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KYBERNETIKA CISLO 6, ROCNIK 5/1969

Solution of Simple Logical Problems
by Colouring Graphs

JAROSLAY SEDIVY

This method was invented as an application of graph theory and presented in a primordial
form at the International Congress of Mathematicians held in Moscow, 1966. Later on, the
didactical utilization of the method was developed and some papers concerning these questions
were published by author in Czechoslovak and foreign journal for teachers. That work suggested
some generalizations of the method as well as some simplifications of it. This paper gives a con-
cise information on the mathematical and logical core of the graphical method in its present form.

1. INTRODUCTION

The symbolic logic knows different methods for solving such logical problems as
testing the validity of arguments, establishing the truth-values of some propositions
etc. Textbooks of logic show the application of the truth-table analysis, logical trees,
punch-cards, propositional calculus or Boolean algebra. In this paper, the application
of graphs will be explained, the core of the matter consists in graphical representation
of a binary relation -defined in a finite set of propositions. The truth-values of these
propositions are represented by colours of the vertices, the rules for colouring the
vertices express the rules of logical inference in the language of the graph theory.
No special knowledge of graph theory is required, because of the construction of
a graph is merely needed.

2. GRAPHICAL REPRESENTATION OF SETS OF PROPOSITIONS

In this paper, the sign tv (x) denotes the truth-value of the proposition x, the
signs X, x& y, x v y, x = y, x < y denote the negation not x, conjunction x and y,
disjunction x or y, implication if x, then y and equivalence x if and only if y, re-
spectively. The construction of the graphs will be described as the first step in solving
the following problem:
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Problem 1. Given a condition tv (p, & p, & ... & p,) = 1, where each proposition
p; is constructed from some of the basic propositions by, b,, ..., b, by using the
logical connectives mentioned above. The question we face, then, is to establish
the tv (b,), tv (b;), ..., tv (by)-

Example 1. Given tv[(@ v ))& (b v §) & (c>d)& (d v e) & (e = a) & (e=> d)] =
= 1. Establish the tv (a), tv (b), tv (¢}, tv (d) and tv (e).

Example 2. Given tv[(a=>d)& (b= )& (a& c=> d)& (b&c=a& d)&
& (@& b=>¢)] = 1. Establish the tv (a), tv (b), tv(c) and tv (d).

Let us take for granted that all propositions p; are put down in one of the forms
X, X, x vV y, x=>y, where x, y are the propositions with the least number of logical
connectives as possible. The collection of all these propositions x, y is the key set
for our method and will be called the fundamental set & of propositions (with regard
to the given problem). In the example 1 we find the set &, = {a, b, ¢, d, e, a, b, &},
whereas in example 2 we find &, = {a, b,¢,d,a&c,b& c,a& d,a& b, ¢}.

Let us denote the set of all propositions p; by the letter # and concentrate our
attention to the connection between the sets 2 and & x & (cartesian product of
the set & with itself). All disjunctions or implications included in & are constructed
from ordered pairs of elements of the fundamental set &. The collection of all p;
which are disjunctions may be regarded as a binary relation 2 defined in the set &, as
follows:

9 ={(x,y)e & x &; x v yisa true proposition included in 2} .

The collection of all p which are implications may be regarded as a binary relation
# defined in & as follows:

F={(x,yv)e¥ x &; x=>yisa true proposition included in £} .

Obviously, it will be useful to take into consideration the union-set 2 v £ of both
binary relations defined above.

Fig. 1.

As soon as we have obtained a binary relation defined in a finite set % we can
design an advantageous graphical representation of it. The clements of the set &
will be represented by vertices of the graph (sma]l circles on the fig. 1). Every element
x v y of the symmetric binary relation @ will be represented by one edge xy of the



graph, i.e. by a simple curve connecting the vertices x, y (see fig. 1). Every element
x = y of the relation ,# will be represented by a directed edge of the graph, i.e. by
an edge xy provided with an arrow directed from the vertex x to the vertex y (see
fig. 1).

