Časopis pro pěstování matematiky a fysiky

Vojtěch Jarník

On the successive minima of arbitrary sets

Časopis pro pěstování matematiky a fysiky, Vol. 73 (1948), No. 1, 9--15
Persistent URL: http://dml.cz/dmlcz/123154

Terms of use:

© Union of Czech Mathematicians and Physicists, 1948
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

On the successive minima of arbitrary sets.

Vojtěch Jarnik, Praha.

(Received September 7th, 1947.)

References.

[1] V. Jarník, Dv̌ poznámky ke geometrii čísel; Vêstnik Král. C. Spol. Nauk 1941 (Czech, with a German summary).
[2] V. Jarnik and V. Knichal, K hlavní vəte geometrie čisel, Rozpravy II. tř. Ces. Akademie 53 (1943), No. 43 (Czech; a French summary will appear in the Bulletin International).
[3] C. A. Rogers, A note on a theorem of Blichfeldt, Nederl. Akad. Wetensch. 49, $930-935=$ Indagationes Mathem. 8, 589-594 (1946).
[4] C. A. Rogers, The Successive Minima of Measurable Sets, submitted to the London Math. Soc. - I am very obliged to Mr. Rogers for having sent me a copy of his manuscript before its publication.

All numbers in this note are real. Let $n>1$ be an integer; let \boldsymbol{R}_{n} be the n-dimensional space of all points $\mathrm{x}=\left[x_{1}, \ldots, x_{n}\right]$. We use the standard notation: $\alpha x+\beta y=\left[\alpha x_{1}+\beta y_{1}, \ldots, \alpha x_{n}+\beta y_{n}\right], 0=$ $=[0, \ldots, 0] ; k$ points x^{1}, \ldots, x^{k} are called independent if the equation $\alpha_{1} x^{1}+\ldots+\alpha_{k} x^{k}=0$ is satisfied only for $\alpha_{1}=\ldots=\alpha_{k}=0$. If $M \subset R_{n}$, then αM denotes the set of all points $\alpha \times$, where $\mathrm{x} \in M$. By $\mathfrak{W}(M)$ we denote the set of all points $\frac{1}{2}(x-y)$ where $x \in M$, $y \in M$; obviously $\mathfrak{W}(\alpha M)=\alpha \mathfrak{W}(M)$. By $L(M)$ and $J(M)$ we denote the inner Lebesgue or Jordan measure of $M .^{1}$)

With every set $M \subset R_{n}$ we shall associate, in four different ways, a sequence of n,successive minima":
(i) Let $\lambda_{i}(1 \leqq i \leqq n)$ be the lower bound of all numbers $\alpha>0$ such that the union $\bar{U} \beta M$ contains at least i independent lattice $0<\beta \leq \alpha$ points (i. e. points with integer co-ordinates). ${ }^{2}$)

[^0](ii) Let $\mu_{i}(1 \leqq i \leqq n)$ be the lower bound of all numbers $\alpha>0$ such that $\alpha \overline{\bar{M}}$ contains at least i independent lattice points.
(iii) Let $v_{i}(1 \leqq i \leqq n)$ be the least number $\alpha \geqq 0$ such that every set βM with $\beta>x$ contains at least i independent lattice points.
(iv) Let $\pi_{i}{ }^{\prime}(1 \leqq i \leqq n)$ be the lower bound of all numbers $\alpha>0$ such that the common part $\cap \beta M$ contains at least i independent lattice points.

