Acta Mathematica et Informatica Universitatis Ostraviensis

Tamás Glavosits; Árpád Száz
Decompositions of commuting relations

Acta Mathematic et Informatica Universitatis Ostraviensis, Vol. 11 (2003), No. 1, 25--28
Persistent URL: http://dml.cz/dmlcz/120592

Terms of use:

© University of Ostrava, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Decompositions of commuting relations

Tamás Glavosits and Árpád Száz

> Abstract. After some preparations, we show that if R and S are full relations on the sets A and B, respectively, then $R \circ S=S \circ R$ if and only if there exist full relations R_{1} and S_{1} on $A \cap B, R_{2}$ on $A \backslash B$ and S_{2} on $B \backslash A$ such that $R=R_{1} \cup R_{2}, S=S_{1} \cup S_{2}$ and $R_{1} \circ S_{1}=S_{1} \circ R_{1}$.

1. A few basic facts on relations

A subset R of a product set X^{2} is called a relation on X. For any $x \in X$ and $A \subset X$, the sets $R(x)=\{y \in X:(x, y) \in R\}$ and $R[A]=\bigcup_{a \in A} R(a)$ are called the images of x and A under R, respectively. If R is a relation on X, then the images $R(x)$, where $x \in X$, uniquely determine R since we have $R=\bigcup_{x \in X}\{x\} \times R(x)$. Therefore, the inverse R^{-1} of R can be defined such that $R^{-1}(x)=\{y \in X: x \in R(y)\}$ for all $x \in X$. Moreover, if R and S are relations on X, then the composition $R \circ S$ of R and S can be defined such that $(R \circ S)(x)=R[S(x)]$ for all $x \in X$. The relations R and S are said to commute with each other if $R \circ S=S \circ R$. If R is a relation on X, then the sets $\mathcal{R}_{R}=R[X]$ and $\mathcal{D}_{R}=R^{-1}[X]$ are called the range and the domain of R, respectively. If in particular $X=\mathcal{D}_{F}$ and $X=\mathcal{R}_{R}$, then we say that R is a full relation on X. In the sequel, whenever confusions seem unlikely, we shall simply write A^{c} and $R(A)$ in place of $X \backslash A$ and $R[A]$, respectively. Note that the latter convention may only cause some serious troubles whenever $A \subset X$ such that $A \in X$.

2. Images under commuting relations

Lemma 2.1. If R and S are relations on X such that $R \circ S \subset S \circ R$, then

$$
R(\dot{S}(X)) \subset R(X) \cap S(X)
$$

[^0]Proof. We evidently have $R(S(X)) \subset R(X)$. Moreover, it is clear that

$$
R(S(X))=(R \circ S)(X) \subset(S \circ R)(X)=S(R(X)) \subset S(X)
$$

\square

Lemma 2.2. If R and S are relations on X such that $S \circ R \subset R \circ S$, then

$$
R\left(S^{-1}(X)^{c}\right) \subset R(X) \cap S^{-1}(X)^{c}
$$

Proof. We evidently have $R\left(S^{-1}(X)^{c}\right) \subset R(X)$. Moreover, it is clear that

$$
R^{-1} \circ S^{-1}=(S \circ R)^{-1} \subset(R \circ S)^{-1}=S^{-1} \circ R^{-1}
$$

Therefore, by Lemma 2.1, we also have

$$
R^{-1}\left(S^{-1}(X)\right) \subset S^{-1}(X), \quad \text { and thus } \quad R^{-1}\left(S^{-1}(X)\right) \cap S^{-1}(X)^{c}=\emptyset
$$

Hence, it follows that

$$
S^{-1}(X) \cap R\left(S^{-1}(X)^{c}\right)=\emptyset, \quad \text { and thus } \quad R\left(S^{-1}(X)^{c}\right) \subset S^{-1}(X)^{c}
$$

Lemma 2.3. If R and S are full relations on A and B, respectively, such that $R \circ S=S \circ R$, then
(1) $R(A \cap B)=A \cap B$,
(2) $R(A \backslash B)=A \backslash B$;
(3) $S(A \cap B)=A \cap B$,
(4) $S(B \backslash A)=B \backslash A$.

Proof. By letting $X=A \cup B$ and using Lemmas 2.1 and 2.2, we can see that

$$
R(A \cap B) \subset R(B)=R(S(X)) \subset R(X) \cap S(X)=A \cap B
$$

and

$$
R(A \backslash B) \subset R\left(B^{c}\right)=R\left(S^{-1}(X)^{c}\right) \subset R(X) \cap S^{-1}(X)^{c}=A \cap B^{c}=A \backslash B
$$

Hence, since

$$
R(A \cap B) \cup R(A \backslash B)=R((A \cap B) \cup(A \backslash B))=R(A)=A
$$

it is clear that the assertions (1) and (2) are also true.
From the assertions (1) and (2), by changing the roles of R and S, we can at once see that the assertions (3) and (4) are also true.

