ta) and 
ipp(a) = (tpa) for all a G K*. For details, see Lemma 4(a) and Corollary 1 in [5]. rj 

Lemma 2. Let (t,T) be a Hilbert-symbol equivalence between K and L and let 
ip : W(K) —> W(L) be the associated Witt ring isomorphism. Let p G 0>K he a 
fixed prime. The following are equivalent. 

(a) There is a commutative diagram 

(3) 

where ~~ is a ring isomorphism. 

(b) There is a commutative diagram (3). where Tp^ is a group isomorphism. 

(c) The equivalence (t,T) is tame at p. 

Proof, (a) =-> (b) is trivial so we begin with (b) => (c). Consider a square class 
a G K*/K*2. Then, for the 1-dimensional class (a) G W(K), we have 

W(K) -^ w(Җ) 
l* к 

W(L) ^ w(ЪTP) 

ordp a = 0 (mod 2) Ф=> дp(a) = 0 <=> Ҷpдp(a) = 0 
<=-> дTpҶ>(a) = 0 <ř=> дTp(ta) = 0 
<=> ordтp ta = 0 (mod 2). 

This proves that (t,T) is tame at p. 

(c) => (a) First assume that p is a nondyadic prime of K. We fix a local prime 
class 7r G K*/K*2, and then we have the direct sum decomposition 

W(KP) = UW(KP) 0 (n)UW(Kp) 



A characterization of tame Hilbert-symbol equivalence 195 

of the additive group W(KP), where UW(KP) is the subring of W(KP) generated 
by the classes (u) of the local units u in Kp (see [3], Cor. 1.6, p. 145). Since (t,T) 
is tame at p, the element tp(7r) in LTp/Lj?p can be chosen as the square class of a 
prime at Tp and again we have 

W(LTp) = UTV(LTP) 0 (tp(7r))UW(LTp). 

For the induced ring isomorphism (fp ' W(KP) —> W(LTp) of Lemma 1 we have 

ipp(UW(Kp)) = UW(LTp) and ^P((TT)UW(KP)) = (tp(ir))UW(LTp). 

We use 7r and tp(ir) to define the second residue class homomorphisms dp and c^.p, 
respectively. Then dp restricted to (7r)UTV(1\p) becomes a group isomorphism 

&; : (n)UW(Kp) -> W(TQ, 

and similarly 
dTp : (tp(rr))UW(LTp) -* W(L„) 

is a group isomorphism. Hence there is a unique group isomorphism Jp^ fitting into 
the commutative diagram 

W(KP) -+ (n)UW(Kp) % W(K~P) 

[<PP {<PP [¥i (4) 

W(LTp) -> (tp(ir))UW(LTp) ?k W(TT~P) 

of additive group homomorphisms. Here the unlabelled horizontal arrows are the 
projections with the kernels UW(I\~P) and UW(LTp), respectively. 

We extend the diagram (4) to the left by inserting the natural ring homomor­
phisms W(K) -* W(KP) and W(L) -> TV(LTp). We obtain 

W(K) -> W(KP) % W(TQ 

VV(L) -> W(LTp) % w(UFP) 

which produces the commutative diagram (3). It remains to show that Tp^ is, in fact, 
a ring isomorphism. This follows from the following computation for the additive 
generators (u), (v) e W(KP), where u, v G Kp are p—adic units: 

Jpp-((u) • (v)) = (p^(uv) = ^9^((UVTT)) 

= d!±po<pp((uvir)) = d%(tp(uv7r)) 
= d£p(tpu • tpv • tpir) = (tpu) • (tpv) 

= ^ ( ^ ' ^ P ^ ) , 

where the second last equality uses the tarneness of ( t ,T) at p. 
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Now assume that p is a dyadic prime of K. Then for any a G W(K) we have 

dp(a) = ordpdisa (mod 2). 

