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KYBERNETIKA— VOLUME 11 (1975), NUMBER ! 

One Type of Multi-Parameter Non-Linear 
Digital Control Systems 

JURAJ HRIVŇÁK 

Fundamentals of the theory applying to one type of multiparameter non-linear digital control 
systems are derived in the paper. Some possibilities of its application (seeking of extremum of 
the multi-variable object function with variable coefficients, adaptive systems for automatic 
extremum seeking, etc.) are pointed out. This is a continuation of paper [8]. 

1. INTRODUCTION 

At present multi-parameter non linear digital control systems are becoming more 
and more important for dealing with a number of problems (for example see [1; 2; 
3; 4]). 

Fig. 1. 

In the present paper one type of multi-parameter non-linear digital control systems 
(further referred to as MS) will be considered, which is described by a matrix block 
diagram (see Fig. l), where: t denotes variability in time, x = (x.(w)) (i = 1,2,..., /) 
is the column matrix of output signals related to the square transfer matrix of linear 
digital controllers with / x / elements, #"* = (-^ i ;) is the square matrix of non­
linear operators, which can create out of input signals a column functional matrix 

i 

of output signals N = (Nn(xh t) + ]T Ntj(xj, t)), provided there is no delay, 
. = l , j = M 

b = (bi(t)) is the column functional vector of reference imputs, and 5P = (4>i(n)) is 
the column functional vector of actuating signals. Exceptions to this type of control 
systems will be mentioned specifically. 
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We shall suppose further that the following conditions have been fulfilled: 

(1.1) Nu(0,t) = 0, 

(1.2) i > „ ( 0 , f ) = 0, 
j * i 

(1.3) 0 < dNu(xh t)jdx, < oo , 

0 < dN^Xj, t)jdxj < oo , (j 4= 0 

or 

- GO < dNi}(xj, t)jdxj < 0 , 

(1.4) lim Nu(xh t) = Nft(xi) , 
f-*os 

(1.5) lim ZN,,(xJ,0 = iN*(xJ.), 
f - 0 O J = l j = l 

1*1 j * i 

(1.6) lim bt(t) = b* > 0 . 

In order to simplify the explanation we shall suppose futher that the matrix equation 

(1.7) -N+b = 0 

has only one positive solution for a certain form in time t 

(1.8) x* = (x?r > 0, x*t > 0, ..., x* > 0) . 

where x* (i = 1, 2, ..., /) are constants. 
The Z-transformation defined in paper [8] will be used later in the text and some 
theoretical points will be derived by means of those above Z-transformation. 

2. SOME APPLICATION POSSIBILITIES 

Many different problems can be solved as the MS. A large group of these problems 
is formed by problems, which can be solved by means a non-linear equations system 
(algebraic, exponential, etc.). Coefficients of these equations may assume any value 
within prescribed intervals. Each time the solution is sought for selected values of 
these coefficients. 

Let us first explain how to transform the solution of a system of/-variable equations 
into the solution of MS. 

Let us solve matrix equation (1.7), the coefficients of which can assume any value 
within certain prescribed intervals of values. If we assing the vector of actuating 



signals according to the description of MS on Fig. 1 to the left-hand side of the 
equation and if we construct the transfer matrix R(z) of controllers in such a way 
that the steady-state value of the actuating signals vector equals zero, then it follows 
from the interconnection of MS that the solution vector x* is the steady-state value 
of vector x. 

Let E(x, t) be a multi-variable object function, the coefficients of which may 
assume any values within certain prescribed intervals. Each time the extremum is 
sought for certain values of these coefficients. If the vector of the object function 
gradient is expressed by 

(2.1) «P = dE(x, t)jdx = -N + b 

and terms N and b have been defined in the introductory part of this paper, then we 
can see that extremum seeking leads to the solution of equation (1.7), i.e. it can be 
transformed to the solution of MS. The steady-state value of the output signals vector 
from the transfer matrix of controllers is the solution vector x* for certain values of 
object function coefficients. 

