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CGasopis pro pdstevani matematiky a fysiky, rot. 756 (1950)

A SHORT PROOF OF A THEOREM OF ST. SCHWARZ -
CONCERNING FINITE FIELDS.
L. REDEI, Szeged (Hungary).
(Received January 23th, 1950.)

ScHWARZ!) recently proved a theorem concerning the important
problem of factorization of binomal polynomials in finite fields. He also
gave') interesting applications of his theorem, especially a generalization
of the VixogrADOV'S estimation of the least primitive root mod p. The
theorem mentioned above is as follows:2)

Let K bea fmzte field of characteristic p having P elements. Then the
polynomial

Cam—a (a:,‘:OeK pf (1)
has in the field K 7ust '
& ‘/zk.“( )dt (@ = (m, Pt —1)) Co @
srreducible factors of degree k, the summation being extended over all t with
t___
aft— 1 (d':= _1:__1_) 3)
, d,

and p(t) being the MOBIUS function.

In what follows I give an elegant proof of this important theorem.
The proof is based upon a Lemma which — as far as I am informed — is
unknown in the formulation given here.

Lemma. The greatest common divisor of the polynommls ,
™ q, x"———b(ab:}:O mn>1) (4)

n aw'arbitrary ﬂeld has the degree 0°'or d = (m, n). The second case occurs,
if and only if the relation > .

a
ad =b

n.|§

(5)
holds.

1) Br. SCHWARZ On the reducibility of binomial congruences.and on the bound
of the least integer belonging to a given exponent modp, Casopxs pro pést. mat.
& fys., 74 (1949), p. 1—16.

2) L. o, p. 2 (Theorem 1) and p. 13 (Generalization of Theorem 1).
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The statement is true, if m — n. (Hence, it is true if m 4+ n = 2.) In
the remaining case we prove it by induction. Let us suppose that it is
true for all couples of polynomials with a sum of degrees << m + n. We
prove it for the sum equal to m 4 n. With regard to the symmetry we can
suppose m > n. From the identity

(e™ —a) —am "2 —b) = b(@m—n — %)
follows - ! g -
' (@™ —a, 2" —b) = (x’"””—%—, x"—b). (6) .

Itis(m—n)4+n=m<m-+4 n and (m —n, n) = (m, n) = d. Using
the supposmon we get from (6) first that the degree of the left hand side
in (6) is O or d: Secondly, the condition (5) for the right hand side of (6)

hastheform
n
_‘17__ e
(b) _pa,

But this equation is equivalent to (5) and now (6) gives us the proof.
No we prove the theorem of ScHWARZ.
' Let o, denote the number of irreducible factors of degree & of the
polynomial (1). It is well-known that
(@m—a, 2P -1 1) (7

is the product of all irreducible factors of (1) whose degrees are divisors
of k. Since p f m, the polynomial (1) has no mutiple factors and we have

Ztat = degree of (7). (8)

According to the Lemma proved above the degree of (7) is 0 or dk =
= (m, P¥* — 1). The second case occurs if and only if

ar— 1 (d'k _ %) (9)
. k .

holds. Therefore if %, denotes the characteristic function of the state-
ment (9) (i. e. 1 or 0 according as (9) holds or not) the degree of (7) has the
form d ;. Using the MoB1US formula for inversion we get from (8)

ko= Du ( ) dx.

ik -
This is equivalent to (2) and the Theorem is proved

Krétky dikaz jedné véty St. Schwarze o koneEnych t¥lesech.
: (Obsah piedeslého ¢lanku.)

Jde o dukaz véty z &ldnku SCHWAB.ZOVA, uvedeného v poznémce 1)
pod &arou. . ’
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