
Kybernetika

Jitka Dupačová; Jozsef Abaffy; Marida Bertocchi; Marie Hušková
On estimating the yield and volatility curves

Kybernetika, Vol. 33 (1997), No. 6, 659--673

Persistent URL: http://dml.cz/dmlcz/124120

Terms of use:
© Institute of Information Theory and Automation AS CR, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124120
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 33 ( 1 9 9 7 ) , N U M B E R 6, P A G E S 6 5 9 - 6 7 3 

ON ESTIMATING THE YIELD 
AND VOLATILITY CURVES 

J I T K A D U P A Č O V Á , J O Z S E F A B A F F Y , M A R I D A B E R T O C C H I AND M A R I E H U Š K O V Á 

Yield curve and yield volatilities are important inputs for pricing interest rate deriva­
tives, for generation of interest rate scenarios, etc. Nonanticipated errors in their estimates 
may essentially influence the resulting prices, yields and risks. In this paper we explore 
and compare several types of parametric and nonparametric regression models suitable for 
estimation of the two curves. In contrast to purely numerical fitting procedures, these 
methods provide also an information about the precision of the fitted curves and a test of 
the goodness-of-fit of the postulated parametric model. The parametric models of yield 
curves are represented by the nonlinear and linearized Bradley-Crane model which is com­
pared with Nadaraya-Watson and Priestley-Chao nonparametric estimators and with cubic 
splines. The reported numerical experience is based on data from the Italian bond market. 

1. I N T R O D U C T I O N 

Term structure of interest rates provides a characterization of interest rates as a 
function of maturity. The spot interest rate of a given maturi ty is defined as the 
yield on a zero coupon government bond of that maturity. Such bonds are rare in 
the market and have to be replaced by synthetic zero coupon bonds whose yields 
correspond to yields of fixed coupon government bonds that do not contain any 
special provision such as call or put options. The yield eurve based on these yields 
is used for analysis of prices and yields of riskier assets, for valuation of interest rate 
derivatives, it provides a picture about market 's current expectations and serves as 
an input for bond portfolio management models; see for instance [21,22,26,27,33]. 
An additional important characteristics whose changes affect the pricing of fixed-
income securities and derivatives and the outcome of portfolio management as well 
is the volatility of interest rates or yields, cf. [24,25]. Again, it is dependent, inter 
alia, on maturity; hence, the term volatility curve. 

Our interest in estimating the yield curve and the volatility curve comes from our 
involvement in building and solving real life bond portfolio management models, see 
e. g. [9,12]. The models are based on interest rate scenarios and the numerical values 
of the coefficients of the resulting large scale mathematical program result from 
the choice of the considered bonds, their characteristics (initial prices and future 
cashflows) and initial holdings, from the scheduled stream of liabilities, transaction 
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costs and spread and from the way how the scenarios of future interest rates are 
generated and sampled; see [3]. 

There are various models of evolution of interest rates; we consider interest rate 
scenarios sampled from the binomial lattice obtained according to Black-Derman-
Toy model [4]. It is a one-factor model which assumes a log-normal process of short 
rates; we refer to [27] for detailed discussions about characteristic properties of this 
model. To fit the binomial lattice one needs the initial term structure which consists 
of the yield curve and the volatility curve, i. e., of the yields and standard deviations 
of logarithms of yields of zero coupon government bonds of all maturit ies covered by 
the horizon T of the designed bond portfolio management model; for monthly steps, 
T is a large number greater or equal maturi ty (in months) of the longest considered 
bond. Moreover, we are interested not only in estimates of the coefficients of the 
chosen parametric form of the yield curve or of the values on the estimated yield 
curve at the given date but we are also concerned in precision of the estimated 
yield curve and volatility curve at least for selected maturities, as the precision of 
the estimated initial term structure influences essentially the precision of the fitted 
binomial lattice and of the scenarios of future short term interest rates. Accordingly, 
we rely on statistical inference and we propose to use parametric and nonparametric 
regression techniques, see Sections 2 and 3. 

The discussion, numerical results and comparisons of the considered techniques 
reported in Section 4 are related to numerical experience based on real life d a t a from 
the Italian bond market. 