Besides the disjunctions x v y and implications x = y, the set 2 = {p,, p, ...,
..., P} ight include the propositions of the types x, X, where x € &. If p; = x or
p; = X, then the proposition x is an element of the set & and as such it is represented
by a vertex of the graph. From the condition tv(p, & p,&...& p,) = 1 we can
deduce that tv(x) = 1, resp. tv(x) = 0. The truth-value of a proposition x €%
may be marked by colour of the corresponding vertex. Because of the two-valued
logic, we need two colours only. In this paper, we shall use a doubled circle for
representing any true proposition x € & and a black circle for representing any
false proposition x € S. From this reason, we shall work with a little strange co-
lours of vertices — double, black.

Following the construction described above, we represent the elements of the set
2 by vertices of the graph and the elements of & by edges of the same graph or by
colours of the vertices drawn before. The arrangement of the vertices is very important,
therefore some remarks concerning this question will be made.

Each fundamental set of proposition may be embraced in a so called complete
Sfundamental set of proposition. These sets form a certain hierarchy as it is obvious
from their definition (the by, b,, ..., b, are the basic propositions):

i

Fo=1{b1, by ... b}

F, =F,u{XxeF,),

F,=F, v{x&y;xeF , &yeF,},
Fy=F,u{zzeF,}, efc

I

It is evident that the set & mentioned above is a subset of the set #, provided
Fqo = {a, b,c,d, e}. The figure 1 has shown a convenient graph representing the
set #, — the vertices of the graph are situated on two parallel lines with the pairs
x, X accross. The fig. 2a illustrates the manner in which graphs of the set &, will
be represented. The elements of the set &, included in &, are situated on the main
diagonal of a matrix scheme in order by, b,, ..., by, by, ..., by, by, where the pairs
b;, b, lie symmetrically in regard to the other diagonal. Each conjunction x & y is
represented by one small circle situated below the main diagonal in intersection of
the row and column containing the vertex x or y. When the vertices on the main
diagonal are designated by letters, we can easily say which conjunction is represented
by any other vertex. It means that these other vertices need not be designated at all.

The fig. 2b depicts a convenient scheme of graphical representation of the set
Z 4. The trigonal graph of the set &, included in 4, is completed by vertices si-
tuated above the main diagonal in intersections of rows and columns of the under-
lying matrix scheme. Each new vertex lying in the same row or column as the vertices
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x, y represents the negation of conjunction x & y. In this manner the negation of
propositions is always connected with some symmetry in the graph. Each vertex
situated on the main diagonal of the square graph may be comprehended as the
representative of the conjunction x & x; in regard to the equality tv (x & x) = tv (x)
we use the symbol x only.

Q

Fig. 2.

a) b)
The simple logical problems mentioned in the title of this paper may be character-
ized as problems with such fundamental sets of propositions which are subsets of

the complete fundamental sets &, &, &, or & ;. Having constructed the graph of
the sets & and 2, we can solve the given problem by colouring vertices of this graph.

3. PROCEDURE OF THE GRAPH COLOURING

Let us start with the problem formulated in example 1 and recall the sets of pro-
positions concerned with its solution:

set of all proposition p; P = {a Vb bV iceddVee=a,
e = d} s

set of all basic propositons B = {a, b, c, d, e} s

fundamental set of propositions ... Z=1ab,c,denb,c}.

The graph ® constructed on the fig. 1 may be regarded as a structure on which we
can formulate a problem isomorphic to the given problem. The transformation of
the original problem into the new one may be described by rows of a vocabulary seen
below. After recalling the correspondence of objects we shall transform the simple
rules of inference into the rules for colouring the graph ®:

proposition x € & vertex x € @

true digjunction (x v y) € & edge xy € @
Lo i el

true implication (x = y) € # edge xy € ®

true proposition x € & doubled vertex x € ¢

false proposition x € & . black vertex x € &

to establish tv (x) . to establish colour of x



1. Each proposition x € & has exactly one 1. Each vertex x has exactly one colour.
truth-value.

2. The proposition X € & has another truth- 2. The vertex x has another colour than the
value than the proposition x € . vertex x.

3. If the disjunction x Vv y is true and one of 3. If one of the vertices connected by the edge
the propositions x, y is false, then the other xy is black, then the other is doubled.
is true.

4, If an implication x = y is true and the pro- 4. If a directed edge x»y has doubled initial
position x is true, then the proposition y is vertex x then its terminal vertex y is also
true. doubled.

