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Two Open Problems in Communication in 
Edge-Disjoint Paths Modes 

Hans-Joachim Böckenhauer 

Abstract: Two open problems in communication in edge-disjoint paths modes are solved. 
The results achieved are the following: 

1. The complete binary tree of height h has the gossip complexity 2 • h in the one-way 
listen-in edge-disjoint paths mode. 

2. A class of graphs is constructed such that every graph of n nodes in this class has 
(maximum) broadcast complexity [log2 n] -f 2. This result shows that the upper bound on 
the (maximum) broadcast complexity in this communication mode, as it was shown in [8], 
is tight. 
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Mathematics Subject Classification: 90B12, 68Q22 

1. Introduction and Definitions 
The study and the comparison of the computational power of distinct intercon­
nection networks as candidates for the use as parallel architectures for existing 
parallel computers is an intensively investigated research branch of current theory 
of parallel computing. One of the fundamental approaches helping to search for 
the best (most effective) structures of interconnection networks is the study of the 
communication facilities of networks (i.e., of the complexity (effectivity) of solving 
fundamental communication tasks of information dissemination). 

Some of the basic communication tasks are broadcast, accumulation and gossip 
(an overview of the study of their complexity according to one-way and two-way 
communication modes can be found in [3], [4], [5]). 

Broadcast, accumulation, and gossip can be described as follows. Assume that 
each vertex (processor) in a graph (network)G has some piece of information. The 
cumulative message 1(G) of G is the set of all pieces of information originally 
distributed in all vertices of G. To solve the broadcast [accumulation] problem for 
a given graph G and a vertex u of G, we have to find a communication strategy 
(using the edges of G as communication links) such that all vertices in G learn the 
piece of information residing in u [that u learns the cumulative message of G]. To 
solve the gossip problem for a given graph G, a communication strategy such that 
all vertices in G learn the cumulative message of G must be found. Since the above 
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stated communication problems are solvable only in connected graphs, we note that 
from now on we use the notion "graph" for connected undirected graphs. 

The meaning of a "communication strategy" depends on the communication 
mode. A communication strategy is realized by a communication algorithm con­
sisting of a number of communication steps (rounds). The rules describing what 
can happen in one communication step (round) are defined exactly by the commu­
nication mode. Here, we consider the following two modes: 

1. One-way edge-disjoint paths mode (1EDP mode) 
One round can be described as a set P = {Px,... , Pk} for some k £ W, where 

P% = xi,i> • • • ixi,ti 1S a S i m P i e P a th of length l{ — 1, i = 1 , . . . , k. The paths 
P l 5 . . . ,P k are called the active paths of this round. The executed communica­
tion of this round consists of the submission of the whole actual knowledge of 
xi i t 0 xi li Yl3, P a th Pi for any i = 1 , . . . , k. The node x{ x is called the sender 
of P{i xit. is called the receiver of P i ? and the nodes x{ • for 2 < j < t{ — 1 
are called connectors (inner nodes) of P{. The connectors of P{ do not learn the 
message submitted from x{1 to xi£ , they are only used to realize the connection 
from xix to xi e.. 

The set of paths P must satisfy the following conditions: 

(1.1) Vi, j G { 1 , . . . , k},i 7-= j : P{ and P- are edge-disjoint, 

(1.2) {xt x\i = 1 , . . . , k} n {xi t.\i = 1 , . . . , k} = 0, i. e. no node may simultane­
ously be sender and receiver in one round, 

(1.3) \{x{ x\i = 1 , . . . , k}| = \{xi £ \i = 1 , . . . , k}| = fc, i. e. no node may be the 
sender (receiver) for more than one path, 

(1.4) {xitl,xittt\i = 1 , . . . ,k}n{xr<Jr G {l,...,k},sr € { 2 , . . . ,lT - 1}} = 0, 
i. e. the nodes of the paths of P can be partitioned into three disjoint sets: 
the set of senders, the set of receivers, and the set of connectors. 

2. One-way listen-in edge-disjoint paths mode (1LEDP mode) 
As in the previous mode, a round can be described as a set of paths P = 

= { P - , . . . ,Pk} satisfying the conditions (1.1),(1.2),(1.3), and (1.4). The dif­
ference is that here the executed communication of this round consists of the 
submission of the whole actual knowledge of xix to all other vertices of P{ for 
any i = 1 , . . . ,/c. Thus, after the execution of the round all vertices of each 
path Pi know the message submitted from the sending endpoint x{ 1 for any 
i = 1 , . . . , k. 