2. T H E ESTIMATED YIELD CURVE 

The term structure of interest rates consists of yields and log-yield volatilities valid 
for zero coupon government bonds of all maturities. In this section we concentrate 
on estimation of the yield curve from the existing market data on yields of traded 
fixed coupon government bonds. Instead of yields one could obviously use the cor­
responding prices of these bonds as the input, see for instance [2], the discussion in 
[10] or the approach recommended in Risk Metrics [28]. Regarding the assumption 
of homoscedasticity commonly present in regression models we decided to use yields; 
see discussion in [33]. 

Let the market information at the chosen date consist of the yields yi, i = 1 , . . . , n 
of various fixed coupon government bonds (without option) characterized by their 
maturities t,-. The postulated theoretical model 

yi = g(Um,0) + ei, i = 1,. . . , n (1) 

includes the yield curve g(t;0) of a prespecified parametric form where t is usually 
expressed in years, y is the annualized yield to maturi ty and 6 G 0 is a p-dimensional 
vector of parameters to be estimated. 

Given the market d a t a and the theoretical model of yields, the parameters 9 are 
estimated by the least squares method. It means that the estimate 9 of the true 
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parameter vector 9* is obtained as a solution of 

n 

™™S(9):=J2(yi-9(U;e))2. (2) 
ee@ .=1 

The common assumption is that the residuals e; in 

y. = g(U;0) + ei} i = l , . . . , n 

are independent, with zero mean values and an equal unknown variance cr2 (assump­
tion of homoscedasticity) which is estimated by 

s2 = S(9)/(n-p)^S(9)/n 

for large n. 
In the case of nonlinear regression one assumes, inter alia, that the function g 

is twice continuously differentiate with respect to the parameters, that the rank of 
the (n,p) - matrix G(9) of gradients Veg(ti; 9), i = 1 , . . . , n, equals p for all 9 6 0 , 
so called rank qualification, that the true parameter value 9* is an interior point of 
the convex set 0 and an identification condition holds true; see, e.g., [14], [30]. 

For to get statistical properties of the estimates one relies either on asymptotic 
results or assumes normal distribution of the residuals and solves a linearized system 
of normal equations. In the both mentioned cases, the estimates 6 are approximately 
normal, with the mean value equal to 9* and the covariance matrix cr2E_1, E = 
G(9)T G(9) where a2 is estimated by s2; see, e.g., [30] for details. This allows 
to construct approximate confidence intervals for components of the true 9* and an 
approximate distribution for g(t; 9): This distribution is again approximately normal 
with the mean v.due g(t; 9*) and variance a2Q2(t), where 

Q2(t) = Veg(t;9)TX-1Veg(t;9). (3) 

The goal is to estimate the yields of zero coupon bonds of all required maturities 
which are not directly observable. Hence, for each t ^ t{ we replace the unobservable 
yield by the corresponding value g(t; 9) on the estimated yield curve. Such estimates 
are subject to additional error. 

We assume that the yield y = y(t) of a zero coupon government bond with 
maturity t equals 

y = g(i;9*) + e 

with e independent of et-, i = 1 , . . . , n, Ee = 0, vare = <r2. Then the mean value of 
y is approximately g(t; 9) and its variance consists of two components 

vary = a2Q2(i) + a2 

which correspond to the error in the regression model and that of the individual 
value of the yield for maturity t = i. 
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Under additional assumption of normally distributed errors e and e,Vi, y is 
approximately normal and 

y-g(i;6)~M(0,a2(l + Q2(t))) (A) 

where Q2(t) is computed according to (3). The corresponding approximate 
100(1 — a) % confidence interval for the yield y = y(t) for a fixed maturity t ^ t{, i = 
1,..., n is 

g(i; 9) ±s(l + Q2(i)y/2tn-p(l - a/2) (5) 

and / n _ p ( l — a/2) is the corresponding quantile of the t distribution with n — p 
degrees of freedom. 

