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BAYESIAN RANK ESTIMATION WITH 
APPLICATION TO FACTOR ANALYSIS 

MIROSLAV KÁRNÝ AND MARTIN ŠÁMAL 

Rank estimation is a common sub-problem met in various fields exploiting matrix al­
gebra. Estimation of the number of factors in factor analysis is of this type. Due to large 
noise contents in the analyzed matrix, standard procedures, like deterministic inspection 
of singular values, fail. 

In the paper, a novel procedure is proposed. It is gained by straightforward application 
of Bayesian statistics to a carefully selected model which fits to the target area, namely, 
factor analysis of dynamic scintigraphic studies. The formal solution consists of an exactly 
feasible part and a maximum-likelihood type one. The latter is justified by large dimensions 
of the data matrices containing analyzed images. 

Properties of the procedure are illustrated on simulated and real data. 

1. INTRODUCTION 

Rank estimation is a common sub-problem of the applied matrix algebra. Singular 
value decomposition [2] followed by a selection of significant singular values is the 
most successful procedure used. Often, the distinction of significant and insignificant 
singular values is "visible" by naked eyes and the rank estimation is easy. The 
situation becomes different when the inspected matrix is gained from noisy data and 
no sharp bound can be seen between both types of singular values. We have met 
this problem when estimating the number of factors in factor analysis of dynamic 
scintigraphic studies [3]. This method provides a computer assistance to medical 
doctors analyzing image data. For a routine use, a reliable algorithmic support in 
choosing number of factors is of importance. We have tested several procedures, for 
instance [4], with various degrees of success. At the end, no one was found sufficiently 
satisfactory for the wide range of data tested. For this reason, we have tried to 
use the methodology of Bayesian structure estimation [5] in order to overcome the 
observed drawbacks. The choice of the methodology was stimulated by successes in 
other applications. 

This paper describes the procedure and provides illustrative results both for simu­
lated and real image data. The derivation presented should clarify the assumptions 
and restrictions under which the procedure is expected to work properly. 
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2. BAYESIAN STRUCTURE ESTIMATION 

Bayesian structure estimation [5] can be interpreted as a standard solution of a 
special estimation problem with a multivariate parameter. One of parameter entries 
is a pointer to structures S(k), k = 1 , . . . , m < oo, and the rest consists of the related 
finite dimensional unknown parameter Q(k) = Q(S(k)). 

The pointer distinguishes competitive descriptions of the same observed data 
Y, namely, probability density functions (p.d.f.s) conditioned on the structure and 
related parameter 

p(Y\Q(k),S(k)). (1) 

Assigning prior distribution to the unknown entities 

p(e(k),s(k)) = P(e(k)\s(k))p(s(k)) (2) 

(with p(S(k)) being a probability function (p f ) ) , the Bayes' formula [5] provides 
the posterior probabilities of the structures 

.omi>n _ P(Y\S(k))p(S(k)) 

The needed data description - within kih structure and without "nuisance" param­
eter Q(k) - is given by the standard relation between the joint and marginal p.d.f.s 

p(Y\S(k)) = Jp(Y\6(k),S(k))p(Q(k)\S(k))dQ(k). (4) 

Remark . In order to keep presentation as simple as possible, the following sidesteps 
from a mathematical correctness are made: 

- the existence of used p.d.f.s with respect to a dominating measure (Lebesque 
measure in the continuous case and counting one the in discrete case) is as­
sumed; 

- J • dQ denotes generally multivariate integral over whole support of the integrand 
with respect to Lebesque measure supposing this operation to be meaningful; 

- random variables, their realizations and p.d.f. arguments are not distinguished in 
notation; 

- various p.d.f.s are labelled by p and distinguished through their arguments only; 
even probabilities for discrete random variable are denoted in the same way. 

3. PROBLEM FORMULATION 

This paper contains essentially an application of the Bayes formula (3) to the ap­
propriately chosen constituents (1), (2) which are believed to model a wide class of 
situations under which rank has to be estimated. Thus, the problem formulation is 
completed by specifying the elements in the formula (3). 
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3 .1 . Data normality and covariance s t ruc tu re 

The raw data Y (the matrix of (m, n)-type with m < n) are assumed to be nor­
mally distributed with the expected value p which explains all relations leaving zero 
correlations among Y — pi entries. A common non-zero dispersion A of all entries 
Yij, i = 1,... ,m; j = 1 , . . . ,n is supposed. Thus, the p.d.f. of Y conditioned on the 
unknown (p, A) is 

p(Y |/i, A) oc A - 0 5 m " exp[0.5A-1tr(y - p)'(Y - /.)] = Ny(p, XIm ® In), (5) 

where oc means equality up to a factor which is uniquely defined by the p.d.f. nor­
malization, tr denotes the matrix trace, ' transposition, In the unit matrix of the 
(n, n)-type and ® the Kronecker product. 

