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Complete solution of a family of simultaneous Pellian 
equations 

Andre] Dujella 

Abstract: Let ck = P2
k -f 1, where F^ denotes the kth Pell number. It is proved that for 

all positive integers k all solutions of the system of simultaneous Pellian equations 

z2 - ckx
2 = ck - 1, 2z2 - cky

2 = ck - 2 

are given by (x,T/,z) = (0, ±1, ±P2k). 

This result implies that there does not exist positive integers d > c > 2 such that the 

product of any two distinct elements of the set 

{l,2,c,d} 

diminished by 1 is a perfect square. 
Key Words: simultaneous Pellian equations, Diophantine quadruples, Pell numbers 
Mathematics Subject Classification: 11D09, 11D25 

1. Introduction 
Diophantus studied the following problem: Find four (positive rational) numbers 
such that the product of any two of them increased by 1 is a perfect square. He 
obtained the following solution: -—, ff, T ' W ( s e e -7-)* T h e ^ r s t s e t ° ^ o u r positive 
integers with the above property was found by Fermat, and it was {1,3,8,120}. 

In [4] and [8] the more general problem was considered. 

Definition 1. Let n be an integer. A set of positive integers {ai, a 2 , . . . , a m } is said 
to have the property D(n) if aiaj 4- n is a perfect square for all 1 < i < j < m. 
Such a set is called a Diophantine m-tuple (with the property D(n)) or a Pn-set of 
size m. 

In 1985, Brown [4], Gupta and Singh [13] and Mohanty and Ramasamy [16] 
proved independently that if n = 2 (mod 4), then there does not exist a Diophantine 
quadruple with the property D(n). In 1993, Dujella [8] proved that if n ^ 2(mod 4) 
and n g S -= {-4, - 3 , - 1 , 3 , 5 , 8 , 1 2 , 2 0 } , then there exists at least one Diophantine 
quadruple with the property D(n). The conjecture is that for n G S there does not 
exist a Diophantine quadruple with the property D(n). 
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A famous open question is whether there exists a Diophantine quintuple with 
the property D(l). The first result in that direction was proved in 1969 by Baker 
and Davenport [2]. They proved that the Diophantine triple {1,3,8} cannot be ex­
tended to a Diophantine quintuple with the property D(l). Recently, we generalized 
this result to the parametric families of Diophantine triples {k,k + 2,4k + 4} and 
{F2k, F2k+2, F2k+4}, k E N (see [9, 10]), and in the joint paper with A. Petho [12] 
we proved that the Diophantine pair {1,3} cannot be extended to a Diophantine 
quintuple. 

In the present paper we will apply the similar methods to the special cases of 
the following conjecture. 

Conjecture 1. There does not exist a Diophantine quadruple with the property 
D(-l). 

It follows from the theory of integer points on elliptic curves (see [1]) that for 
fixed Diophantine triple {a,b,c} with the property D(~1) there are only finitely 
many effectively computable Diophantine quadruples D with {a,b,c} C D. 

Assume that the Diophantine triple {a,b,c} with the property D(~~l) can be 
extended to a Diophantine quadruple. Then there exist d,x,y,z such that 

ad ~ 1 = x2, bd ~ 1 = y2, cd - 1 = z2. 

Eliminating d, we obtain the following system of Pellian equations 

ay2 ~ bx2 = b — a, 
2 2 

az — ex — c ~ a, 

bz2 - cy2 = c~b. 

Thus Conjecture 1 can be rephrased in the terms of Pellian equations. 

Conjecture 2. Let a,b,c be distinct positive integers with the property that there 
exist integers r,s,t such that 

ab — 1 = r2 , ac — 1 = s2, be — 1 = t2. 

If 1 £ {a,b,c}, then the system of Pellian equations 

ay2 — bx2 — b~a, az2 ~ ex2 ~ c ~ a (1) 

has- no solution. If a = 1. then all solutions system (1) are given by (x,y,z) = 
(0,±r,±s). 

For certain triples {a,b,c} with 1 $ {a,b,c}, the validity of Conjecture 2 can 
be verified by simple use of congruences (see [4]). It seems that the case a = 1 
is more involved and until now Conjecture 2 was verified for triples {1,2,5} (by 
Brown [4]), {1,5,10} (by Mohanty and Ramasamy [15]), {1,2,145}, {1,2,4901}, 
{1,5,65}, {1,5,20737}, {1,10,17} and {1,26,37} (by Kedlaya [14]). 

