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K Y B E R N E T I K A - V O L U M E 18 (1982), N U M B E R 3 

ON THE DETECTION OF A FINITE BINARY SEQUENCE 
IN THE PRESENCE OF AN INTERFERING 
BINARY SEQUENCE 

LUDVIK PROUZA 

The problem of detecting a binary sequence in the presence of another binary interfering 
sequence is investigated using the least squares method. The accent is posed on finding useful 
detection thresholds. 

1. INTRODUCTION 

Recently, some interest is concentrated on the problem of the detection of discrete 
signals in the presence of noise and of other interfering discrete signals. 

Both more heuristic and more theoretic approaches can be found in the literature, 
[1], [2] being typical. There seems that practically usable solutions are based on the 
supposition that the interfering signal is substantially stronger than the wanted one 
and than the noise. 

In what follows, the usefulness of a simple approach based on this supposition 
and using the method of least squares will be investigated for signals of the form 
of finite binary sequences. 

2. SOME FUNDAMENTAL RELATIONS 

Let N > 1 denote the number of terms of all used sequences. Let 

(1) {s1; s2 , . . . , sw} , s; = S sign s; (i '= 1, . . . , JV) 

be the wanted sequence, let 

(2) {u1,u2,...,uN}, « ; = U s i g n w ; , (i = 1, ...,N) 

be the interfering sequence, let 

(3) {nun2,...,nN}, 

be the noise sequence with independent Gaussian terms, all N(0, a). 
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The received sequence will be 

(4) {xlsx2,..., xN} , xt- sf + ut + H(, (( = 1, ...,N). 

Thus, for the sake of simplicity, the time coincidence of (1), (2), (3) is supposed. 
S, U of (1), (2) are not known, moreover, there will be supposed 

(5) U > S , U p a , 

so that with practical certainly 

(6) sign Xj = sign u , . 

In the place of S, U, one will seek s, u fulfilling 
N 

(7) £ (x, - s/8; - M sign x,)2 = j(s, u) = min . 
; = i 

where 

(8) {PuPz,.-. ,PK}, Pi= ± 1 , 0 = 1,-..,N) 

is a given binary sequence. 
From (6), there follows 

(9) 8 sign xf/3s = 0 , (l - 1 , . . . , At) 

and from (7), the system of necessary conditions will be obtained: 

(10) Cs + Nu - £ |x(| = 0 , 

Ns + CM - X Xj/S, = 0 . 

In (10) and in what follows, both summing bounds are the same as in (7) and will 
be omitted. Further 

(11) C = X & s r g n * ( = I /Migni ( , . 

(the right side with respect to (6)). 

The solution of (10) is 

(12) , , ^ ^ - ^ N , 
V ; N 2 - C 2 , ' 

(13) U = f f l l ^ i . 
K ' N2 -C2 

By geometric consideration, it is clear that this solution makes (7) to the minimum. 
Clearly, s, u are random variables and for the detection of the wanted signal, s is 
of primary importance if (5) holds. 

Firstly, the numerator of (12) will be investigated. Denoting 

(14) Atx; - QT |xf|) sign x\ = f j , (i = 1, ..., Af), 
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it is easily obtained 

(15) I Hi = I (*Pi ~ C sign ut) (st + nt) 

and (denoting E the expected value) 

(16) Ef£ p&) = I (N& - C sign «,.) s, = S(ND - CH), 

where 

(17) D = £j», sign s,, 

(18) II = X sign 5i s i8 n "i • 

From (15), (16) 

(19) I M - EfX /?,£,) = V ( ^ - C sign «,) ». 

and one gets easily 

(20) E(X /tf, - -(E W*))2 = W ~ C2) a2 . 