3 .2 . Rank dependent parametrization 

The following simple algebraic proposition expresses dependences among entries of 
fi if /i has rank k (< m < n). 

Propos i t ion 1. [Decomposition of p] Let / i b e a real non-zero (m, n)-matrix of 
the rank k, k < m < n. Then, it can be uniquely factorized into the product 

ft = FG, (6) 

where the matrix F belongs to the set F*(k) of full rank (m, &)-matrices with or­
thogonal columns 

F'F = h (7) 

and with the leading (k, fc)-submatrix being lower triangular one with positive diag­
onal. The matrix G is a full rank matrix of the (k, n)-type. 

P r o o f . Singular value decomposition and the rank assumption imply existence 
of the unique decomposition p = SDV with S'S = W = h and the diagonal 
(k, fc)-matrix D having non-increasing values of the non-negative diagonal entries. 
Introducing G = DV we get the decomposition p = SG which is unique up to an 
"inner" regular transformation T, i.e. « = STT~XG. The required orthonormality 
of F = ST enforces the orthogonality of T and the "triangularity" requirement 
(together with the assumed full rank of S) implies the uniqeness of T. • 

3 .3 . Parametrized model 

For any of the possible structures: S(k) = rank of the data expectation p. is k 
(k=0, l . . . ,m), we adopt as the data model the Gaussian one, uniquely parametrized 
b y 0 ( * ) = (F(*),o(*),A(*)) 

p(Y\Q(k), S(k)) = P(Y\F(k), G(k), X(k), S(k)) = AfY(F(k)G(k), X(k)Im ® /„) (8) 

with F(k) e F*(k). 
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3 .4 . Priors 

Uniform prior p.f. is assigned to the competitive structures using the argument of 
insufficient reasons. This can be easily modified if such reasons exist. 

The definition of Q(k) items and the chain rule imply 

p(Q(k)\S(k)) = p(G(k)\F(k),X(k),S(k))P(F(k)\X(k),S(k))P(X(k)\S(k)) (9) 

thus, the prior-p.d.f. p(Q(k)\S(k)) specification can be made in terms of the parti­
cular factors. 

We shall assume that 

P(G(k)\F(k), X(k),S(k)) = P(G(k)\X(k), S(k)) = MG{k) (o, ^ 7 * ® / „ ) , (10) 

where e(k) > 0 can be interpreted as noise-to-signal-uncertainty ratio, 

p(F(k)\X(k),S(k))=p(F(k))= uniform on F*(k) (11) 

and 
p(X(k)\S(k)) oc A-a^)"1(A;)exp[-/?(fe)A-1(^)], (12) 

where the "shaping" parameters a(k),@(k) have to be positive in order to get a 
proper prior p.d.f. 

The self-reproducing forms are selected in order to keep algebraic level of eval­
uations. A specific choice of the shaping parameters a(k), f3(k),e(k) is discussed 
below. 

The assumed zero prior expectation of G is the only serious restriction. It implies 
that unconditional expectation of data is assumed to be zero. This property can be, 
at least approximately, met by subtracting sample means of matrix rows. 

4. SOLUTION 

The solution of the formulated problem is decomposed in two parts: the first one 
follows exactly the above theory, the second one contains an approximation of an 
analytically unfeasible integration. 

4 .1 . Evaluation of p(Y\F(k),S(k)) 

Proposi t ion 2 . [Distribution p(Y\F(k), X(k),S(k))] For the parametrized model 
(8) and the prior p.d.f. (10), it holds 

p(Y\F(k),X(k),S(k)) = MY(0, X(k) C(k) ® /„) = 

« [X(k)}-°-5™ ( ^ J ^ y ) ° 5 %xp[-0.5tr(A-1(*K-1(>)I*)] (13) 
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R = YY'. (15) 

P r o o f . It is based on a standard integration of multivariate Gaussian distributions, 

see e.g. [1]. The orthogonality of E-columns implies the simple form of 

de te rminant^- 1 ^) ] = ( - ^ ± - \ , (16) 
\ 1 + e(k) J 

which is needed when integrating. O 

Proposi t ion 3. [Distribution p(Y\F(k),S(k))] For the parametrized model (8) 
and prior p.d.f.s (10), (12) it holds 

P(Y\F(k),S(k)))<x ( r ^ y ) [2P(k) + tt(C-l(k)R)]-0^W+^. (17) 

The normalizing factor is independent of F(k) and this formula is valid even for 
(a(k),(3(k)) approaching zero. 