We have obviously $\lambda_{i} \leqq \lambda_{i+1}, \mu_{i} \leqq \mu_{i+1}, \nu_{i} \leqq \nu_{i+1}, \pi_{i} \leqq \pi_{i+1}$, $0 \leqq \lambda_{i} \leqq \mu_{i} \leqq \nu_{i} \leqq \pi_{i} \leqq+\infty$. If necessary, we write $\lambda_{i}(M)$ instead of λ_{i} etc. ${ }^{3}$)

I proved the following theorem [1]: If $n>1,0<J(M)<+\infty$, then

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \ldots \lambda_{n} J(M) \leqq 2^{2 n^{\prime}-1}, \text { where } \lambda_{i}=\lambda_{i}(\mathfrak{W}(M)) \tag{1}
\end{equation*}
$$

Knichal [2] improved this result by replacing $J(M)$ by $\left.L(M)^{4}\right)$ and $2^{2 n-1}$ by $2^{2 n-\frac{8}{2}}$. Finally, Rogers [4] succeeded in proving the following sharper theorem: If $n>1,0<L(M)<+\infty$, then

$$
\begin{equation*}
\mu_{1} \ldots \mu_{n} L(M) \leqq 2^{\frac{1}{2}(8 n-1)}, \text { where } \mu_{i}=\mu_{i}(\mathfrak{W}(M)) \tag{2}
\end{equation*}
$$

He also proved that (if $0<L(M)<+\infty$)

$$
\begin{equation*}
\left(\mu_{1} \ldots \mu_{n} L(M)\right)^{1-\frac{1}{n}}\left(v_{1} \ldots v_{n} L(M)\right)^{\frac{1}{n}} \leqq 2^{2 n-1} \tag{3}
\end{equation*}
$$

These results suggest the question whether there exists a finite upper bound for the product

$$
\begin{equation*}
\nu_{1} \ldots \nu_{n} L(M), \text { where } \nu_{i}=\nu_{i}(\mathfrak{W}(M)) . \tag{4}
\end{equation*}
$$

The answer is negative; in fact, we shall prove the following
Theorem 1. To every integer $n>1$ and to every $T>0$ there is a set $M \subset R_{n}$ (which is the union of a finite number of parallelepipeds) such that the product (4) is greater than T. ${ }^{5}$) ,

More generally we shals prove
Theorem 2. If $T>0$ and if i, j, n are integers, $1 \leqq i<j \leqq n$, then there is a set $M \subset R_{n}$ (which is the union of a finite number of parallelepipeds) such that

[^1]\[

$$
\begin{gather*}
\lambda_{1} \lambda_{2} \ldots \lambda_{i-1} v_{i} \lambda_{i+1} \ldots \lambda_{1-1} v_{j} \lambda_{j+1} \ldots \lambda_{n} L(M)>T \tag{5}\\
\text { where } \lambda_{k}=\lambda_{k}(\mathfrak{W}(M)), v_{k}=v_{k}(\mathfrak{W}(M))
\end{gather*}
$$
\]

This generalization is perhaps not without interest, if we compare it with the following theorem of Rogers [4]: If $0<L(M)<+\infty$ then

$$
\begin{equation*}
\mu_{1} \ldots \mu_{i-1} v_{i} \mu_{i+1} \ldots \mu_{n} L(M) \leqq 2^{2 n-1} . \tag{6}
\end{equation*}
$$

Further results have been obtained by iterating the operation \mathfrak{w}. Put $\mathfrak{w}^{0}(M)=M, \mathfrak{w}^{p}(M)=\mathfrak{W}\left(\mathfrak{W}^{p-1}(M)\right)$ for $p=1,2, \ldots$ The following facts are almost obvious:
(a) $\mathfrak{W}(M)$ is symmetrical about 0 , i. e. if $x \in \mathfrak{W}(M)$, then $-\mathrm{x} \in \mathfrak{W}(M)$.
(b) If M is symmetrical about o, then $M \subset \mathfrak{W}(M)$ and so $\lambda_{i}(M) \geqq \lambda_{i}(\mathfrak{W}(M)), \mu_{i}(M) \geqq \mu_{i}(\mathfrak{W}(M))$ etc.
(c) It follows from (a) and (b) that $\lambda_{i}\left(\mathfrak{W}^{p-1}(M)\right) \geqq \lambda_{i}\left(\mathfrak{W}^{p}(M)\right)$ etc. for $p=2,3, \ldots$