3. Decompositions of commuting relations

Theorem 3.1. If R and S are full relations on A and B, respectively, such that $R \circ S=S \circ R$, then there exist full relations R_{1} and S_{1} on $A \cap B, R_{2}$ on $A \backslash B$ and S_{2} on $B \backslash A$ such that

$$
R=R_{1} \cup R_{2}, \quad S=S_{1} \cup S_{2} \quad \text { and } \quad R_{1} \circ S_{1}=S_{1} \circ R_{1}
$$

Proof. Define $X=A \cup B$ and

$$
\begin{array}{ll}
R_{1}=R \cap(A \cap B)^{2}, & R_{2}=R \cap(A \backslash B)^{2} \\
S_{1}=S \cap(A \cap B)^{2}, & S_{2}=S \cap(B \backslash A)^{2}
\end{array}
$$

Then, by the corresponding definitions and Lemma 2.3, it is clear that

$$
R_{1}(x)=\left(R \cap(A \cap B)^{2}\right)(x)=R(x) \cap(A \cap B)^{2}(x)=R(x) \cap(A \cap B)=R(x)
$$

for all $x \in A \cap B$. Moreover, it is clear $R_{1}(x)=\emptyset$ for all $x \in(A \cap B)^{\text {c }}$. And, quite similarly, we can also see that

$$
\begin{aligned}
& R_{2}(x)=R(x) \text { for all } x \in A \backslash B \text { and } R_{2}(x)=\emptyset \text { for all } x \in(A \backslash B)^{c} \\
& S_{1}(x)=S(x) \text { for all } x \in A \cap B \text { and } S_{1}(x)=\emptyset \text { for all } x \in(A \cap B)^{c} \\
& S_{2}(x)=S(x) \text { for all } x \in B \backslash A \text { and } S_{2}(x)=\emptyset \text { for all } x \in(B \backslash A)^{c}
\end{aligned}
$$

Hence, it is clear that R_{1}, R_{2}, S_{1} and S_{2} are full relations on $A \cap B, A \backslash B, A \cap B$ and $B \backslash A$, respectively. Moreover, it is clear that

$$
R(x)=R_{1}(x) \cup R_{2}(x)=\left(R_{1} \cup R_{2}\right)(x)
$$

for all $x \in X$, and thus $R=R_{1} \cup R_{2}$. And, quite similarly, $S=S_{1} \cup S_{2}$. On the other hand, it is clear that

$$
\left(R_{1} \circ S_{2}\right)(x)=R_{1}\left(S_{2}(x)\right) \subset R_{1}(B \backslash A)=\emptyset
$$

for all $x \in X$, and hence $R_{1} \circ S_{2}=\emptyset$. Moreover, quite similarly, we can also see that $R_{2} \circ S_{1}=R_{2} \circ S_{2}=\emptyset$ and $S_{1} \circ R_{2}=S_{2} \circ R_{1}=S_{2} \circ R_{2}=\emptyset$. Therefore,

$$
\begin{equation*}
R \circ S=\left(R_{1} \cup R_{2}\right) \circ\left(S_{1} \cup S_{2}\right)==R_{1} \circ S_{1} \cup R_{1} \circ S_{2} \cup R_{2} \circ S_{1} \cup R_{2} \circ S_{2}=R_{1} \circ S_{1} \tag{1}
\end{equation*}
$$

nd quite similarly $S \circ R=S_{1} \circ R_{1}$. Therefore, $R_{1} \circ S_{1}=S_{1} \circ R_{1}$ is also true.

Theorem 3.2. Let R and S be full relations on A and B, respectively. Moreover, suppose that R_{1}, R_{2}, S_{1} and S_{2} are relations on $A \cap B, A \backslash B, A \cap B$ and $B \backslash A$, respectively, such that the assertions of Theorem 3.1 hold. Then $R \circ S=S \circ R$. Moreover, R_{1}, R_{2}, S_{1} and S_{2} are as in the proof of Theorem 3.1.

Proof. From the proof of Theorem 3.1, it is clear that $R \circ S=S \circ R$. Moreover, if $x \in A \cap B$, then $x \notin A \backslash B$. Therefore, by the inclusion $R_{2} \subset(A \backslash B)^{2}$, we have
$R_{2}(x) \subset(A \backslash B)^{2}(x)=\emptyset$, and thus $R_{2}(x)=\emptyset$. Hence, by the equality $R=R_{1} \cup R_{2}$ and Lemma 2.3, it is clear that

$$
R_{1}(x)=R_{1}(x) \cup R_{2}(x)=R(x)=R(x) \cap(A \cap B)=\left(R \cap(A \cap B)^{2}\right)(x) .
$$

Therefore, the equality $R_{1}=R \cap(A \cap B)^{2}$ is true. The equalities $R_{2}=R \cap(A \backslash B)^{2}$, $S_{1}=S \cap(A \cap B)^{2}$ and $S_{2}=S \cap(B \backslash A)^{2}$ can be proved quite similarly. \square

Remark 3.3. Note that the relations R_{1}, R_{2}, S_{1} and S_{2}, defined in the proof of Theorem 3.1, inherit several useful properties of the relations R and S. For instance, if R and S are preorders (equivalences), then R_{1}, R_{2}, S_{1} and S_{2} are also preorders (equivalences). To eonstruct commuting preorders, we can note that if R_{1} and S_{1} are preorders on $A \cap B$ such that $R_{1} \subset S_{1}$, and moreover R_{2} and S_{2} are preorders on $A \backslash B$ and $B \backslash A$, respectively, then $R=R_{1} \cup R_{2}$ and $S=S_{1} \cup S_{2}$ are preorders on A and B, respectively, such that $R \circ S=S \circ R$. (Necessary and sufficient conditions for equivalences to be commuting can be found in [1].)

References

[1] T. Glavosits and Á. Száz Characterizations of commuting relations, Tech. Rep., Inst. Math. Inf., Univ. Debrecen, Vol. 279, 2002

Institute of Mathematics and Informatics, University of Debrecen, H-4010 Debrecen, Pfi2, Hungary
E-mail address: glavositdragon.klte.hu, szazmath.klte.hu

[^0]: 2000 Mathematics Subject Classification: 04A05; 08A02.
 Key words and phrases: Relations and images, inversion and composition, commutativity of composition.

 The work of the second author was supported by the grants OTKA T-030082 and FKFP 0310/1997.