The disjoint paths modes were introduced and investigated in [1], [2], [6], [7], [8], 
[9], [10], [11]. 

Now, we fix the notation used in this paper. For any graph G = (V, E), V(G) = 
= V denotes the set of vertices of G, and E(G) = E denote the set of edges of 
G. In what follows we will denote broadcast, accumulation and gossip as problems 
P , .A, and R. For any given graph G and a vertex u of G, let BU(G) [Bu (G)] 
denote the number of rounds (complexity) of the optimal broadcast algorithm from 
u in G in the 1EDP [1LEDP] mode. This means that BU(G) [Pjf(G)] for a graph 
G and a vertex u in G, is the necessary and sufficient number of rounds of the 
1EDP [1LEDP] mode to broadcast the piece of information originally residing in 
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vertex u to all other vertices in G. Similarly, AU(G) [AU(G)] denotes the number 
of rounds (complexity) of the optimal accumulation algorithm for G and u in the 
1EDP [1LEDP] mode. 

Finally, for any graph G, let Re(G),Rle(G) be the number of rounds (complexity) 
of the optimal gossip algorithm for G in the 1EDP, 1LEDP mode respectively. 

For any graph G we define 

B e ( G ) = ma.x{Be
t(G)\u e V(G)}, 

Be
min(G) = mm{Bu(G)\u£V(G)}, 

A e ( G ) = max{Ae
u(G)\u € V(G)}, 

A«min(G) = mm{Ae
u(G)\ueV(G)}, 

B I e (G) = max{Bl
u

e(G)\u 6 V(G)}, 

B1*in(G) = mm{B'u
e(G)\ueV(G)}, 

A , e ( G ) = max{Al
u

e(G)\u 6 V(G)}, 

A^in(G) = min{ A1: (G)\ueV(G)}. 

For any k > 2, h > 1 let CkTh denote the complete /c-ary tree of height /i, and 
let sCkTh denote the complete k-ary tree of height h with one additional node 
attached to the root. 

In this paper we will deal with two open problems from [2], [8] in communication 
in the edge-disjoint paths modes as defined above. 

In Chapter 2 we will show that for any h > 4 the gossip complexity of the 
complete binary tree C2Th of height h is 

Rle(C2Th) = 2 - / i . 

This was left as an open problem in [2], where it was only shown that 

2 - / i - l <Rle(C2Th) <2-h. 

In [8] it was shown that for any graph G of n nodes 

pog2 n] < Ae(G) = Be(G) < [*log2 n] + 2, and 

riog2n] < Ae
m[n(G) = Be

m{n(G) < \log2n) + 1. 

It was also shown there that the lower bounds and also the upper bound for Bmln 

are sharp, but it was left as an open problem whether there is a graph G with n 
nodes and Be(G) = [log2 n] + 2. 

In Chapter 3 we will construct a graph Tk for any k > 2 with 

£e(T fc) = r iog 2( |V(T f c) | ) l+2. 
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2. Gossiping in complete binary trees in the 1LEDP mode 

In this chapter we will prove that the gossip complexity of the complete binary tree 
of height h in the ILEDP mode is 2-h for any h > 4. This result is an improvement 
of Theorem 6.7 in [2], where it was shown that 2/i - 1 < Rle(C2Th) < 2h for any 
h> 4. 

Definition 2.1. For any sC2Th let Bl£(sC2Th) [A^(sC2Th)] be the broadcast 
[accumulation] complexity from the additional vertex s attached to the root of C2Th. 

Lemma 2.2. For h > 1 

(l)B^n(C2Th) = Ble(C2Th) = h 

(n)A^[n(C2Th)=Ale(C2Th)=h 

(Hi) Ble(sC2Th) = h+l. 