In [2], I proved the following theorem: If $0<L(M)^{\prime}<+\infty$, then there is an integer $p_{0}>0$ such that

$$
\begin{equation*}
L(M) \prod_{i=1}^{n} \pi_{i}\left(\mathfrak{W}^{p}(M)\right) \leqq 2^{n} \tag{7}
\end{equation*}
$$

for every integer $p>p_{0} .{ }^{6}$)
This inequality suggests the question whether the number p_{0} may be chosen as function of n only, i. e. independently of M. The answer is negative, and even more can be proved: If $n>1$ and $p \geqq 0$ are arbitrary but fixed integens, there exists no finite upper bound, neither for the left side of (7), nor for the product

$$
\begin{equation*}
L(M) \prod_{i=1}^{n} v_{i}\left(\mathfrak{W}^{p}(M)\right) \tag{8}
\end{equation*}
$$

Still more generally we shall prove the following
Theorem 3. Let $T>0$; let n, i, j, p be integers, $1 \leqq i<\eta \leqq n$, $p \geqq 0$. Then there is a set $M \subset R_{n}$ (which is the union of a finite number of parallelepipeds) such that

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \ldots \lambda_{i-1} v_{i} \lambda_{i+1} \ldots \lambda_{j-1} v_{j} \lambda_{j+1} \ldots \lambda_{n} L(M)>T \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{k}=\lambda_{k}\left(\mathfrak{W}^{p}(M)\right), \nu_{k}=\nu_{k}\left(\mathfrak{W}^{p}(M)\right), \pi_{k}=\pi_{k}\left(\mathfrak{W}^{p}(M)\right) . \tag{10}
\end{equation*}
$$

So much the more, the products in (7), (8) are greater than T.

[^2]It is obvious that Theorems 1,2 follow from Theorem 3.
Theorem 2 is a countrepart to (6); but there is another theorem of a similar character, concerning the π_{i} 's:

Theorem 4. ${ }^{7}$) Let i, n, p be integers, $1 \leqq i \leqq n, p \geqq 0, T>0$. Then there is a set $M \subset R_{n}$ (which is the-union of a finite number of parallelepipeds) so that we have, using the notation (10),

$$
\begin{equation*}
\lambda_{1} \ldots \lambda_{i-1} \pi_{i} \lambda_{i+1} \ldots \lambda_{n} L(M)>T \tag{bis}
\end{equation*}
$$

Proof of Theorem 3 for $n=2$. Here $i=1, j=2$. Let $p \geqq 0$ (p integer), $T>0$ be given. We choose four numbers a, t, φ, N as follows:

$$
\begin{gather*}
a \text { integer, } a>10 \cdot 2^{p} \cdot T ; 2^{p} t(a!)=\frac{1}{2} \\
0<\varphi<\frac{1}{10 \cdot 2^{p} \cdot a \cdot(a!)} ; N \text { integer, } 2^{p} \varphi N>1 \tag{11}
\end{gather*}
$$

Then we define $M^{\prime} \subset R_{2}$ as the set of all points $[x, y]$ with the following property: There is an integer m such that

$$
|y| \leqq \frac{1}{2},|x-t y-m| \leqq \varphi,|m| \leqq N
$$

Obviously the set $\gamma \mathfrak{W}^{p}\left(M^{\prime}\right)$ (where $\gamma>0$) is defined in an analogous way by the conditions

$$
\begin{equation*}
|y| \leqq \frac{1}{2} \gamma,\left|x-t y-2^{-p} m \gamma\right| \leqq \varphi \gamma,|m| \leqq 2^{p} N \tag{12}
\end{equation*}
$$

(m integer). We have $L\left(M^{\prime}\right)=2 \varphi(2 N+1)$. Put

$$
\begin{equation*}
\nu_{k}^{\prime}=\nu_{k}\left(\mathfrak{W}^{p}\left(M^{\prime}\right)\right), \lambda_{k}^{\prime}=\lambda_{k}\left(\mathfrak{W}^{p}\left(M^{\prime}\right)\right)(k=1,2) \tag{13}
\end{equation*}
$$