Let us mention that seeking of relative extremum of an object function with con­
straints (see e.g. [5; 7]) can also be solved as the described basic problem, i.e. the 
seeking of object function extremum without constraints. 

So we can transform the automatic seeking of the object function extremum E(x, t) 
into MS solving and we can construct this MS by means of a digital computer or 
special controllers (the latter being very simple if the simplest possible transfer matrix 
of controllers is used), and obtain an adaptive system for seeking the extremum of the 
given object function. 

When transforming the seeking of extremum of a multi-variable object function 
into MS solving, then an optimum transfer matrix of controllers, stability and quality 
(defined in an appropriate way) of this MS corresponds to an optimum computing 
algorithm, convergence, and speed of computation convergence. 

Fundamental importance of the MS theory follows from the previous text already. 
By means of the MS theory we can solve a large number of various problems in 
a uniform way, with many advantages, and very clearly. 

Fundamentals of the MS theory will be described in the following text. 

3. THE TRANSFER MATRIX OF CONTROLLERS FOR A ZERO 
VECTOR OF STEADY-STATE ACTUATING SIGNALS 

According to Fig. 1 we can denote in MS 

(3-1) U-0-(-W-». 
where 

(3-2) FthxJz) = Z[N,(«)]/Z[x,(„)] . 



The ratio of transforms (3.2) in Z-transformation (similar to paper [8]) can be 71 
advantegeously utilized in some theoretical considerations, where the control process 
is not actually calculated because the above mentioned ratio depends on the input 
signal in non-linear systems and the input signal is not known beforehand. 

A transform of the actuating signals vector can be written in the form 

(3.) y(z) = ( E + F X j , ( z ) R ( z ) ) - l b ( z ) , 

where £ is a unit matrix and b(z) = (b,(z)) = (Z[fe,(n)]) is transform of the column 
vector of reference inputs. 

The transform of the reference inputs vector satisfying condition (1.6) is given by 

(3.4) b(z) = b s ( z ) / ( z - l ) , 

where bs(z) is the functional column vector whose elements are fractional rational 
functions with no poles and zeros for z = 1. 

If the steady-state actuating signals vector is to be zero then the following equation 
must be valid for a stable MS: 

(3.5) lim S»(z) (z - 1) = lira (£ + Fxt(z) R(z))~l bs(z) = 0 . 
z - > l z - » l 

Under the assumption that 

(3.6) lim bs(z) ^ 0, (i.e. steady-state value of signal b # 0) 

lim Fx<t(z) ^ 0 , lim Fxt(z) # oo , 
z - 1 z - 1 

it follows from the condition (3.5) that the controllers transfer matrix R(z) = (Ru(z)) 
for a zero vector of steady-state actuating signals must be such that each diagonal 
element R;,(

z) n a s a P°le for z = 1 and all elements can be realized. 

The simplest structure of the transfer matrix of controllers R(z) will be obtained, 
when we choose 

(3.7) R(z) = (R,.(z)) = (>.,)/(- - 1) 

where cu are properly chosen constants, i.e. values of non-zero elements in a diagonal 
matrix (c,;). 

The MS with the transfer matrix of controllers expressed by (3.7) will be considered 
next. Simple results, which may be easily applied in practice, can be obtained when 
using this type of matrix. 



4. CALCULATION OF THE CONTROL PROCESS 

According to designation in Fig. 1 the following expression can be written for the 
transfer matrix of controllers expressed by (3.7) 

(4.1) x(z) = [ ( c h . ) / ( z - l ) ] y ( z ) . 

The f-th element of vector x(z), which can be obtained after performing the multi­
plication, is expressed in the form 

(4.2) , ; (z) = [ c i f / ( z - l ) ] ^ ( z ) . 