In the present paper we will verify Conjecture 2 for all triples of the form {1, 2, c}. 
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First of all, observe that the conditions c — 1 = s2 and 2c — 1 = t2 imply 

t2 - 2s2 = 1 (2) 

All solutions in positive integers of Pell equation (2) are given by s = Sk = P2k, 
t = tk = Q2k, where (Pk) and (Qk) are sequences of Pell and Pell-Lucas numbers 
defined by 

P i = l , P2 = 2, Pk+2 = 2Pfc+i + P*, 

Qx = 1, Q2 = 3, Q*+ 2 = 2Qfc+i + Qk. 

Hence, if { l ,2 ,c} is a Diophantine triple with the property -O ( - l ) , then there exists 
k > 1 such that 

c = ck = P 2 \ + 1 = ~[(1 + x/2)4* + (1 - V2)4k + 6]. (3) 

Now we formulate our main results. 

Theorem 1. Let k be a positive integer and Ck = P|fc + 1. All solutions of the 
system of simultaneous Pellian equations 

z2 - Ckx2 = ck-l (4) 

2z2 - chy
2 = ck~2 (5) 

are given by (x,y,z) = (0, ± 1 , ±P2k). 

Remark 1. Since ci = 5, c2 = 145 and c$ = 4901 we may observe that the case 
k = 1 of Theorem 1 was proved by Brown [4] and the cases k = 2 and k = 3 by 
Kedlaya [14]. 

;,From Theorem 1 we obtain the following corollaries immediately. 

Corollary 1. The pair {1,2} cannot be extended to a Diophantine quadruple with 
the property D( — l). 

Corollary 2. Let k be a positive integer. Then the system of simultaneous Pell 
equations 

y2-2P?kx* = l 

z* - (P?k + l)x2 = 1 

has. only the trivial solutions (x,y,z) = ( 0 , ± 1 , ± 1 ) . 
Let us mention that Bennett [3] proved recently that systems of simultaneous 

Pell equations of the form 

y2 - mx2 = 1, z2 - nx2 = 1, (0 ?- m ^ n ^ 0) 

have at most three nontrivial solutions, and suggested that such systems have at 
most one nontrivial solution, provided that they are not of a very specific form 
which is described in [3]. 
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2. Preliminaries 

Let k be the minimal positive integer, if such exists, for which the statement of 
Theorem 1 is not valid. Then results of Brown and Kedlaya imply that k > 4. 

Since neither Ck nor 2ck is a square we see that Q(s/c~k) and Q(\/2ck) are real 
quadratic number fields. Moreover 2c* - 1 + 2sk\/c~k = (sk + y/ck)2 and 4c* - 1 + 
2tky/2ck = (tk + y/2ck)2 are non-trivial units of norm 1 in the number rings Zf^/cT] 
and Z[̂ /5cjfe] respectively. 

The theory of Pellian equations guarantees that there are finite sets {z^ + 
xo y/^k ' i = 1 , . - . ,*o} and {z[J' + y[3'y/2ck • j — 1 , . . . ,jo} of elements of 
Z[-yc7] and Z[y/2ck] respectively, such that all solutions of (4) and (5) are given by 

z + xy/c = ( 4 ° +x0
i)x/c)(2c~- 1 + 2sy/c)m, i = 1 , . . . , t0, m > 0, (6) 

zy/2 + yyfc = ( ^ % / 2 + t / ^ v^)(4c - l + 2*\/2c")n, j = 1 , . . . , j 0 , n > 0, (7) 

respectively. For simplicity, we have omitted here the index k and will continue 
to do so. 

^From (6) we conclude that z = vm' for some index i and integer m, where 

v™ = 4i], v[i] = (2c - 1)4* + 2 « a # \ t#>+a = (4c - 2 ) t # + 1 - t # \ (8) 

and from (7) we conclude that z = Wn for some index j and integer n, where 

u#> = z< ' \ toW = (4c - l ) z [ j ) + 2tcy ( / \ u # + 2 = (8c - 2 ) ^ + 1 - «;«>. 

Thus we reformulated the system of equations (4) and (5) to finitely many Dio-
phantine equations of the form 

v(i) = wU)t 

If we choose representatives z^ + XQS/C and z[J'y/2 + y[J'y/c such that \z^\ and 

\z[J \ are minimal, then, by [17, Theorem 108], we have the following estimates: 

0 < l 4 i ) l < / | - 2 c - ( c - l ) < c ! 