P r o o f . It is implied by chain rule [5] and by the simple substitution x := 
\(k)/(2/3(k) + tT(C~1(k)R)). The independency of the normalizing factor of F(k) is 
obvious from (16). D 

4.2 . Approxima te evaluation of p(Y\S(k)) and p(S(k)\Y) 

The p.d.f. p(Y\S(k)), needed for completing the evaluations, is given by the formula 

p(Y\S(k)) = vor\F*(k)) I p(Y\F(k),S(k))dF(k), (18) 
JF-(k) 

where vol(E*(A:)) = fF.,ks dF(k) is clearly finite due to definition of F*(k). The 
complex forms of the integration range and of the integrated function leave no chance 
for exact analytical evaluation and the dimensionality curse prevents the use of 
numerical integration. For this reason, a simple upper bound is found and used 
further on in evaluations. 

Proposition 4 . [Upper bound on p(Y\S(k))] For the parametrized model (8) and 
prior p.d.f.s (10), (11), (12), it holds 

/ e(k) \ 0.5r.*r A(k) -|-0.5(2a(*)+mn) 

*"«*»-.• (r2.y h^-uU • <19> 
where 

7(k) = 2/9(*)/tr[jq) (20) 
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c is a universal, structure independent factor and 

where e,- are eigenvalues of 

A(Ц = f > , (21) 

Ã = в д (22) 

indexed in the non-increasing order. 

P r o o f . Clearly, p(Y\S(k)) < m&XF(k)£F'(k)P(Y\F(k),S(k)). The maximizing 
matrix F(k) has to maximize ti[F'(k)RF(k)], see (14), (17). We factorize the posi­
tive semidefinite R = TVT' where T is an orthogonal matrix and V a non-negative 
diagonal one with non-increasing entries. Factorizing T — [T(k),Tc(k)] we see that 
T(k)Q(k) G F*(k) for the (k, &)-orthogonal matrix Q(k) introducing lower triangular 
structure into leading k rows of T(k). For F(k) = T(k)Q(k) we have 

k 

tr[F'(k)RF(k)} = T,V<-
«=i 

Taking any F(k) 6 F*(k), we have tr[F'(k)RF(k)] = £ * = 1 / / (*)£/•(*) w h e r e 

fi(k) are the orthonormal columns of F(k). Elementary properties of eigenvalues 
forming the diagonal entries of V imply that £ * = 1 f-(k)Rfi(k) < £*=1£>i, thus 
F(k) is the maximizing point in F*(k). Inserting F(k) into p(Y\F(k),S(k)) (17) we 
get the formula (19) after simple manipulations. D 

If the p.d.f. p(Y\F(k),S(k)) is well peaked, which happens for large n, then the 
approximation (19) is sharp enough and the probability function 

/ r(k\ \ ° - 5 n f c r Kfu\ 1 -0.5(2a(*)+mn) 

^ w ^ ' n T T ^ ) ) [1 + T ( t )-n^y] "<5(t» <23) 

is a reasonable approximation of p(S(k)\Y). 

4 .3. Selection of shaping parameters 

The estimation results are undoubtedly influenced by the shaping parameters a(k), 
j3(k), e(k) which should be supplied by the user. The end-user will exploit the 
proposed procedure if requirements put on him by their choice will be weaker than 
the direct choice of the rank. Thus, our option has to be as universal as possible. 

The parameters a(k), (3(k) determine the prior p.d.f. of A(&). Both will be for­
mally set to zero as admitted by Proposition 3. 

It is motivated by the following reasoning. These parameters determine prior 
expected (£) value of X(k) and its dispersion (disp) as follows 

£[\(k)\S(k)] = JLj for a > 1, disp[A(ifc)|s(fc)] = £2Mk^)] for a > 2 



Bayesian Rank Estimation 439 

The dispersion is influenced by a in a decisive manner and it should be relatively 
large in order to get universal flat priors. Thus, we should take a not very far from 
2. This value is, however, added to the much larger product mn/2 (cf. (23)) and 
thus it can be formally set to zero. 

The parameter /?(&) determines guess of the noise level. It enters, however, the 
final formula just through the value j(k) = l + 2P(k)/ti[R] in which the second term 
should be less than 2/(mn). Thus, we can put j(k) ss 1 which is equivalent to the 
option [3(k) = 0. 