5. If an implication x = y is true and the pro- 5. If a directed edge 1)7 has a black terminal
position y is false, then the proposition x is vertex y, then its initial vertex x is also
false. black.

To start colouring the graph we must know the colour of some vertex. Given
colour of no vertex we shall choose the colour of the vertex a, but we must remember
both possibilities for this choice. Let us suppose that the vertex a is doubled (see
fig. 3a) and take steps based on the rules 1—5. Applying the rule 2, we blacken the
vertex a; following the rule 3, we double the vertex b etc. After a few steps we get
the state depicted on the fig. 32 — the two-coloured vertex e. This fact is in contra-
diction with the rule 1 and hence the presumption made about the colour of the
vertex a is disproved.

Having pictured a new graph we mark the black colour of the vertex a (fig. 3b)
and apply the rules 1—35 again. In this case it is easy to colour the vertices e, d, c,
¢, b, b, d,d, é subsequently and gain the result as seen on the figure. No contra-
diction may be found, therefore the solution of the original problem is as follows:
tv(a) =tv(b) =0, tv(c) =tv(d) =1, tv(e) = 0.

a b c d e
:/O o

O O O
i

a b 3

Fig. 3. a) b)

Let us solve the problem given in example 2. The following sets will participate
in its solution:

set of all propositions p; P = {a =>db=>c,a&c=>db&c= a&d,&&b:»?}
set of all basic propositions ... @={ab,cd}
fundamental set of propositions ... = {a, b,e,d,a,b,¢c,d,a&c,a& d,a& b, b & r}

The graphical representation of the sets & and & is shown on the fig. 4 together
with the chosen truth-value of the proposition a, tv(a) = 1. For colouring this
triangular graph the afore-said rules may be used, but they are not sufficient. It is
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necessary to join some rules concerning the role of conjunctions in the logical in-
ference and transform these rules into the rules for colouring the graph. For this
purpose we shall use a few new terms.

A vertex of the triangular graph is said to be a diagonal vertex iff it is situated on
the main diagonal of the scheme, otherwise it is said to be a subdiagonal vertex.
The diagonal vertices x, y are said to be projections of the subdiagonal vertex x & y.

Using these words we can write:

6. The conjunction x & y is true iff both pro-

positions x, y are true.

7. If a conjunction x & y is false and one of
the propositions x, y is true, then the other
is false.

. If the proposition x is false, then every con-
junction x & y is false.

oo

6. The subdiagonal vertex is doubled iff both
its projections are doubled.

7. If a subdiagonal vertex is black and one of
its projections is doubled, then the other
is black.

8. If a diagonal vertex is black, then all sub-
diagonal vertices situated in the same row

or column are black, too.

The figure 4 shows the result of colouring the graph by application of the rules
1—8. The procedure may be marked briefly in the following comprehensible way:

Choice: a doubled, 4: d doubled, 2: d black, 5: a & ¢ black, 7: ¢ black, 5: b black,
2: b, ¢ doubled, 8: a& d, c& b, b& a black. All vertices of the graph are coloured
and no contradiction may be found, thus, we have got one solution of the given
problem: tv(a) = 1, tv (b) = tv (c) = tv(d) = 0.

Fig. 4.

Supposing tv (a) = 0 we could apply the rules 2,8 and 5 and mark tv (@) = 1,
tv(a&ec) =0, tv(a&d) =0 and tv(c&b) = 0, but further no other rule may
be applied. Whenever we cannot apply the rules 1—8 for colouring the graph, we
must choose colour of some vertex and remember the other possibility of the choice.
In such cases it is usually necessary to draw a duplicate of the considered graph
(with yet achieved state of its colouring, of course) and mark different colours of
the discussed vertex on these two graphs. Then, the colouring procedure may be
continued. In this way two other solutions of the problem may be found.



The rules 1—8 and the additional rule for the choice of colour of one vertex are
sufficient for colouring the square graphs (see fig. 2b). This fact enables us to solve
all simple logical problems of the type 1 (see the section 2 of this paper).