Since (t,T) is tame at p, we have 

dp(a) = ordpdisa = ordrP£(disa) = ordrP disy(a) = dTP(ip(a)) (mod 2). 

With Tpl the identity map on W(KP) = Z/2Z = VV(L^P), this proves the commu-
tativity of (3). rj 

Remark 1. The equivalence of (a) and (b) is a trivial matter since the Witt 
rings of finite fields are isomorphic (as rings) if and only if their additive groups are 
isomorphic. Moreover, if a ring isomorphism exists, it is unique. 

Remark 2. Now we can show that in the case when ( t ,T) is a tame Hilbert-
symbol equivalence the isomorphism Tp in the commutative diagram (2) is a ring 
isomorphism. It is defined as the coproduct of the homomorphisms Tp^. But by 
Lemma 2, these isomorphisms are ring isomorphisms, hence so is their coproduct. 

3. An abstract lemma 

In this section we will describe all isomorphisms between the rings 

P(K) := U W(TQ and P(L) := ]J W(TTq). 
p q 

We will view the coproducts P(K) and P(L) as the internal direct sums of the 
subrings W(KP) and W(Lq), respectively. These direct summands are orthogonal 
in the sense that 

W(K-Pl)-W(K~P2)=0 

for pi, P2 £ FIK and pi ^ P2, and similarly for the summands of P(L). Observe also 
that each W(KP) is a ring with identity element but P(K) does not have an identity 
element. It is fairly obvious how to construct some special ring isomorphisms 
4> : P(K) —> P(L ) . Clearly, when r : VLK -> fU is a bijective map such that for 
p G O K and q = r(p) € fiL there is a ring isomorphism # p : W(KP) -> W(Lq), 
then 

$ = JJ $P : P(K) -> P(L) 
p 

is a ring isomorphism. We now show that these are the only ring isomorphisms 
between P(K) and P (L ) . 

Lemma 3. Let K and L be algebraic number fields and let $ : P(K) -> P ( L ) be a 
ring isomorphism. Then there is a bijective map 

r : CIK —> OL 

such that for each p E SIK o,nd q = r(p) we have 

$(w(irp)) = w(rq). 
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Proof. We choose and fix an arbitrary prime p E VLK and we will match p with 
a suitably chosen prime q G $1L- We write l p for the identity element in W(KP). 
Clearly, 

W(K-p) = lp-P(K), 

hence taking the images under the ring isomorphism $ we get 

*(W(R-P)) = * ( l p • P(K)) = * ( l p ) • *{P(K)) = * ( l p ) • P(L) . (5) 

We begin with three general remarks. First, $ ( l p ) is a nonzero idempotent in P(L). 
Second, $ ( l p ) has at most two nonzero coordinates. For if 

* ( l p ) = 0 i + • • • + & , where O / f t e l V f t ) , 

then according to (5), 

*(W(.Kp)) = * ( l p ) • P(L) = pi • W(Tqi) © • • • © 0k • w(Z~,) (6) 

and this has only 2 or 4 elements. But each of the direct summands has 2 or 4 
elements so that we must have A; < 2. 

Third, when p is a dyadic prime, then k = 1. Indeed, #W(KP) = 2 for a dyadic 
prime p and the direct summands in the decomposition (6) have at least 2 elements 
each. Hence k = 1. 

Now consider the case when k = 1. Then there is a unique q € fiL and an element 
0 = $ ( i p ) G JV(Lq~) such that 

* ( W ( 7 Q ) = /? • P(L) = /3 • W ( ] Q - (7) 

If p is a nondyadic prime, then #W(KP) = 4, and (7) forces that q is a nondyadic 
prime and /3-IV(Lq) = W(Lq). Now we set r(p) = q, and then we have $(W(KP)) = 
W(Lq), as required. 