It is intuitively clear and it was experimentally verified that the choice of the 
parameter e(k) is critical. Its interpretation (noise-to-signal ratio) indicates that 
it should be chosen independently of S(k). Moreover, the information about its 
appropriate value should be contained in data. It would be potentially possible to 
take it as hyperparameter of the p(Y\S(k)) and estimate it, too. It would complicate 
the evaluations. For this reason, the following simple guess is constructed: Let m 
be conservative guess of the number of non-zero eigenvalues of R. Then (m — 
m)(l — A(m))tr[/J] is proportional to the uncertainty attributed to m — m "zero" 
eigenvalues of R and mA(m)tr[/?] to that of significant eigenvalues. This together 
with the definition of e motivates the e estimate 

| = l - A ( m ) m : m 
A(m) m 

4.4. Rank es t ima te - algorithm and expec ted properties 

Assuming well peaked p.d.f. p(Y\F(k),S(k)) and the discussed options of shaping 
parameters we get the final approximate p.f. 

(
~ / i \ \ 0.5nk r \CL\ "] - 0 . 5 m n 

I T ! ) ) [ > - I T § ) ] P < 5 ( ' »
 <26> 

which is expected to be close to p(S(k)\Y). 
The following algorithm summarizes the necessary evaluations and provides, as 

an example, (approximate) maximum posterior probability (MAP) estimate of the 
rank. 

M A P ESTIMATE OF RANK 

Pre-processing 

1. Measure raw data (m, n)-matrix Z. 

2. Cut off outlying entries using physically justified ranges of data and their 
changes. 

3. Subtract sample means of Z-iov/s (images) from them. 

4. If need be, scale the resulting matrix in order to reach approximately common 
level of uncertainty for all entries of the resulting data Y. 

5. Assign prior probabilities p(S(k)) to particular ranks S(k). 
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Processing 

1. Evaluate R = YY'/ti[YY']. 

2. Determine m < m eigenvalues e, > e,+i of R which are a priori non-zero and 
larger than the numerical-noise level. 

3. Compute A(ifc) = £ * = 1 e,, k = 1 , . . . , m. 

4. Set £ = (1 - A(m))(m - m)/(A(m)m). 

5. Evaluate 

C(k) = -log(l+£-1)+log(l-^:)-0.5(nm)-1 \og(p(S(k))), k=l,...,m. 
m 1 + £ 

(26) 

6. Take k minimizing C(k) as approximate MAP rank estimate. 

Commentaries 

1. Outliers are known to make the most severe deviation from normality, their 
removal should make the deviation small. 

2. Removal of sample mean makes the assumption of zero expectation of G re­
alistic. 

3. Stopping of evaluations at numerical noise level spares computation time: it 
removes those singular values which are zero "by naked eyes", moreover it 
helps to provide sensible estimate of e. 

4. Uniform prior probabilities are chosen as a rule. This user's input makes 
possible to fix a range of physically sensible ranks. For instance, if the rank 
corresponds to the number of possible compartments displayed on the images 
treated such boundaries are realistically known. 

5. Determination of eigenvalues (squares of singular values) is needed for the fur­
ther processing in factor analysis, thus the extra effort for the rank estimation 
is negligible. 

6. The minimized quantity C(k) is equal to —— log (of ^-dependent part of 
p(S(k)\Y)). It 

(a) is independent of n for the usual uniform prior on S(k), 

(b) is sum of 
- increasing term reflecting uncertainty of the parameter G(k) (this part 

is the key consequence of the Bayesian treatment and has no counterpart 
in fully maximum-likelihood based approach) 

- decreasing term expressing misfit of data when using their low-rank 
approximation (log(l - A(k)/(1 + £))) 

- corrective term given by prior p.f. 
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5. EXPERIMENTAL V E R I F I C A T I O N 

The following tables contain eigenvalues of R gained for some simulated and real 
data. The number of tested values is always m = 5. Approximate MAP estimate k 
is provided together with approximate expected value £[k] gained from approximate 
p.f. gained by normalizing the upper bound (19) to p.f. It gives a handy measure of 
posterior p.d.f. concentration. For information, £ is provided, too. 

The selection of a more extensive set of experiments should illustrate proper­
ties of the proposed procedure especially its robustness. For this reason, variations 
in dimensions and noise level are made and various forms (changes in sampling, 
smoothing, number of exploited images etc.) of the same real data analyzed. 