The assumed parametric form of the yield model (1) allows for a detailed statis­
tical analysis and inference what is welcome for further sensitivity analysis of prices 
and risks or for the results of the bond portfolio management model. On the other 
hand, the inference is linked to a specific parametric form of the regression model 
and it can be misleading if the model is not true (at least approximately). An alter­
native is to try to fit the yield curve without assuming any specific structure of the 
data, by nonparametric regression, cf. [17,32]. Two possibilities are given below: 

Considering again y; the yield to maturity of the ith bond and t{ its related 
maturity, Priestley-Chao estimator is given (see [32]) by the following formula: 

9(t) = -j (6) 

while Nadaraya-Watson estimator is given (see [6]) by the expression: 

m = Sk___j!- (7) 

where K(-) is a kernel function and h the bandwith parameter which controls the 
smoothness of the estimator. 

Of course, one cannot expect strong results, such as the approximate confidence 
intervals (5). Various simulation and resampling techniques have been suggested to 
get approximate confidence intervals, approximate distributions of the test statistics, 
etc.; see [17,32] and references therein. However, for nonparametric regression, the 
number of available observations required for the inference based on asymptotic re­
sults is rather large. Besides of designing special simulation and resampling schemes, 
an open possibility is to use the two-stage approach suggested in [5]. Further devel­
opment of these techniques will be a subject of our future research. 

Still, even graphical comparisons of parametric and nonparametric fit help to 
support or to reject conjectures about the parametric form of the yield curve and in 
some cases, it is possible to construct goodness-of-fit tests for parametric regression 
based on the nonparametric one; see for instance [1,13,18,32]. 

In the numerical studies presented in this paper we shall mostly restrict ourselves 
to simple graphical comparisons of cubic splines or kernel estimators and the assumed 
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form of parametric regression and we shall apply the test of the goodness-of-fit of 
the linearized regression by the method of Eubank and Hart [13]. 

This method is suitable for fixed design regression models and it requires scaling 
the points ti to interval [0, 1]. Hence, we use Tj = hti, 0 < T\ < Tfc • • • < rn < 1. 
The observed data (Ti,yi) are assumed to obey the regression model 

Vi = g(Ti) + e., i = 1, • • -,n 

where et are i.i.d. random variables with zero expectation, a positive variance a2 

and Eef < +oo. 
Under null hypothesis, we assume that the function 

g(T) = g(r;e) = J2ejgj(T) Vr€(0A] (8) 
i= i 

where gj, j = 1, . .. ,p, are known functions such that the (n,p)-matrix G = {<7j(rt)} 
is of full column rank, 6j, j = l , . . . ,p, are unknown constants estimated by least 
squares estimates 6j, j = 1 , . . . ,p. 

The alternative hypothesis is 

9(r) = J2ei9j(r) + f(r) Vr 6(0,1] 
i= i 

where / is a function which cannot be expressed on (0,1] as a linear combination of 
gj, j = 1,... ,p. The idea is to replace / by an approximation based on a truncated 
basis of0<k<n — p functions, say, Ujn, j = 1 , . . . , k, which satisfy orthonormality 
conditions at the design points r,-, i = I,. .. ,n, and are orthogonal to Xjj = i ^jfirj(r) 
at the points T% Vi. With a.j,j=l, ..., k, the coefficients of the function / in the 
chosen truncated basis, the null hypothesis (8) is equivalent to a,j = 0, V j . 

The test of the null hypothesis (8) requires (recursive) computation of coefficients 

1 n 

<*jn = ~ /] uin(n) IH for k = l,...,n-p 

i = l 

and maximization of the criterion 

K * ) = I > ? » - ^ (9) 
; = i 

with respect to k G {1, • • •, n — p}. If the optimal value max*, r(k) > 0, the para­
metric form of the regression is rejected at the significance level a which is related 
to the choice of ca in (9). In principle, any consistent estimate a2 of a2 can be used 
m(9) . 

In contrast to parametric goodness-of-fit tests, this nonparametric test does not 
assume any prespecified form of the alternative hypothesis but it exploits the ho-
moscedasticity assumption. Heteroscedastic regression models 

Vi = g(ti; ^) + e. or yi = g(t{) + e{, t = 1 , . . . ,fi 
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assume Eei = 0, vare; = v(ti) and Eef < +00 V i. We refer to [29] for a nonpara-
metric method suitable for estimation of the variance function v. 