If p is a dyadic prime and q is nondyadic, then #W(KP) = 2, and (7) forces 
that /3 is a nilpotent element in W(Lq) (the nonzero elements are either invertible 
or nilpotent). Then, however, ^ ( l p ) = (3 is impossible, since $ ( l p ) is a nonzero 
idempotent. Thus, if p is a dyadic prime, so is q and $( lp) = l q (as lq is the 
only nonzero element in W(Lq)). It follows that for the dyadic prime p we can set 
r(p) = q, and then also $(W(KP)) = VV(Lq), as required. 

It remains to consider the case when k = 2, that is, when 

* ( l p ) = 0i + 02, 0 ?- A € KV(i;.), 2 = 1,2. 

We will show that this case cannot occur. Otherwise we have 

HW(K~P)) = » ( i p ) • P(L) = A . P V ^ ) e h • w ( i ; 2 ) , 

and by our third remark p is a nondyadic prime. If qi or q2 is nondyadic, then 
either 0\ or 02 is not invertible, since otherwise the RHS would have more than 4 
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elements. Hence at least one of them, say /?i, is nilpotent with vanishing square, 
and so 

$ ( l p ) = ^(l2
p)=/31

2+/52
2 = /32

2, 

a contradiction (we would have k = 1). Hence necessarily qi and q2 are dyadic 
primes and then we must have 0\ = lqi,/?2 = lq2. But then we consider the ring 
isomorphism $~l and as above we find unique dyadic primes pi, p2 £ fi/v such that 

$ - 1 ( l q i ) = lP l and ^>-1(lq2) = lP2 . 

Then it follows 

lp - $-1(/31 + fa) = $-l(lqi) + Z-HK) = Ipi + lPa, 

which is inconsistent with the direct sum decomposition of P(K). This shows that 
k = 2 is impossible. 

Summing up, given a ring isomorphism $ : P(K) -> P(L) we have defined a 
map r : QK -> QL satisfying 

r(p) = q <=> *(W(K-p)) = W(Q 

for all p G $IK> It remains to show that r is a bijective map. For this we consider 
the inverse ring isomorphism <0_1 : P(L) -> P(K). Then by the above result there 
is a map T\ : QL —* &K satisfying 

n(q ) = p <=> $~l(W(Tq)) = W(TQ. 

for all q G i l / , . Combinig the two equivalences we have 

r ( p ) = q <==> n ( q ) = p, 

that is, T\ is the inverse map for r. Hence r is bijective, as desired. rj 

4. Main result 

We are now in a position to give a characterization of tame Hilbert-symbol equiv­
alences in terms of commuting diagrams 

(8) 

Theorem. Let (t, T) be a Hilbert-symbol equivalence between number fields K and L 
and let <p : W(K) -> W(L) be the associated Witt ring isomorphism. The following 
are equivalent. 

(a) The equivalence (t,T) is tame. 

W(K) дк 
ЦpWФ-p) 

!*> I * 
W(L) дL> U*W(Lą) 
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(b) There is a commutative diagram (8), where $ is a ring isomorphism. 

Proof, (a) => (b) When (t,T) is a tame Hiibert-symbol equivalence between K 
and L, then for each finite prime p of K there is a commutative diagram (3) of 
Lemma 2, where ~~ : W(KP) —> W(Lq) is a ring isomorphism. Then $ := LIp<~p~1S 

a ring isomorphism, and we obtain a commutative diagram (8). 

(b) => (a) According to Lemma 3 there is a bijective map r : QK -> HL such 
that for each p G QK a nd q = r(p) we have $(W(KP)) = VV(Lq). We will show 
that T = T, that is, r(p) = T(p) for all p G H/c. We distinguish two cases. 

Case 1. p is a nondyadic prime. 

Suppose q := r(p) ^ T(p). Then there are a,b G K*/K*2 such that 

(a,b)p = (ta,tb)Tp — 1 and (ta,tb)q = —1. 

Thus (1, —a, —b,ab) = 0 G W(Kp) and we have 

* r 9 p < l , - a , - M & ) = $(0) = 0. 