From (16), (20) 

f2H (E(Z/3,C))2
 = (SV (ND - CH)2 

{ ' E r£^ -E (X^ , ) ) 2 W N(JV2-C2) ' 
Let especially (as in radar) 

(22) sign 5 | = lh 

Then from (16) to (21) 

(231 MME = (s)2N2 - c2 _ lsVN ^ 2 - c 2 

' ECXWt-EG/frC,))3 W W W !V2 

Let C = Oin(ll),that is, the sequences in (2), (8) are not correlated. Then the second 
term in the middle in (23) is N, the known signal/noise gain (in the case of U = 0 
in (2) considered also in the literature) of using the sequence (l) instead a single term. 
The last term on the right of (23) represents the loss in the signal/noise ratio caused 
by the interfering sequence. 

Let C = + At, that is sign u, = ±/?,, (i = 1, . . . , At). Then, as is to be expected, the 
sequence (l) cannot be detected, the expression in (23) is 0. It is interesting that the 
value of U itself is not contained in (21), (23), only the similarity of both sequences 
in (2), (8) in the sense of (11) being important. In what follows, there will be supposed 

(24) 0 < |C| < N . 

Suppose that the sequences (8) and {sign «,} are coincident in N — m terms, the 
remaining in terms being of opposite signs. Then C = N — 2m and the second term 
in the middle of (23) is 

(25) G = MN-m) 
V ' N 

193 



and for N g> m and m = 1 ,2, . . . one gets approximately G = 6, 9, 11, ..., 6 + 
+ 10 log m (dB). 

Let now (22) be not fulfilled. Returning to (16) one sees that (since the denominator 
in (21) is independent on (l)) (21) is maximum precisely if 

(26) sign s; = sign (N/J; — C sign wf) 

or 

(27) sign St = - sign (JV/?; - C sign ut) . 

There will suffice here to investigate the case of (26). Let /?, = 1. Then with respect 
to (24) sign S; = 1. Let /?; = — 1. Then sign S; = — 1. And vice versa. Thus the best 
signal detection is obtained for matched sequences (1) and (8), a well known result 
for U = 0, and a well known more-channel scheme can be used to discriminate more 
known sequences (l). Moreover not knowing the sequence in (2), CH on the right 
of (16) can be positive or negative. Thus one can argue that the best what can be 
done in this case is to choose the sequences (1), (8) so that D = 0 in (16), again a well 
known case of orthogonal sequences. 

In what follows, only the case of the detection of a single known sequence will 
be investigated. 

3. THE DETECTION WITH KNOWN a 

Let (22) hold. Then from (16), (17), (18), (20) and the supposition on the noise 
sequence (3), £ /?;£; is Gaussian (= N(*, •)) 

(28) £/,,£,. = N ( S ( J V 2 - C 2 ) , a . J(N . (N2 - C2))) 

and 

(29) I«L^3Nf-S /£z£.l). 
K J oJ(N(N2-C2)) W N ) 

Let firstly S = 0. Let pf be the prescribed false alarm probability. Then kt is to be 
found so that 

(30) *(fe.) = _ A _ T 9-**dt=l-pf. 
4(2n> J - * 

Further, let pd be the prescribed detection probability. Then k2 is to be found so 
that 

(31) <P(k2) =l-pd. 

From (29), (30), (31) 

(32) kl + (-k2) = ? I 
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and the necessary Sja can be found from this equation. Or, knowing Sja, one can 
progress in reverse sense. 

Actually, for signal detection ]T, /?,-£,• is computed from the observed values and 
compared with the threshold (see (28)) 

(33) £ Ui >k1.a. J(N(N2 - C2)). 

Clearly, £ /?,-£; is the numerator in (12) and C is given by the middle term in (11). 
a is supposed known or, what is practically the same, it can be estimated independently 
on the sequences (1), (2), which cannot be easily done in all circumstances. 

It is also seen from (28) that for s of (12) 

(34) s=H(s,a ' 
jN2 - C 

Further, there is clear that for sufficiently great N the above formulae hold approxi­
mately also if the noise in (3) is not Gaussian, according to the central limit theorem. 