3. T H E ESTIMATED VOLATILITY CURVE 

The techniques for obtaining volatilities of the yields or log-yields are less obvious. 
Most of the authors work with an ad hoc fixed constant volatility, say V(t) = V; see 
discussion in [19,20]. In case of a constant volatility, however, the model does not 
display the desirable mean reversion, cf. [27]. 

The volatility curve can be estimated from historical data, see e.g. [23]. Risk 
Metrics [28] provides historical volatilities for 14 major bond markets, including the 
Italian one; these volatilities are computed daily for several main maturit ies ranging 
from 1 year, 2, 3, 4, 5, 7, 9, 10, 15, 20 and 30 years. The proposal is to get the 
missing yields by linear interpolation and to use the volatilities and correlations of 
the reported yields to compute the approximate values of yield volatilities for these 
nonincluded maturit ies. Clearly, it is not enough data for fitting the volatility curve 
by a regression model. We plan to explore if the two-stage nonparametric approach 
by [5] gives reasonable results. 

The next source of information is implied volatilities computed from quoted bond 
option prices [25]. At a given day, this provides a set of annualized volatilities related 
to several different maturit ies. The next step is to get a volatility curve from these 
"observed" data. Evidently, the discussion concerning an appropriate parametric 
or nonparametric estimation procedure appears once more, including the plausible 
parametric form of the curve and the problem of a small number of available data. 
A suggestion is to regress the implied bond volatility on the lagged one obtained one 
period before; cf. [26]. 

In contrast to the volatility curves obtained independently on the yield curve 
model one could get approximate standard deviations of \gy(t) from a parametric 
model of the yield curve provided that the errors in the applied regression model are 
normally distributed. The first possibility is to construct a regression model directly 
for log-yields and to use the variance coming from (4), the other possibility is based 
on a regression model for yields and on theorems about asymptotic distribution of 
smooth functions of asymptotically normal vectors (cf. [31]). This provides 

lg y(i) - lg 9(i; 0) ~ jV(0, o-g(ti 9)~2(1 + Q2(t)) (10) 

so that for sufficiently large sample sizes n, the fitted volatility of log-yield for ma­
turity t = t is estimated as 

V(t) = - lg- (l + VegiW^VogfrBJ)§ • (11) 
g(t;9) V I 
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4. NUMERICAL TESTING 

Having tried different parametric nonlinear models, as reported in [10], we chose to 
use a simple form of the yield curve applied already by Bradley and Crane [7] 

g(t\d) = ottßer*. (12) 

Table 1 reports selected results related to this yield curve model applied for differ­
ent dates in 1991-1996 using prices from the Italian B T P market to estimate the 
parameters of the yield curve (12); BTPs are government bonds with fixed coupons, 
without options and with different maturit ies (3,5,10 and 30 years) issued two times 
per month. The mean values of residuals can be found under heading "means". The 
results were extended by inclusion of a recent trading day, April 17th, 1997. Notice 
the change in the form of the yield curve due to a new stance of the monetary policy 
aimed at reducing interest burden on public debt through a reduction in nominal 
short-term rates. 

The condition number of £ is of order 2-4, meaning that the matrix is well-
conditioned. 

Dáte 
Jan 15 '91 
Jun 25 '91 
Jan 16 '92 
Jun 24 '92 
Jan 18 '93 
Jun 03 '93 
J a i 17 '94 
Jun 13 '94 
Sep 01 '94 
Jan 16 '95 
Jun 26 '95 
Jan 15 '96 
Jun 24 '96 
Apr 17 '97 

n 
16 
15 
22 
28 
33 
34 
44 
47 
49 
35 
24 
57 
57 
60 

а 
.117 
.107 
.108 
.123 
.116 
.102 
.067 
.077 
.097 
.096 
.102 
.088 
.073 
.057 

Table 1. 