On the other hand, (1, —ta, —tb,tab) is anisotropic over Lq, hence isometric to the 
unique anisotropic quaternary quadratic form (1, — u, —n, un) over Lq, where u is a 
q—adic unit and n is a q—adic prime. Hence 

dq(p(l, -a, —b,ab) = dq(l, -ta, —tb,tab) = <9q(l, -u, -TT,U7T) = {—-1,fi) 7- 0, 

contradicting the commutativity of (8). Hence r(p) = T(p), as desired. 

Case 2. p is a dyadic prime. 

We say that a G K* is an isolated dyadic nonsquare (IDN, for short) if there is 
a dyadic prime p of K such that a £ K*2 and a G K*? for the remaining dyadic 
primes P of K. Then we also say that a is an IDN at p. 

Clearly, a G K* is an IDN at p if and only if a62 is IDN at p for all b G K*. 
Hence we can speak of IDN square classes aK*2. 

Isolated dyadic nonsquares exist: a number a G K* close to a nonsquare at p 
and close to 1 at remaining dyadic primes is an IDN at p. 

An application of Lemma 1(b) shows that 

if a G K*/K*2 is an IDN at p, then ta G L7L*2 is an IDN at Tp. 

In fact, (ta) = <pp(a) 7- l^p, hence ta is a nonsquare at Tp, and (ta) = tp?(a) = 
ITP for dyadic P 7- p, hence ta is a square at TP. 

Now choose a G K* to be a local prime element at p and a square at all the 
remaining dyadic primes of K. Then a is an IDN at p. We use the prime element a 
to define the second residue homomorphism dp. By the commutativity of (8), 

dT(p)(ta) = dT{p)<p(a) = $<9p(a) = $ ( l p ) = l r ( p ) . 

Hence ta is a nonsquare at r (p) , and as observed above, ta is an IDN at T(p). Hence 
r(p) = T(p), as desired. 
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Summing up the results of the two cases we have proved that r = T. Thus 
in the commutative diagram (8) we have $(W(KP)) = W(LTp), and at the p - t h 
coordinate of the coproduct LIp W(KP) the diagram (8) reduces to the commutative 
diagram (3). By Lemma 2, it follows that (t,T) is tame. rj 

We make one final comment on the diagram (3). Lemma 3 asserts that the 
existence of such a diagram is equivalent to the tameness of the given Hilbert-
symbol equivalence at p. It is of some importance to realize that a similar diagram, 
with Witt rings of residue class fields replaced by Witt rings of the local fields, 
characterizes the Hilbert-symbol equivalence itself. 

Proposition. Let (t,T) be a Hilbert-symbol equivalence between number fields K 
and L and let <D : W(K) —> W(L) be the associated Witt ring isomorphism. Let 
p € Q.K be a fixed prime. The following are equivalent. 

(a) There is a commutative diagram 

(9) 

where q £ QL and t/> is a ring isomorphism. 

(b) Kp and Lq are Hilbert-symbol equivalent in the sense that 

(a, b)p = (ta, tb)q for all a, b € K*. 

(c) q = T(p). 
Proof, (a) =-> (b) For a 6 K* we have ip(a) = (ta), so that by commutativity of 

(9) we get *p(aK;2) = (taL*2). Hence for all a,b € K*, 

V>(1, —a, -b, ab) = (1, -ta, -tb, tab), 

and so 

(a, b)p = l <^> (1, -a, -b, ab) = 0 € W(KP) 
(1, -ta, -tb, tab) = 0 £ W(Lq) 
(ta, tb)q = 1. 

(b) => (c) By the Hilbert-symbol equivalence, (a,6)p = (ta,tb)rp for all a, b € K*. 
Hence 

(ta, tb)q = (ta, tb)Tp for all ta, tb E L*/L*2, 
and q = Tp follows. 

(c) => (a) Take ip = </?p and apply Lemma 1. • 
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