4. GRAPHICAL ALGORITHM FOR SOLVING SIMPLE ZEBRAS

A problem ending by the question “Who is breeding the zebra?” was published
in many magazines all over the world. The name of this animal is often used for
denoting problems similar to the above-mentioned famous one. Let us remember
the main features of the mentioned problem without quoting its long text which
gives some information about properties of five men living in five houses. These
men differ each from other in nationality, favourite drink, sport, bred animal etc;
every man has, of course, exactly one nationality, favourite drink, favourite sport, is
breeding exactly one animal etc. The data are formulated in a little special way,
for example by the following sentences: “The man drinking milk breeds a cat. The
athlete is a French. The German does not drink wine”. The solver’s task lies in
determinating all properties of the particular men as far as their nationalities, fa-
vourite drinks etc. are concerned.

The above examples of the “zebra” conditions show that a pair of men’s pro-
perties occur in every simple sentence. Having denoted the set of five men by the
letter &, we could formulate the sentence “The athlete is a French” as follows:
“There exists a man X e & that is an athlete and a French simultaneously”. Generally
speaking, the “zebra” problems may be taken for problems concerning the set of
all propositions expressed in the form ‘“There exists 2 man X € & that has the
properties £ and # simultaneously”, where &, 5 are the elements of a set of proper-
ties.

To simplify the definition of the “zebras” we shall introduce some symbols. The
letter 2 will denote a finite set of n persons, objects etc., the letters 2y, 2,, ..., Z,,
will denote disjoint sets of properties of the elements x € 2, 2; = {P;1, Piz; -+ Pin}-
The basic proposition “There exists an element x € & that has the properties ¢,
will be denoted by the symbol [£, ], where E€ 2, ne #;; i,j =1,2,...,m. The
set of all basic propositions [5, 1] will be denoted by the letter 4.

The zebra of the type m x n will be defined as a logical problem concerning a set
Z = {x, X5, ..., X,} and a system {2, P,, ..., 2,} of sets of properties of x € Z.
Given a set 7 of propositions constructed from the basic propositions [£, 7] by means
of logical connectives, we have to determine the truth-values of all elements of #
so that the three following conditions are satisfied:

(1) All propositions included in 7 are true.

(2) For every (€2, 1 £i < m, and every j, 1 £j < m and j + i, there exists
exactly one 7 € 2, so that tv [, 7] = L.

(3) & n are elements of a set 2, (i = 1,2,..., m), then tv [&,n] =0forall & + 1,
and tv [£ 4] = 1 for all &= 9.
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A zebra will be called the simple zebra iff all propositions included in  are
propositions [£, 7], their negations or disjunctions, implications and equivalences
constructed from two propositions [ &, #], [/, n'] only. The procedure of the graphical
solution of simple zebras will be shown in solving the following problem.

Problem 2. Given four persons and three sets of their properties: 2, = {a 15 Q3
as, a,}, P, = {by, by, by, b,} and P, = {c;, ¢3, ¢3, ¢,}. Every man has exactly
one property included in &, as well as in 2,, #;. Determine all properties of each
of these persons provided the following propositions are true: [ag, ¢,], [by, ¢s],

[ay, AR [a?bﬂz], [as, ¢5] v [aa, €3], [b1, €3] v [bs, 1], [as, bs] = [as, ¢,].

o=
]
}. ©a2

;
OO0 Q] 2}0 0| O«
;og}o’; o0 @0
o bo0l00co0o0lee0-

i |
res. (€0 001000 0C!@®@@Q«

Let us show the graphical solution of this simple zebra. First, we have to draw
a graph which could represent the set of all propositions [£, ], where Ene?, v
U 2, U P;5. The presence of a conjunction in the formulation of the proposition
[, n] suggests the using of a triangular graph (see fig. 5). The conditions (2) and (3)
involved in the definition of zebras call for an outstanding representation of particular
sets of properties. Therefore, the diagonal vertices will represent the elements of
P,, P, and P, in such a way that all elements of one 2, (i = 1, 2, 3), will be separated
from others by lines. The horizontal and vertical lines shape square and triangular
fields in the graph, these fields playing an important role in colouring the graph.



Now, the set % of all propositions [£, ] is represented by vertices of the graph:
the diagonal vertices represent the propositions [&, &] which are true, whereas the
other vertices situated in the triangular fields represent false propositions (see the
last condition involved in the definition of zebras). The subdiagonal vertices may be
coloured or connected by edges in order to represent the given true propositions
(elements of I~ ) in the way described in the preceding sections of this paper. Fig. 5
shows the graphical representation of our simple zebra.