fi 
.066 
.090 
.032 

-.004 
.023 
.011 
.053 
.135 
.137 
.078 
.044 

-.042 
-.027 
-.017 

7 
.0045 
.0130 
.0056 
.0053 
.0036 
.0038 
.0001 

-.0099 
-.0229 
-.0050 
-.0019 
.0105 
.0126 
.0108 

means 
l.e-08 
-2.e-08 
5.e-09 
4.e-08 
l.e-08 
6.e-09 
-8.e-08 
l.e-06 
2.e-07 
l.e-06 
-7.e-08 
8.e-07 
4.e-06 
3.e-06 

s 
l.e-07 
З.e-07 
2.Є-07 
2.Є-06 
2.Є-06 
2.Є-06 
l.e-06 
2.Є-06 
2.Є-06 
4.Є-06 
4.Є-06 
l.e-05 
2.Є-05 
2.Є-05 

We also applied the linearized version of Bradley and Crane's model (12) using 
logarithms of the already computed yields to maturi ty as the input and estimating 
the parameters lga,/?, j by the least squares method. The results are reported in 
Table 2; the estimated values of a are obtained from estimates of their logarithms. 

The obtained estimates of parameters reported in Tables 1 and 2 are comparable 
and the plots of estimated yields /logarithms of yields versus squares of estimated 
residuals do not indicate any linear trend in the plot neither for the nonlinear nor 
for the linearized regression for the dates starting with 1992, i.e., for cases based on 
a sufficiently large number of observations. Both models seem to repeat the same 
pattern in the plots and the same outliers can be identified. 
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D á t e 
Jan 15 '91 
Jun 25 '91 
Jan 16 '92 
Jun 24 '92 
J a n 18 '93 
Jun 03 '93 
Jan 17 '94 
Jun 13 '94 
Sep 01 '94 
Jan 16 '95 
Jun 26 '95 
Jan 15 '96 
Jun 24 '96 
Apr 17 '97 

n 
16 
15 
22 
28 
33 
34 
44 
47 
49 
35 
24 
57 
57 
60 

a 
.117 
.107 
.108 
.123 
.116 
.102 
.067 
.076 
.097 
.095 
.102 
.088 
.073 
.057 

T a b l e 2 . 

.066 

.090 

.032 
-.004 

.023 

.011 

.052 

.137 

.137 

.081 

.043 
-.041 
-.029 
-.017 

7 
-.0046 
-.0129 
-.0056 
-.0055 
-.0037 
.0040 
.0003 

-.0101 
-.0235 
-.0053 
-.0019 
.0110 
.0144 
.0116 

R2 

.991 

.995 

.850 

.738 

.303 

.589 

.827 

.918 

.816 

.837 

.792 

.380 

.369 

.351 

8.e-06 
2.e-05 
l.e-05 
l.e-04 
2.Є-04 

2.e-04 

2.e-04 

З.e-04 

2.Є-04 

4.Є-04 

4.Є-04 

2.Є-03 

З.e-03 

4.e-03 

Table 3. 

Bond 
BTP12669 
BTP12675 
BTP12678 
BTP12681 
BTP12684 
BTP12688 

BTP109236 
BTP36613 
BTP36622 
BTP36631 
BTP36635 
BTP36642 
BTP36651 
BTP36660 
BTP36675 
BTP36683 
BTP36691 
BTP36693 
BTP36709 
BTP36716 
BTP36727 
BTP36731 
BTP36741 
BTP36748 
BTP36760 
BTP36766 
BTP36768 
BTP36778 
BTP36784 

BTP108655 

Maturity 
16/06/1997 
01/01/1998 
19/03/1998 
20/06/1998 
18/09/1998 
17/01/1999 
15/02/2000 
01/09/1997 
01/01/1998 
01/03/1998 
01/05/1998 
01/06/2003 
01/08/2003 
01/10/2003 
01/01/1999 
01/04/1999 
01/08/1997 
01/08/2004 
01/01/2001 
01/04/2000 
15/07/1998 
01/09/2005 
01/11/2000 
01/02/2001 
15/04/1999 
01/07/1999 
01/07/2006 
15/09/2001 
01/01/2002 
01/02/2007 