4. THE DETECTION WITH UNKNOWN a 

If a is unknown or, what is practically the same, cannot be easily measured in­
dependently on other signal components, there may be expected that some variant 
of "Student's f" will be valid. In what follows, it will be supposed a = 1 without 
loss of generality. 

If the random variables C; in (14) were independent for S = 0, then the expression 

(35) ^-Vsl-gww 
would possess the /-distribution. But the variables J, are dependent so that a modifica­
tion of (35) is needed. 

From (15) 

(36) I f t t . - - - V l . f l . n , - C * , 

(37) £C? =N2lnl-Nr, 

where 

(38) t// — £ sign «,«;. 

Obviously 

(39) E / ? , « ,= N(0,v!!V), 

(40) . ij, = N(0, JN). 

195 



Further, 

(41) Ety . V /,,„,) = C . 

From (39), (40), (41), the correlation coefficient 

(42) e(*,r-&«.)-~-

TV 

Since both variables in (42) are Gaussian, there can be posed 

(43) # V ' - - ^ I / ? , " . - € , 

where ^ is a new Gaussian random variable not correlated with, thus also independent 
on £ /?(«;. From (39), (40), (43) there follows E(£) = 0, further with (41) 

(44) E(c2) « E / - Y j8,i». - ^ V = ^ N + J V - 2 ^ C = i V - — . V ' V ! \N^ J N2 N N 

Thus £ is a Gaussian variable 

(45, { = N ( o , ^ - | ) ) 

fulfilling the condition to be independent on £ /?,nf. From (36), (43) 

(46) £ /?fC, = YiV - - " ) X ptni + CZ . 

Similarly from (37), (43) 

(47) S C 2 = ! V 2 

Using (46), there will be further computed 

( I W = (N2 - C2) (Z j5.n02 + # ^ «2 + 2ATC^ X fin, . 

(47) X С2 = ІV2 I n2 - Џ £ /?fQ
2 - !^2 + 2CŠ X /,,„, • 

JV 

v ' N2 - C2 v ' ' ' TV2 - C 

Now, from (47), (48) 

(«) NS{?-^(Xft^=«'((M4<IM J)-^4 
But, it is well known ([3], p. 382) that the first term in the parentheses on the right 

possesses the ^-distribution with N — 1 degrees of freedom and ]T /?;nf is independent 
on it. The same independence will now be imposed on { as a supplementary condition, 
without loss of generality. 

Further, it follows from (45) that the second term in the parentheses on the right 
is distributed as x2 with one degree of freedom. 
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From (46), (49) 

(50) ~/7 ^ \ 

—-Zte + cí 

N^Дs»ľ-ì(Z/?.n;)
2-

N 2 - C2 

The numerator on the right has mean value 0 and its variance is from (39), (45) 
N(Ar2 — C2). Thus standardizing it to 1 and dividing further by J(N — l) in the 
numerator, one gets 

(51) - - - « ! - • 

V((N2 - C2)JN2(N - 1)) ̂ i V ZCf - ~ ^ - ( I /J.C.): 

X 

/ ( » . -*G.W--
 N e\ / ( » . -*G.W- N2 - C 2 ' ) 

V N- 1 
Here, X = N(0, 1). For TV > 1, one may neglect the term containing S,2 under 

the root sign on the right. Then ([3], p. 237 and 387), the variable on the right 
possesses approximately the r-distribution with N - 1 degrees of freedom. For 
smaller N, correcting slightly the influence of the neglected term by the factor 
(Ar — 2)I(N — l) respecting the mean value, one gets finally the detection rule as 
follows: 

the signal is declared as present if 

(«) 2 „ I > W „ ) ^ ( ^ S c ; _ _ L - C ; « ^ , 

where t is the tabulated value with JV — 1 degrees of freedom and a = pf. 
Exceptionally, N = C caused by noise and this case shall be eliminated in advance 
in programming (52). 