The colouring of the graph will be performed on the base of rules 1 — 5, but without
any application of the rules 6 —8 which refer to the case when the vertices represent
the conjunctions &€& 5 really. In our case, the vertices represent the propositions
[f, 11], thus other rules must be used for colouring them. It is easy to see that the
condition (2) may be expressed in the two following rules:

L. If a vertex situated in a square field of the graph is doubled, then all vertices
of this field lying in the same row or column with that doubled one, are black.
II. If all vertices of a row or column contained in a square field are black with
the exception of one vertex only, then this remaining vertex must be doubled.

Applying the rule I we can colour the vertices in two rows and columns of the
graph and obtain an occasion for using the rules 3 and 5 immediately. Thereafter,
the rule I may be applied again, but some vertices remain uncoloured yet. The most
important rule for colouring the zebra graphs will be derived only.

Let us concentrate our attention to the rectangles sketched on the fig. 6a,b. The
unordered 4-tuples of vertices (small circles) may be taken for vertices of a rectangle
in the usual geometrical sense. The truth-values of the propositions [a, ], [«, 6],
[, 7], B, 6], resp. [, 8], [B, B], [, 8], [B, 5], are to some extent mutually dependant.

\?a N\

Fig. 6.
a) b)

The truthfulness of three propositions from the considered 4-tuple makes it
sure that there exists an object x € & which has all four, resp. three, properties
simultaneously, i.e. all four considered propositions are true. In other words, sup-
posing two from four considered propositions are true, we can assert that the re-
maining two propositions have the same truth-value. The following rule will express
thic fact in the language of graphs.
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Il Rectangle’s rule. If two of four vertices of a rectangle (with horizontal
and vertical sides) are doubled, then the two remaining vertices have the same
colour, i. e. both are doubled or both are black.

This rule is mostly applied in the case depicted on the fig. 6b; supposing [a, 5]
is doubled, we can vary the position of 6 and pass through the whole columns below
o and f. Doing so, we transfer the known colours from one column into the other;
when f, § belong to the same set &; of properties, then the rule IIT gives the same
results as the rule I. Of course, many occasions exist there for applying the rule III;
the systematical usc of it enables us to mark a considerable number of consequences
of the given true propositions.

The final state of the graph colouring should show that there exists a person having
the properties a,, b, and ¢, simultaneously. Analogically, the triples of properties
az, by, €3, TESP. a3, by, ¢4, TESP. a4, bs, ¢y, belong to a person mentioned in the
text of the problem 2. These results may be read immediately from the four longest
columns of the coloured graph.

Obviously, the method described above appears to be more advantageous for
solving the simple zebras of higher degrees, for example the zebras of type 6 x 6,
6 x 7,8 x 8 etc. The conditions concerning the arrangement of the considered per-
sons or objects are very popular in the zebra texts (the man X is sitting on the left
side of the man Y, the man X is sitting face-to-face with the man Y etc.). Such con-
ditions may usually be expressed by means of a series of equivalences and negations
and graphically represented, too.

5. FINAL REMARKS

The graphical method provides an accessible tool for solving simple logical pro-
blems which are solvable in the frame of propositional logic. It is no need to use the
symbolic language, the graphs may be drawn on the base of the text directly. The
colouring of the graph is a more concrete activity for beginners than the truth-table
analysis or the propositional calculus. For this reason, the graphical method is re-
garded as a device for teaching the elements of logic.

Of course, the method itself may be generalized in many ways. Some problems
solvable in the frame of the logic of classes may be solved by graphs, too. The in-
clusion of classes il a binary relation which is closely connected with irhplicaLions;
this fact enables us to make use of colouring suitable graphs. The method may be
used in many-valued logics, too. The construction of electrical devices working on
the base of the rules mentioned above seems to be quite justified.

Nevertheless, the graphical method should be considered as an introductory
method which has to prepare the users to the understanding the more powerfull
methods.