Proof (i), (ii) This is shown in the proof of Theorem 6.3 in [2]. 
(iii) Bl£(sC2Th) < h + 1 follows directly from (i). 
We will now prove Bl+(sC2Th) > h + 1 by induction over h. It is obvious that 

Bl£(sC2T1) > 2 holds. As induction hypothesis, assume that Bl£(sC2Th) > h + 1. 
Now let A be a broadcast algorithm for sC2Th+1. If the additional node s sends its 
information I(s) to its neighbour r in the first round of A, the algorithm must still 
broadcast in the C2Th+1 rooted at r. This takes h + 1 additional rounds, according 
to (i). If 5 sends its information to another vertex in sC2Th+1 in the first round, 
there is still an uninformed C2Th subtree T rooted at a son of r left. Thus, A must 
send the information to T and broadcast it there. The complexity of this task is the 
same as for broadcast from the additional node s in sC2Th, since in every round 
only one vertex can send from sC2Th+1\T to T. Thus, it takes h + 1 additional 
rounds according to the induction hypothesis. rj 

Lemma 2.3. Let T be a tree and A be any ILEDP gossip algorithm for T. Let t be 
the smallest number of rounds after which there is at least one vertex in T knowing 
the cumulative message. Then all vertices knowing the cumulative message after t 
rounds lay on one path P of T, and moreover P is a part of an active path in the 
t-th round. 

Proof. This is proved in Lemma 6.5 in [2]. rj 

Lemma 2.4. For any h > 4: 

2 / i - l <Rle(C2Th) <2h. 

Proof. This is proved in Theorem 6.7 in [2]. rj 

Theorem 2.5. For any h > 4: 

Rle(C2Th) = 2h 
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Figure 2.1: The active path P in round t 

T, 22 

Proof. Rle(C2Th) < 2/i follows directly from Lemma 2.4. 
To show that Rle(C2Th) > 2/i let T = C2T^, let A b e a gossip algorithm for T 

and let t be the minimal number of rounds after which one vertex of T knows the 
cumulative message I(T). Let r be the root of T and let rY,r2 be the sons of r, 
let rix,ri2 be the sons oiri for i = 1,2. For a G {1,2,11,12,21,22} let Ta be the 
subtree of T rooted at ra. Let T 2 be the sC2Th_x subtree of T containing r and 
T 2 , let T 2 2 be the sC2Th_2 subtree of T containing r 2 and T 2 2 . 

If there is a C2Th_l subtree T' G {TX,T2} in which no vertex knows I(T) after 
t rounds, then there is a piece of information I, which is unknown for any vertex 
in T' , since the root of T' must know the cumulative message of T' . Thus, A 
must still send I to T' and broadcast it there, i.e. the number of rounds of A is 
t + Bl£(sC2Th_l) = t + h> 2/i, since t > h according to Lemma 2.2(h),(hi). 

We now consider the case that there is a vertex x in Tx and a vertex y in T2, 
such that both x and y know I(T) after £ rounds. 

Following Lemma 2.3 we know that x and y lie on one path P of T that is active 
in round t. 

W.l.o.g. we can assume that x lies in Tn [or x = rx] and y lies in T21 [or y = r2] 
and the active path P from a vertex v to a vertex w is directed from T n to T21 like 
shown in Figure 2.1. 

Since x can learn only from v in round £, a: must know I(T2) after £ — 1 rounds. 
Thus, r knows I(T2) after r — 1 rounds because all information from T2 is flowing 
to x via r. This implies that r knows I(T2) after £ - 1 rounds. Thus, £ - 1 > A+ 
-\-(sC2Th_l) holds. Since it is possible to construct a broadcast algorithm with the 
same number of rounds from every accumulation algorithm for a graph G and any 
vertex v G V(G) by inverting the sequence of rounds and the direction of the active 
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Figure 3.1: Broadcast in CbTx from the root r 

Figure 3.2: Broadcast in C5TX from a leaf v 

paths, Ale(G) > Ble(G) holds for any graph G and any vertex v € V(G). Following 
Lemma 2.2 we get t - 1 > Bl£(sC2Th_l) = h. Thus, we know t > h 4-1 . 

Since t is the minimal number of rounds after which a vertex can know I(T), 
there is no vertex in T22 that knows I(T) after t rounds, according to Lemma 2.3. 

Thus, after round t the algorithm A has at least to broadcast that information 
in T22 that was sent from v to w in round t. This takes at least h — 1 rounds, 
according to Lemma 2.2. 