0 < \z[j)\ < I . y i . 4 c - 2 ( c - 2 ) < c . 
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3. Application of congruence relations 

^From (8) and (9) it follows easily by induction that 

v^ = z^ (mod 2c), v&+1 = -zP (mod 2c), 

w%> = z[j) (mod 2c), tu^+i = -z[j) (mod 2c). 

Therefore, if the equation vm = Wn has a solution in integers m and n, then we 
must have \z0

i]\ = \z[j)\. 

Let do = [ ( 4 ° ) 2 + l\lc- T h e n w e h a v e : 

do - 1 = (x0
l))2, 2d0-l = (y[j))2, cd0 - 1 = ( 4 l ) ) 2 (10) 

and 

c2 - r 4- 1 
d0<~ < c . (11) 

c 

Assume that do > 1. It follows from (10) and (11) that there exist a positive integer 
/ < A: such that do = Q. But now the system 

z2 — C{X2 = ci — 1, 2z2 — c\y2 — c\ — 2 

has a non-trivial solution (rr,y,z) = ($*,£&, 2,3), contradicting the minimality of 
fc. Accordingly, do = 1 and |(^o )l — l(zi )l — s- Thus we proved the following 
lemma. 

Lemma 1. If the equation v% = Wri has a solution, then \ZQ\ = \z[ \ = s. 
The following lemma can be proved easily by induction. (We will omit the 

superscripts (i) and (j).) 

Lemma 2. 

vm = ( - l ) m ( z 0 - 2cm220 - 2c5mx0) (mod 8c2) 

wn = (-l)n(zi - Acn2zi - 2ctnyi) (mod 8c2) 

Observe that \zQ\ = \z\\ = 5 implies XQ = 0 and y\ = ± 1 . Furthermore, since we 
may restrict ourself to positive solutions of the system (4) and (5), we may assume 
that ZQ = z\ = s. If y = 1, then vi < wi for / > 0, and vm = wni n ^ 0 implies 
m > n. If y = — 1, then from v0 < w\ it follows vi < wi+\ for / > 0, and thus 
vm — wn implies m > n. 

Lemma 3. If vm = wn, then m and n are even. 

Proof. Lemma 2 and the relation z0 = z\ = 5 imply m = n(mod 2). If V2m+i = 
wI2n+i, then Lemma 2 implies 

(2m 4- l ) 2 s = (2n -f l)[(4n + 2)s ± t] (mod 4c), 
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and we have a contradiction with the fact that s is even and t is odd. D 

Lemma 4. If V2m = W2n, then n <m < n\/2. 

Proof. We have already proved that m > n. From (8) and (9) we have 

vm = | [ (2c - 1 + 2sv/c")m + (2c - 1 - 2sy/c)m) > ~(2c - 1 + 2s v
/ c ) m . 

w n = — p [ ( 5 v / 2 ± v
/ c ) ( 4 c - l + 2£v / ^) n + (sv /2 + v

/ c ) ( 4 c - l-2*\/2c")n] 
2\/2 

<5v^+^+l(4c _ 1 + 2 t ^ - ) B < l ( 4 c _ 1 + 2fV£)»+i. 
2\/2 2 

Since k > 4, we have c > C4 = 166465. Thus V2m = ^2n implies 

2m ^ l n ( 4 c - 1 + 2**7%) . . . . . . 
! < l n ( 2 c - l + 2S лÆ) < 1 0 5 1 7 -2n + I ln(2c - 1 + 2s^/c) 

If n = 0 then m = 0, and if n > 1 then (12) implies 

m < 1.0517n + 0.2630 < 1.3147n < n\f2 . 

(12) 

D 

Lemma 5. If' v<im — W2n o.nd n 7- 0. then m > n > —-=>/[4]c. 
v 2 

Proof. If f 2m = ^2n? then Lemma 2 implies 

2s(m2 - 2n2) = ±tn (mod 2c) 

and 

4(m2 ~ 2n2)2 = n2 (mod 2c). 
Assume that n ^ O and n < -^-v/[4]c. Since n <m < n\/2 by Lemma 4, we have 

| 2 s ( m 2 - 2 n 2 ) | <2yfcn2 < c, 

4(m2 - 2n2)2 < 4n4 < c. 

Thus, from n2 < c and £n < y/2cn < c we conclude that 

4(m2 - 2n 2) 2 = n 2 , and 2s(m2 - 2n2) = -tn. 

These two relations imply s2 = £2, a contradiction. D 
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4. Application of a result of Rickert 

In this section we will use a result of Rickert [18] on simultaneous rational approxi­
mations to the numbers \ / ( N — 1)/N and y/(N + 1)/N and we will finish the proof 
of Theorem 1. For the convenience of the reader, we recall Rickert's result. 