(Received February 28th, 1969.)
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VYTAH

Reseni jednoduchych logickych tloh pomoci vybarvovani grafi

JAROSLAY SEDIVY

Nékteré logické tlohy Ize FeSit pomoci grafi, jeZ zndzorfiuji bindrni relace defino-
vané na koneénych mnoZinich vyrokt. Pravdivostni hodnoty vyroki jsou vyjddie-
ny barvou uzlll grafu; pravidla pro vybarvovdni grafu vyjadfuji pravidia logického
vyvozovani zaloZend na zdkladnich vlastnostech negaci, disjunkci, implikaci a kon-
junkci vyroki.

V &dnku jsou FeSeny dva typy problémi:

1. Je ddna pravdivd konjunkce p,& p, & ... & p, vyrokii utvofenych z nékolika
zdkladnich vyrokil by, b,, ..., by, pomoci logickpch spojek. Mdme uréit pravdivostni
hodnoty vyrokit by, by, ..., by,

Vyroky p; (i =1,2,..., n) Ize upravit tak, aby mély jednu z forem x, X, x v y,
x => y, kde kaZdy z vyrokit x, y obsahuje minimdlni podet logickych spojek. MnoZina
vSech téchto vyrokil x, y je nazvdna fundamentdlni mnoZinou &, zatimco mnoZina
viech vyrokl p; je oznadena 2. MnoZiny vyrokd x v y, resp. x => y, obsaZenych
v & lze povazovat za bindrni relace 2, resp. #, které jsou podmnoZinami kartézského
soudinu & x &. Prvky relace 9 jsou zndzornény neorientovanymi hranami, prvky
relace # orientovanymi hranami grafu & = [.V, 2 v #]. Jsouli prvky mnoZiny &
vyjddieny pouze v jedné z forem u, u & v, u v v, u = v, u <> v, kde u, v jsou zakladni
vyrobky nebo jejich negace, nazveme piislu§nou logickou tlohu jednoduchou logic-
kou ulohou. Algoritmus grafického feSeni té€chto loh se sklddd z osmi pravidel a
z mluvy o volb& pravdivostni hodnoty jednoho vyroku v pfipad8, Ze Zddné z osmi
pravidel nelze aplikovat.

2. Zebra typu m X n je definovdna jako logicky problém tykajici se mnoZiny
Z = {x}, %3, ..., X,} a systému {2, P,, ..., #,} mnoZin vlastnosti prvki x € Z.
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Je déna mnoZina 7 vyroki, jeZ jsou sestrojeny ze zdkladnich vyrokii tvaru ,.existuje
x € Z, které md vlastnosti &, #* pomoci logickych spojek. Mdme uréit pravdivostni
hodnoty viech zékladnich vyrokdi (znacenych strucné [, 1)) tak, aby byly splnény
tyto podminky:

(1) Vsechny prvky mnoZiny T jsou pravdivé vproky.

(2) Ke kazdému Ee P, 1 i< m, a ke kaZdému j, 1 £j < mai =+ j, existuje
prdvé jedno n € 2,, tak, Ze vyrok [¢, 1] je pravdivy.

(3) Jsou-li &, n proky téfe mnoZiny P, (i = 1,2, ..., m), pak vyrok [&, y] plati
pfi &€ = n a neplati pro 2ddnd dvé riznd &, 5.

Za jednoduchou zebru je povaZovdna ta zebra, jejiZ mnoZina 7 obsahuje jen zd-
kladni vyroky, jejich negace a disjunkce, implikace a ekvivalence vytvofené ze zd-
kladnich vyrokd. Algoritmus pro feSeni jednoduchych zeber zahrnuje pravidla 1 -3,
umluvu o volbé a tfi specifickd pravidla I, II, III. Pravidlo IIT (obdélnikové pravidlo)
se tykd Etvefic vyrokl zndzornénych na obr. 6a,b.

Grafickou metodu lze zobecnit pro sloZit&jsi ulohy, pro vicehodnotové logiky a
bylo by moZno modelovat jeji algoritmy elektrotechnicky. Jeji uZitenost viak spo-
&ivd v ndzornosti feSeni Gloh, kterd piispivd k osvojeni zdkladnich logickych poznatki.

Jaroslav Sedivy, Matematicko-fyzikdlni fakulta University Karlovy, Sokolovskd 83, Praha 8.
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