Thus, A needs at least t 4- h 

• 
1 > / i - f l - f / i - l = 2/i rounds for gossiping in T. 

3. Broadcast in the 1EDP mode 
In this chapter we will show that the upper bound on the (maximum) broadcast 
complexity in the IE DP mode from Theorem 2.1 in [8] is tight. In that paper the 
following inequality was proved for any graph G of n nodes: 

[log2nl <Be(G)< n o g 2 n l + 2 

We want to show that there is a graph G with n vertices and Be(G) = [~log2 nl -f 2 
for some n > n0 for any n 0 E IV. First we prove the following lemma: 

Lemma 3.1. Be(C5Tx) = B ^ J C S T J = 4 

Proof. Be(G) > I?^in(G) holds for any graph G. Hence, it is sufficient to show 
that Be(ChT1) < 4 and Be

m.m(CbTx) > 4. 
Be(CbTx) < 4 follows from the algorithms shown in Figure 3.1 for broadcasting 

from the root of C5TX and in Figure 3.2 for broadcasting from a leaf of C75TT. In 
these Figures the arrows denote the communication paths and the numbers denote 
the round in which the paths are active. 
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4 • (2* + 1) leaves 

Figure 3.3: The tree Gk 

We now show that Be
m{n(CbTx) > 4: 

For each communication from one leaf to another leaf the root of CbTx is needed 
as an inner vertex, so it cannot send any information in that round. This implies 
that the number of informed leaves is at most doubled in each round. 

Thus, in every algorithm for broadcasting from the root after the first round 
only one leaf knows the message. This means that after the first three rounds at 
most 4 leaves are informed. Thus, every communication algorithm needs at least 4 
rounds to broadcast from the root of C57 \ . 

Now we consider broadcasting from a leaf: In that round in which the root learns 
the information no other communication is possible.Thus, after 3 rounds either the 
root is uninformed or there are at most 4 leaves informed. This implies that every 
communication algorithm also needs at least 4 rounds to broadcast from a leaf in 
the C5TX. • 

Definition 3.2. For any k 6 W let Gk be the tree shown in Figure 3.3, let r be the 
root of Gk, let vx,... ,v2k+1 be the sons of r, and let T{ be the subtree of Gk rooted 
at v{ for any i = l , . . . , 2 * + l . 

Theorem 3.3. For k > 2 and n = 5(2* + 1) + 1 

Be(Gk) = \\og2n]+2. 

Proof. Be(Gk) < [ log2n] + 2 follows directly from Theorem 2.1 in [8], since 
\V(Gk)\ = n. We show that Be(Gk) > |"-og2 n] + 2. 

We have pog2 n] = k + 3, since n = 5(2* + 1) + 1 = 2*+2 + 2k + 6 and therefore 
2*+2 < n < 2*+3. Thus, it suffices to show that Be(Gk) > k + 5. 

We first prove for every I G JN\ 

(*) After £ + 1 rounds at most 2e subtrees T{ contain an informed vertex. 

We prove (*) by induction over £: 
In the first round only one vertex x can be informed by the root. If x sends 

the message into another subtree in the second round, the root is used as an inner 
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vertex on the active path and cannot send itself. Thus, after £ + 1 = 2 rounds at 
most 2e = 2 subtrees contain an informed vertex. 

Suppose that the number of subtrees that contain an informed vertex after I + 1 
rounds is at most 2l. 

Since the communication paths are disjoint, in one round from every subtree 
only one vertex can send into another subtree. If a vertex in one subtree sends to 
a vertex in another subtree, the root cannot send in this round. Thus, the number 
of subtrees containing an informed vertex can at most be doubled in each round. 
This means that after (I+!) + ! — 1 + 2 rounds at most 2 • 2l = 2i+l subtrees 
contain an informed vertex. 

This completes the proof of (*) and it follows directly from (*) that after k + 1 
rounds at least one subtree T £ {Tx,... ,T2k+i} is completely uninformed. Thus, 
after k + 1 rounds the information has to be sent to T and to be distributed there. 

The complexity of this task is the same as for broadcasting from a leaf in C5TX, 
since in every round only one vertex can send from Gk \ T to T. 

From Lemma 3.1 it follows that Be
r(Gk)>k + l + J5^ in(C5T1) = k + 5. n 
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