We shall prove

$$
\begin{equation*}
\frac{1}{80.2^{p} N \varphi} \leqq v_{1}^{\prime} \leqq \frac{1}{2^{p} N \varphi}, v_{2}^{\prime} \geqq 2 a \tag{14}
\end{equation*}
$$

this will give the required result

$$
\begin{equation*}
v_{1}^{\prime} v_{2}^{\prime} L\left(M^{\prime}\right)>\frac{a}{10.2^{p}}>T \tag{15}
\end{equation*}
$$

- In order to prove (14), we observe first: Corresponding to every $\alpha>\left(2^{p} N \varphi\right)^{-1}$ there is a pair of integers m, x other than 0,0 and such that

$$
\left|x-2^{-p} m \alpha\right| \leqq 2^{-p} N^{-1}<\varphi \alpha,|m| \leqq 2^{p} N .
$$

$x=0$ would imply $|m| ₹ 2^{p} \varphi<1$ (see (11)) and so $x=m=0$, which is impossible. Hence $x \neq 0$ and, by (12), $[x, 0] \in \alpha \mathfrak{W}^{p}\left(M^{\prime}\right)$, whence $v_{1}^{\prime} \leqq\left(2^{p} N \varphi\right)^{-1}$.

Next let us observe that there is an α such that

[^3]\[

$$
\begin{equation*}
\frac{1}{80 \cdot 2^{p} \cdot N \varphi}<\alpha<\frac{1}{40 \cdot 2^{p} \cdot N \varphi} \tag{16}
\end{equation*}
$$

\]

and such that there exists no pair of integers $m ; x$ satisfying the following conditions:

$$
\begin{equation*}
0<|m| \leqq 2^{p} N,\left|\alpha-\frac{2^{p} x}{m}\right| \leqq \frac{1}{40 N|m|},|x| \leqq \frac{2|m|}{40.2^{2 p} \cdot N \varphi} \tag{17}
\end{equation*}
$$

For the measure of the set of all numbers $\alpha>0$ to which there is a pair of integers m, x satisfying (17) is at most ${ }^{8}$)

$$
\begin{aligned}
& \frac{1}{40 N}+\sum_{|m|=1}^{2^{p_{N}}} \frac{2}{40 N|m|} \cdot \frac{4|m|}{40 \cdot 2^{2 p} \cdot N \varphi}= \\
= & \frac{1}{40 N}+\frac{2}{5} \cdot \frac{1}{40 \cdot 2^{p} \cdot N \varphi}<\frac{1}{80 \cdot 2^{p}: N \varphi} \\
& \quad\left(\text { since } \frac{1}{10} \cdot \frac{1}{2^{p} \varphi}>1\right) .
\end{aligned}
$$

Let us suppose (per absurdum) that $\nu_{1}^{\prime}<\left(80.2^{p} . N \varphi\right)^{-1}$. Let α be an arbitrary number satisfying (16). Following the definition of ν_{1}^{\prime} there must be a lattice point $[x, y] \in \propto \mathfrak{D W}^{p}\left(M^{\prime}\right)$ other than $[0,0]$. Since (see (12)) $|y| \leqq \frac{1}{2} \alpha<\left(80.2^{p} . N \varphi\right)^{-1}<1$ (see (11)), we have $y=0$ and so $x \neq 0$, and there is (see (12)) an integer m such that

$$
|m| \leqq 2^{p} N,\left|x-2^{-p} m \alpha\right| \leqq \varphi \alpha
$$

Since $\varphi \alpha<1$, we have $m \neq 0$ and so

$$
\begin{gathered}
\left|\alpha-\frac{2^{p} x}{m}\right| \leqq \frac{2^{p} \varphi \alpha}{|m|}<\frac{1}{40 N|m|} \\
|x| \leqq 2^{-p}|m| \alpha+\varphi \alpha<2.2^{-p}|m| \alpha<\frac{2|m|}{40.2^{2 p} . N \varphi}
\end{gathered}
$$