Estimation results for simulated studies 

No m 

n 
da ta 

type 
eigenvalues * 100 true 

fc 
fc £[к] í 

1 12 case A 
256 no noise 87.89 12.09 0 0 0 2 2 2 0.00028 

2 12 case A 
256 low noise 87.317 11.942 0.176 0.139 0.11 2 2 2 0.00444 

3 12 case A 
256 medium 

noise 
74.225 11.802 2.851 2.523 1.857 2 2.00009 2 0.10121 

4 12 case A 
256 strong 

noise 
14.601 12.621 10.633 9.882 9.176 2 4.17298 5 1.05989 

5 12 case B 
256 medium 

noise 
73.082 8.555 3.112 2.865 2.14 2 1.99947 2 0.15982 

6 54 case C 
256 low noise 88.566 4.85 0.76 0.717 0.652 2 2.55125 2 0.45695 

7 14 case C 
256 low noise 87.533 5.852 2.639 1.714 0.978 2 4.01605 4 0.02341 

8 54 case D 
256 low noise 83.03 10.05 1.814 0.448 0.427 3 3.07952 3 0.43296 

9 14 case D 
256 low noise 81.033 12.006 2.325 1.485 1.058 3 2.70891 3 0.03848 

10 54 case E 

256 low noise 85.429 10.361 1.754 0.246 0.206 3 3.05586 3 0.20041 
11 14 case E 

256 low noise 83.248 12.158 2.433 0.655 0.474 3 3 3 0.01877 
12 54 case F 

256 low noise 95.003 1.599 0.533 0.365 0.309 2 2.23165 2 0.21953 
13 14 case F 

256 low noise 94.639 2.326 1.262 0.662 0.334 2 2.97495 3 0.01410 
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Estimation results for real-data studies 

No m 
n 

da ta 
type 

eigenvalues * 100 "true" 
k 

Å; £[k] є 

1 50 case G 

1533 61.673 8.822 2.953 1.259 1.046 3 3.1579 3 2.88072 
2 40 case G 

1533 65.313 7.285 3.605 1.504 1.205 3 3.0563 3 1.87064 
3 30 case G 

1533 70.346 6.178 3.866 1.795 1.344 3 3.00096 3 0.98594 
4 25 case G 

1533 72.569 6.679 3.67 1.684 1.438 3 2.99316 3 0.64900 
5 20 case G 

1533 75.022 7.834 3.432 1.777 1.357 3 2.58469 3 0.35488 
6 15 case G 

1533 75.972 9.925 3.612 1.888 1.445 3 2.05573 2 0.15420 
7 10 case G 

1533 76.847 12.511 3.4 2.435 1.443 3 2 2 0.03481 
8 24 case Ы 

2289 87.722 3.165 0.657 0.493 0.474 2 2 2 0.30762 
9 24 case H 

2289 85.646 3.056 0.861 0.623 0.603 2 1.99917 2 0.38553 
10 56 case I 

1035 86.654 6.503 1.927 0.406 0.295 3 3.00122 3 0.44885 

11 28 case I 
1035 86.028 6.941 2.225 0.547 0.448 3 3 3 0.18225 

12 14 case I 
1035 84.827 7.997 2.903 0.789 0.668 3 3 3 0.05216 

13 56 case J 
526 83.829 7.769 2.271 0.717 0.463 3 3.15339 3 0.53131 

14 28 case J 
526 82.962 8.21 2.93 1.111 0.629 3 3.00498 3 0.19957 

15 14 case J 

526 81.293 9.516 4.303 1.239 0.774 3 3 3 0.05328 
16 56 case J 

526 87.635 8.047 2.175 0.523 0.333 3 3.27655 3 0.13299 
17 56 case J 

1035 90.051 6.509 1.777 0.309 0.206 3 3.00015 3 0.11846 
18 14 case J 

526 84.691 9.528 3.795 0.712 0.446 3 3 3 0.01503 
19 56 case J 

526 89.289 7.525 1.992 0.39 0.264 3 3.92924 , 4 0.05538 
20 56 case J 

1035 91.297 6.204 1.57 0.248 0.168 3 3.00146 3 0.05260 

6. CONCLUSIONS 

We have derived a simple, reasonably justified estimate of the matrix rank. It 

outperforms the available tests on data we have tried which are - according to 
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our best knowledge - representa t ive in our appl icat ion field, i . e . factor analysis of 
d y n a m i c sc int igraphic s tudies . We believe t h a t the found simple formula sui ts well 
in a wide range of o ther appl ica t ions , too , as a useful s ta t is t ica l complement of the 
popu la r s ingular value decomposi t ion . T h i s belief, however, has t o be suppor ted 
b o t h exper imenta l ly and theoret ical ly in the future . 

(Received March 2, 1993.) 
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