Yield 
0.079485 
0.056453 
0.058943 
0.055527 
0.056223 
0.057112 
0.180284 
0.055174 
0.055694 
0.054822 
0.055086 
0.062019 
0.062621 
0.064148 
0.057960 
0.057671 
0.060402 
0.063835 
0.045493 
0.055658 
0.055686 
0.063115 
0.057696 

0.0595161 
0.057005 
0.057934 
0.065342 
0.060343 
0.060809 
0.066106 

Bond 
BTP12673 
BTP12677 
BTP12679 
BTP12683 
BTP12687 
BTP36605 
BTP36607 
BTP36614 
BTP36623 
BTP36632 
BTP36641 
BTP36650 
BTP36659 
BTP36665 
BTP36676 
BTP36684 
BTP36692 
BTP36708 
BTP36715 
BTP36717 
BTP36728 
BTP36740 
BTP36747 
BTP36749 
BTP36761 
BTP36767 
BTP36777 
BTP36781 
BTP36785 

BTP108656 

Maturity 
01/11/1997 
01/03/2001 
01/06/2001 
01/09/2001 
01/01/2002 
01/05/2002 
18/05/1999 
01/09/2002 
01/01/2003 
01/03/2003 
01/06/1998 
01/08/1998 
01/10/1998 
01/11/2023 
01/01/2004 
01/04/2004 
01/08/1999 
01/08/1999 
15/04/1998 
01/04/2005 
15/07/2000 
01/11/1998 
01/02/1999 
01/02/2006 
01/05/2001 
01/07/2001 
01/10/1999 
01/11/2006 
01/01/2000 
01/11/2026 

Yield 
0.058892 
0.056524 
0.057963 
0.057953 
0.058764 
0.059394 
0.056257 
0.058663 
0.059265 
0.060516 
0.055920 
0.057311 
0.057647 
0.071364 
0.064629 
0.064649 
0.056666 
0.053531 
0.054643 
0.062987 
0.056920 
0.056147 
0.056928 
0.064814 
0.059534 
0.060080 
0.057950 
0.065084 
0.058901 
0.068833 

Since now, we shall analyze the methods for data of April 17th, 1997; for this 
date, we were able to collect some of implied volatilities. The government bonds 
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(with fixed coupons and without options), BTPs, traded on April 17th, 1997, their 
maturities and yields are listed in Table 3; we have excluded BTP36606 maturing 
in two weeks horizon (on May 1st, 1997). 
The yield curves estimated according to the Bradley-Crane model (12) and according 
to its linearized version are plotted in Figure 1. 

0.080 -л • 
0.075 -

• 
|Bradl ұ-Cran (lln ar)| 

• ' ' • 

0.070 - • 

0.065 -

^ * J • _ Г и 

#•• 
•• 
• 

.-• 
• • ^ ^ ^ s ^ ^ ^ 

I 0.060 -
^ * J • _ Г и 

#•• 
•• 
• 

.-• 
• • ^ ^ ^ s ^ ^ ^ 

|Brodl y-Cгan (non-lin ar)| 

0.055 - - ?4 Г-\" 
• 

0.050 -

0.045 -

0.040 - r 1 1 1 1- 1 

15 

years 

Fig. 1. Term Structure on April 17, 1997; Full Data Set. 

Naturally, the fit is sensitive to data; compare Figure 1 with Figure 2 that contains 
the two fitted yield curves based on 58 observations which remain after deleting the 
two long bonds, BTP36665 maturing in 2023 and BTP108656 maturing in 2026. 
The maturities of all the included bonds are less than 10 years. 

0.050 

0045 - j - |Bradley-Crane(llnear)] 

0.040 

F i g . 2. Term Structure on April 17, 1997; Long Bonds Omit ted . 

The plots in Figures 3 and 4 indicate the differences between the fitted parametric 
form of the yield curve and the nonparametric ones for the full set of 60 data and 
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for the problem with the two long bonds omitted, respectively. In the both cases, 
the results are plotted only for maturities less than 10 years. The nonparametric 
regression curves were obtained by means of cubic splines (see [8]) and by Nadaraya-
Watson kernel estimator (7). We chose Epaneshnikov kernel (see T32]): 

I 0, | t i | > l 
(13) 

and the bandwith was selected iteratively by a repeated use of cross-validation (see 
[32]). 