In other words, to every α of the interval (16) there are two integers m, x satisfying (17). But this is a contradiction, and so

$$
\nu_{1}^{\prime} \geqq\left(80 \cdot 2^{p} \cdot N \varphi\right)^{-1}
$$

Finally, let us suppose that $v_{2}^{\prime}<2 a$, so that there must be a lattice point $[x, y] \in 2 a \mathfrak{W O}^{p}\left(M^{\prime}\right)$ with $y \neq 0$ and so (see (12))

$$
\begin{equation*}
|y| \leqq a,\left|2^{-p} \cdot q-t y\right| \leqq 2 a \varphi \tag{18}
\end{equation*}
$$

where q is an integer. Thus ($a!$).y^{-1} is an integer; multiplying (18) by (a!). $y^{-1} \cdot 2^{p}$ and comparing with (11) we get (X being an integer)
${ }^{8}$) For, if $\alpha>0$, then (17) implies: it is either $\alpha \leqq(40 N)^{-1}$ or $x \neq 0$.

$$
\left|X-2^{p} \cdot a!\cdot t\right|=\left|X-\frac{1}{2}\right| \leqq 2 a \varphi \cdot a!.2^{p}<\frac{1}{5}
$$

which is a contradiction, and (14) is proved.
Proof of Theorem 3 in the general case. Let $T>0$ and the integers $p, i, j, n(p \geqq 0,1 \leqq i<j \leqq n)$ be given. Let $M^{\prime} \subset R_{2}$ be the same set as in the preceding proof. Using the notation (13), we have $\nu_{1}^{\prime} \nu_{2}^{\prime} L\left(M^{\prime}\right)>T$. Further: If $0<\alpha<2$ and $[x, y]$ is a lattice point of $\alpha \mathfrak{W}^{p}\left(M^{\prime}\right)$, we have $|y| \leqq \frac{1}{2} \alpha<1$ and so $y=0$. Hence $\lambda_{2}^{\prime} \geqq 2>\frac{1}{2^{p} N \varphi} \geqq \nu_{1}^{\prime}$ (see (11), (14)). Following ${ }^{3}$), we have $\lambda_{1}^{\prime}>0, \nu_{2}^{\prime}<+\infty$.

Now choose three numbers ξ, η, ζ such that

$$
\begin{equation*}
0<\xi<\lambda_{1}^{\prime} \leqq \nu_{1}^{\prime}<\eta<2 \leqq \lambda_{2}^{\prime} \leqq \nu_{2}^{\prime}<\zeta<+\infty \tag{19}
\end{equation*}
$$

and let $M \subset R_{n}$ be the set of all points $\left[x_{1}, \ldots, x_{n}\right]$ which satisfy the conditions

$$
\begin{aligned}
& \left|x_{b}\right| \leqq \frac{1}{\xi} \text { for } 1 \leqq b<i,\left|x_{c}\right| \leqq \frac{1}{\eta} \text { for } i<c<j \\
& \left|x_{d}\right| \leqq \frac{1}{\zeta} \text { for } j<d \leqq n,\left[x_{i}, x_{j}\right] \in M^{\prime}
\end{aligned}
$$

If $\alpha>0$, then $\alpha \mathfrak{W}^{p}(M)$ consists obviously of all points $\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\left|x_{b}\right| \leqq \frac{\alpha}{\xi},\left|x_{\mathrm{c}}\right| \leqq \frac{\alpha}{\eta},\left|x_{d}\right| \leqq \frac{\alpha}{\zeta},\left[x_{i}, x_{j}\right] \in \alpha \mathfrak{W}^{p}\left(M^{\prime}\right)
$$