Theorem 2. For an integer N > 2 the numbers 

e?_ = x / ( N - l ) / N , 02 = y/(N + l)/N 

satisfy 
max( |0, ~ Pl/q\,\02 - p2/q\) >(271N)-1q-l-x 

for all integers p_, p2} q with q > 0, where 

log(12N v

/ 3 + 24) 
Л = A(/V) = 

log[27(Лt2-l)/32] 

Lemma 6. Let N = t2 and 0_ = y/(N - 1)/N, 02 = y/(N + yj/N. Then all 
positive integer solutions x, y, z of the simultaneous Pellian equations (4) and (5) 
satisfy 

r a a x ( | . 1 - - ^ | > | _ _ - ? - | ) < y - 2 . 
ty ty 

Proof. We have 0_ = fy/2 and 62 = \y/2c. Hence, 

_!_| = £|У2___| 
ty t y ť y2 ' y 

. . _ S _ , S. /- _ _ , S.„ 4 _ , , /- _ _ , , 
loi - — 1 = T I V ^ - — 1 = 7 I 2 - T Í T I " I > / 2 + T T I 

£ . 2\y2-2x2\ J_ 2 
S t y2 v/2 ^ 

and 

2_. 1, -— 2z, 2, 2z2 , , /— 2z._, 
fl--T- = 7 h ! - « = : . " T • v _ _ + — x 

ty t' y V y2 y 

2 |ci/2 - 2z2| 1 _ c-_2 J_ 1 _2 

< t ' y2 ' 2 ^ ~ *•./__ ' y2< 2y ' 
D 

Lemma 7. Le_ re, _/, z fee positive integers satisfying the system of Pellian equations 
(4) and (5). Then 

logy > 0.6575y/[4]clog (4c - 3 ) . (13) 
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Proof. Let z = Vm> Since x > 0, we have m ^ 0. From u2 — 2a;2 = 1 we obtain 

y > xV2 = ~[(2c - 1 4- 2*>/c)m - (2c - 1 - 2syfi)m] 
V2c 

> ( 2 c - l - h 2 . s V ^ ) m ~ 1 > (4c -3)m"K 

Now from Lemma 5 and k > 4 we conclude that 

logy > (m - 1) log(4c - 3) > 0.6575v/[4]clog(4c - 3). 

D 
Proof of Theorem 1. We will apply Theorem 2 for IV = t2 = 2c — 1. Lemma 6 

and Theorem 2 imply 

( 2 7 i ) - 1 ( < 2 / ) - 1 - A < y - 2 . 

It follows that 
yx~x < 2 7 1 E 3 + A < 271(2c - l ) 2 < 1084c2. 

Since c > 166465, we have 

1 _ log[27( IV 2 - l ) /32] 2 log (1.8372c) 
! - A = ^ 5 $ * ^ . ^ ( 0 - 0 8 1 1 8 0 ) 

and 

l o g v < 21og(1.8372c)log(1084^) 
g 2 / < log (0.08118c) • U ; 

Combining (13) and (14) we obtain 

r 2 log (1.8372c) log (1084c2) 
V l J 0.6575 log ( 4 c - 3 ) log (0.08118c)* l ; 

Since the function / (c) on the right side of (15) is decreasing, it follows that 

y/[4]c < / (c 4 ) = /(166465) < 9.349 

and c < 7639, which contradicts the fact that k > 4. • 

5. Concluding remarks 
In [14], Kedlaya proved the statement of Theorem 1 for k = 1, 2 and 3 using the 
quadratic reciprocity method introduced by Cohn in [5]. 

However, the application of elliptic curves gives us a stronger result. Namely, 
consider the family of elliptic curves £7*, k > 1, given by 

2/
2 = ( a ; - l ) ( 2 a ; - l ) ( c j f c a ; - l ) . 

The computational numbertheoretical program package SIMATH ([19]) can be used 
to check that for k = 1,2,3 the rank of Ek is zero, and the torsion points on Ek 

are 0 , 1 , | , j - . It implies that for k = 1,2,3 the set {l,2,c&} cannot be extended 
to a rational Diophantine quadruple with the property D(-l). 

Let us mention that Euler found a rational Diophantine quadruple with the 
property D(-l) and it was {|, | | , | | | , | | | } (see [6]), and as a special case of a two-
parametric formula for Diophantine quintuples in [11] the rational Diophantine 
quintuple {-^, ~, ~, 10, ^ } with the property D(-l) was obtained. 
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