April 17 1997 

maturities in years 

o — o — 

maturities ln years 

Fig. 4. 
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Cross-validation technique allows to compute the optimal value of the bandwith 
h by solving the following problem: 

min 
h 

EГ=I(У. -9І(U)У (14) 

where §i(ti) is the kernel estimator computed without the pair (t{, y.) and evaluated 
in ti. 

For Nadaraya-Watson estimator (7), the bandwith values coming from cross-
validation were 0.54 After different trials, only one knot at 17.0 and 5.7 was used 
for the cubic spline. 

Priestley-Chao estimator (6) is not appropriate for estimation of the yield curve 
as the design points U are not equidistant. The remaining considered fitting methods 
are comparable within the range of maturities up to 10 years (see Figures 3 and 4); 
notice that the different bond yields cover a very small range. For the full data set 
including maturities up to thirty years, the picture is different, see Figure 5. A similar 
behaviour has been observed for all the dates we have considered (Figure 5). 
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Fig. 5. 

The test of the parametric form of the regression was done for the linearized 
Bradley and Crane model (12) by means of the method of Eubank and Hart [13] 
described briefly in Section 2. We used a polynomial basis, ca = 3.22 (corresponds 
to the significance level a = 0.1) and the variance in (9) was estimated according to 
[16] as 

= (n-2)-123(2*l«yi+* 
it=i 

where do = 0.8090, d\ = —0.5, c?2 = —0.3090 and dj = 0 otherwise. Its numerical 
value (72 = 0.0026 is comparable with the least squares estimate s2 from Table 2. 
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On this significance level, the linearized parametric model (12) of Bradley and 
Crane was not rejected. 

The estimated approximate volatility curves are of a similar character both for 
the nonlinear and the linearized model, see Figures 6 and 7 related to Figures 1 and 
2, respectively. Out of the two models the nonlinear one gives rather low volatilities; 
these volatilities are comparable with the overall s tandard deviation of the log-
yields which come from the market prices of the traded bonds at the given day. The 
magnitude of volatilities obtained for the linearized Bradley-Crane model according 
to (4) is comparable with the magnitude of the implied volatilities. For comparison, 
we report the annualized historical daily volatilities obtained from Risk Metrics for 
April 11, 1997. They are relatively high, decreasing from 0.495 for matur i ty of two 
years to 0.289 for matur i ty of 30 years. 
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5. CONCLUSIONS 

Linearized and nonlinear parametric regression models and the nonparametric ones 
were successfully applied to estimation of the yield curve for the Italian fixed-income 
market. According to their graphical performance and a formal test, the linearized 
parametric model (12) gave a good approximation to the data. The assumption of 
approximately normal distribution of errors in the linearized model is in line with the 
log-normal distribution of yields postulated in the Black-Derman-Toy model. This 
in the sequel allows to quantify the precision of the estimated yields and to construct 
approximate estimates of the log-yield volatilities. General recommendations as to 
suitable methodology for obtaining adequate volatility curve are not yet available. 
This will require a further, deep analysis of the existing approaches. 

Government fixed-income securities represent more than 85% of the Italian fixed-
income market which is the 4th fixed-income market in the world so that enough 
data were at disposal. An application of the above estimation methods for thin and 
emerging markets is limited by the quality and availability of data. For instance, 
if all Czech government bonds were traded at a given date, it would provide only 
10 observations of maturit ies between 6 months 5 years. The lack of data can be 
substituted to a certain extent by an indication of a suitable parametric form of 
the yield curve with a few parameters or of some of its qualitative properties by an 
expert; our preliminary tests do not support the linearized Bradley and Crane model 
(1 ,) for the Czech bond market. The two-stage nonparametric regression approach 
[5] applied to possibly homogeneous da ta coming from typical trading dates of several 
subsequent weeks could give some ideas about the evolution and the shape of the 
yield curve. 

Concerning yield volatilities, neither historical volatilities nor implied ones have 
been reported for the Czech bond market. The only possibility seems to use an 
ad hoc estimate of a constant volatility and to provide a sensitivity analysis of the 
subsequent results with respect to this input constant. 
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