Let $\left[x_{1}, \ldots, x_{n}\right]$ be a lattice point contained in $\alpha \mathfrak{D O}^{p}(M)$. Then we have (see (19)):

$$
\begin{aligned}
& \text { If } 0<\alpha<\xi \text {, then } x_{1}=x_{2}=\ldots=x_{n}=0 \\
& \text { If } 0<\alpha<\eta \text {, then } x_{i+1}=x_{i+2}=\ldots=x_{n}=0 \\
& \text { If } 0<\alpha<\zeta \text {, then } x_{j+1}=x_{j+2}=\ldots=x_{n}=0 .
\end{aligned}
$$

It follows that (using the notation (10))

$$
\begin{gathered}
\lambda_{1}=\ldots=\lambda_{i-1}=\xi, \nu_{i}=\nu_{1}^{\prime}, \lambda_{i+1}=\ldots=\lambda_{j-1}=\eta, v_{j}=\nu_{2}^{\prime} \\
\lambda_{j+1}=\ldots=\lambda_{n}=\zeta
\end{gathered}
$$

and so (compare the definition of M)
$\lambda_{1} \ldots \lambda_{i-1} \nu_{i} \lambda_{i+1} \ldots \lambda_{j-1} \nu_{j} \lambda_{j+1} \ldots \lambda_{n} L(M)=2^{n-2} \nu_{1}^{\prime} \nu_{2}^{\prime} L\left(M^{\prime}\right)>T$.
Proof of Theorem 4. We may suppose that T is an integer, $T \geqq 2^{p+1}$. Let $M \subset R_{n}$ be the set of all points $\mathrm{x}=\left[x_{1}, \ldots, x_{n}\right]$ such that there is an integer m so that

$$
\begin{aligned}
& \left|x_{j}\right| \leqq 2 T \text { for } j<i,\left|x_{k}\right| \leqq \frac{1}{2 T} \text { for } k>i \\
& \cdots \quad\left|x_{i}-m\right| \leqq \frac{1}{2 T},|m| \leqq T
\end{aligned}
$$

Put $M_{p}=\mathfrak{w}_{p}(M), \lambda_{j}=\lambda_{j}\left(M_{p}\right), \pi_{j}=\pi_{j}\left(M_{p}\right)(j=1, \ldots, n)$. Then αM_{p} is defined by the inequalities (if $\alpha>0$)
m integer.

$$
\begin{gather*}
\left|x_{j}\right| \leqq 2 T \alpha(j<i),\left|x_{k}\right| \leqq \alpha(2 T)^{-1}(k>i), \tag{20}\\
\left|x_{i}-\alpha m .2^{-p}\right| \leqq \alpha(2 \bar{T})^{-1},|m| \leqq 2^{p} T,
\end{gather*}
$$

If $0<\alpha<(2 T)^{-1}$ and $\times \in \alpha M_{p}$, then $\left|x_{j}\right|<1$ for $j \neq i$ and $\left|x_{i}\right| \leqq \alpha\left(T+(2 T)^{-1}\right)<1$, and so $\lambda_{1} \geqq(2 T)^{-1}$. Further, if $0<$ $<\alpha<2 T$ and $\times \in \alpha M_{p}$, then $\left|x_{k}\right|<1$ for $k>i$ and so $\lambda_{i+1} \geqq 2 T$. Finally; let us suppose that $\pi_{i}<T$. Then there múst be a lattice point

$$
y=\left[y_{1}, \ldots, y_{n}\right] \in \prod_{\beta \leqq T} \beta M_{p}
$$

with $\left|y_{i}\right|+\left|y_{i+1}\right|+\ldots+\left|y_{n}\right|>0$. Since $y \in T M_{p}$, we have $y_{k}=0$ for $k>i$ and so $y_{i} \neq 0$. Put $\alpha=T\left|y_{i}\right| \geqq T$. We must have $y \in \alpha M_{p}$. But $\left|y_{i}-0\right|>\frac{1}{2}\left|y_{i}\right|=\alpha(2 T)^{-1}$, and for $|m| \geqq 1$ we have

$$
\left|y_{i}-\alpha m \cdot 2^{-\dot{p}}\right|=\stackrel{\left|y_{i}\right| \cdot\left| \pm 1-T m \cdot 2^{-p}\right| \geqq\left|y_{i}\right| \cdot T \cdot 2^{-p-1} \cdot}{=\alpha \cdot 2^{-p-1}>\alpha(2 T)^{-1} .}=
$$