Now, if the sequence (1) is present, then one sees from (20) that the variance remains 
unchanged and only the mean is changing. By an easy calculation one finds that the 
auxiliary variable X in (51) possesses now the expected value (with a 4= 1 again 
introduced) 

(53) E(X)=S ' 

(cf. with (32)) and the variance 1. 
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Thus the standard tables [4], [5] 0f the noncentral t can be used and with the 
tables notation 

<54> ; J ^ - 1 " - ' • ' - « ) - . . - « * - . , , . •) y(. + ^ _ ) . 
where f0 = ^ - . ( a ) = tjv-i(p/) a n ( l £ = p«c For e > 0-5, as is usually the case, 

(55) <5(7V - 1, to, «) = -5(N - 1, -f0, 1 - e) . 

Conversely, given Sja and t0, one can find £. 

Given pf, pd and computing klt k2 from (30), (31) and 8 from (54), 

w '=(^)2'<' 
represents the loss of signal/noise ratio caused by not knowing a. 

5. SOME RESULTS OF SIMULATION 

To show the applicability of previous results for small N a short extract of simula­
tion results will be given in following two tables. In both cases, N = 7 has been 
chosen. The sequence (l) is the known Barker-7 sequence. There are two interfering 
sequences (2): 

(57) a) {4, 4, 4, - 4 , - 4 , - 4 , - 4 } , 

b) {4, 4, - 4 , - 4 , 4, 4, 4) . 

The Gaussian sequence (3) has been approximated as the sum of 5 pseudorandom 
numbers with uniform distribution in the interval < —1, +1>. Since the standard 
deviation of this sum is y/(5/3), the sum of pseudorandom variables has been multi­
plied by such a factor, that the desired sjn ratio (with Barker-7 as the wanted sequence) 
be obtained. In both tables pf = 0-05 and pd = 0-7. For the table 1 (known a) one 
gets from (30) kt = 1-64. From (31), k2 = -0-52. Since S = 1 and C = 5 for (57) 
a) and C = 1 for (57) b), one obtains in (33) kxa = 1-41 in the case a) and 1-97 in 
the case b). From (32), one gets factors to multiply the sum of pseudorandom 
numbers as resp. 0-66 and 0-94. 

For the case of the Table 2 (unknown a), one finds in the tables of "Student's f" 
to pf = 0-05 the one-sided value f6(0-05) = 1-94. From (54), (55), one gets the factors 
to multiply the sum of pseudorandom numbers as resp. 0-59 and 0'83. And 5 = 2-45 
from the tables of the noncentral t. 

The agreement of computed and simulated results (on the basis of simple np ± 
± 2 *J(npq) criterion) is good. 
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Table 1. (3 X 100 simulations). 

A-jCг Шpf 
Шpd 

1. interference 2. interference 

without 

sig. 

with 

sig. 

without 

sig. 

with 

1-41 5 70 

without 

sig. 

with 

sig. 

without 

sig. sig. 

(l.interf.) 
4 66 6 68 

1-97 4 71 4 76 
(2. interf.) 5 73 6 61 

Table 2. (3 X 100 simulations.) 

ř 6(005) lOOp, юo^ 1. interference 2. interference 
lOOp, юo^ 

without 
sig. 

with 

sig. 

without 

sig. 

with 

1-94 5 70 

without 
sig. 

with 

sig. 

without 

sig. sig. 

3 66 5 70 
6 70 6 71 
2 70 8 67 

There is seen that to get the same detection probability 0-7, sjn ratio is 3 dB 
greater for (57) a) than for (57) b). From (56), the loss of sjn due to not knowing a is 
about 1 dB. 

6. CONCLUDING REMARKS 

If a can be computed independently, then computing (33) in real time is substantial­
ly less laborious than (52), as is immediately seen. 

The results of this article can be generalized in several ways, e.g. the random 
variables s, u from (12), (13) can be used with an appropriate threshold to decide 
whether the present method or the usual matched filter is to be used for the detection. 
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