Thus we obtain (see (20)) y non $\epsilon \alpha M_{p}$ - contradiction, and so $\pi_{i} \geqq T, \quad \lambda_{j} \geqq(2 T)^{-1}$ for $j<i, \lambda_{k} \geqq 2 T$ for $k>i$. Calculating $L(\bar{M})$, we obtain ($10^{\text {bis }}$).

0 postupných minimech libovolných množin.

(Obsah předešlého čłánku.)

Budiž M bodová množina v n-rozměrném prostoru; $\mathfrak{W}(M)$ budiž množina všech bodů $\frac{1}{2}(x-y)$, kde \times, y leží v M. Je-li M konvexní těleso o středu v počátku, mající objem $L(M)$, a jsou-li $\lambda_{1}, \ldots, \lambda_{n}$ postupná minima (ve smyslu Minkowského) množiny $\mathfrak{W}(M)$ (jež jest ovšem v tomto speciálním případě prostě rovna M), je podle Minkowského

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \ldots \lambda_{n} L(M) \leqq 2^{n} . \tag{21}
\end{equation*}
$$

Pro obecné množiny M byla čísla λ_{i} definována dosud čtyčmi různými způsoby (jež v Minkowského případě splývají; viz [1], [2], [3], [4]). Pro dvè z těchto definicí platí nerovnost obdobná k (21), ales věť̌í konstantou vpravo. Autor ukazuje naopak, že pro zbývající dvě definice neni levá strana v (21) omezená (Theorem 1). Theorem 2 a 3 obsahují další zobecnění tohoto výsledku. Dalši doplněk jest obsažen v Theoremu 4.

[^0]: ${ }^{1}$) By definition, $L(M)$ is the upper bound of the Lebesgue measures of all measurable subsets of M (or, what amounts to the same, of all closed bounded subsets of M).
 ${ }^{2}$) If there is no such α, we put $\lambda_{i}=+\infty$; an analogous convention holds in the following cases.

[^1]: ${ }^{8}$) If M is a cube, then evidently $0<\lambda_{i}(M)<+\infty$. If $M_{1} \subset M_{2}$, then $\lambda_{i}\left(M_{2}\right) \leqq \lambda_{i}\left(M_{1}\right)$. Hence: if M is bounded, then $\lambda_{i}(M)>0$; if M has an inner point, then $\lambda_{i}(M)<+\infty$. Analogous remarks apply to the μ_{i} 's, v_{i} 's, π_{i} 's.
 ${ }^{4}$) It follows from ${ }^{1}$) ${ }^{8}$) that, if a theorem of this kind is true for closed bounded sets, it is true also for arbitrary sets.
 ${ }^{5}$). From (3) we see that, if (4) is very large, the product (2) is very small. Fallowing ${ }^{3}$), the numbers $\lambda_{k}, v_{k}, \pi_{k}$ in Theorems $1,2,3,4$ are finite and po. sitive:

[^2]: S) If M is a convex body, symmetrical about 0 , then $\mathfrak{W}^{p}(\boldsymbol{M})=M$ and (7) reduces to a well known theorem of Minkowski. On the contrary, it has been proved by Knichal [2] (and for $n=2$ also by Rogers [8]) that the constant $2^{2 n-1}$ in (1) cannot be replaced by $2 n$, if $n>1$.

[^3]: ${ }^{7}$) This theorem is almost obvious, as will be seen from its proof (here, n can bo equal to 1).