It follows from the above that when utilizing the transfer matrix of controllers 
in the form of (3.7), the calculation of the control process can be expressed as a 
simultaneous calculation of I fictitious synchronously operating one-parameter non­
linear digital control systems which influence one another. This influencing is ex­
pressed by the matrix 3F* (see elements of actuating signals vector *F). 

The following difference equations can be easily derived from the expression (4.2) 

(4.3) xt(n + 1) = xt(n) + cti^t(n) 

and utilized for numerical calculation of signals in MS. 
When graphically investigating the control process in MS, then according to [8] 

we must grafically analyze the control process in / fictitious, synchronously operating 
one-parameter non-linear digital control systems which influence one another. 
Non-linear transfer characteristic of the f-th fictitious one-parameter system is 
Nit(xt, t) and a fictitious reference input is 

(4.4) btJpcj,t)-bJt)-iNtJ(xj,t). 
J = I 
j * i 

Graphical analysis of the control process in a r-invariant two-parameter MS, with 
functions Nu(xh t) and NU(XJ, t) defined graphically with certain values of gain 
factor Cfj, is in Fig. 2. Changes of fictitious reference inputs blf(n) = b1 — 
— N12[x2(n)~\ and b2f(n) = b2 — Ar

21[jc1(«)] are caused only by changes in variables 
Xj in this case. The values of actuating signals xj/^n) are defined by lengths of abscisae 
Ai„Bin (i — 1, 2; n = 0, 1, 2 , . . . ) . The control process of t-variant MS with any 
initial conditions x,(0) can be analysed in a similar way, i.e. graphically too. 

The methods of analysing control process described until now can also be utilized 
for investigating some problems of stability and quality of MS. 



w 

Fig. 2. 



5. STABILITY OF A CONTROL PROCESS 

Let us first consider a special ^-invariant MS with a linear matrix of operators 
J** = (ay), where an > 0 and where the vector of reference inputs is b = (b,). 

All methods known from the theory of linear discrete control systems (see for 
example [5]) can be used in this system. In the present paper a simple, clear and 
sufficient stability criterion will be derived for the above mentioned special case. 
Taking this criterion as a starting point we shall derive a sufficient stability criterion 
for the non linear multi-parameter digital control system. 

The j-th component of the actuating signals vector can be expressed in this case 
as follows 

i 

(5+) ^r(n + 1) = ~[aiiXi(n + l) + £ aijXj(n + l)] + bt . 

If we take the expressions for x,(n + l) and x/n + l) from (4.3) and substitute 
them into (5.1) then after a small modification we shall obtain the following expression 

(5-2) <^(n + 1) = (1 - aiiCil) ^ (n) - £ aijCjj ^/n) 
j=i 
j * i 

and we can write 

(5.3) \4>{n + 1)| <. |1 - aliCil\ | ^ («) | + £ \au\ \c„\ \^/n)\ . 

When summing up inequalities (5.3) for i = 1,2,... , /, we shall obtain the following 
inequality 

(5-4) i\Un + l)\*iht\U*)\. 
; = i ; = i 

where 
i 

(5.5) ht = |1 - aiiCii\ + ^ \an\ \ctt\ > 0 . 
J = I 

When designating 

(5.6) h = max ht, 

then 0 < h; :$ h and the expression (5.4) can be modified to 

(5-7) i\Un + ^)\^hi\Un)\, 
i = l i = l 

and finally to 

(5.8) zw«)i^">:wo)|. 



It follows from the expression (5.8) that the control process will be stable under 75 
any initial conditions, provided the values of gain factor of partial controllers fulfill 
the inequality 

(5.9) 0 < h < 1 . 

Then 

(5.10) i\U" + i)\<i\u»)\. 
i = l i = l 

(5.11) ^ m £ | ^ ( n ) | = 0 , 

(5.12) lim \^{n)\ = 0 . 

The condition (5.9) will be fulfilled when ht defined by the expression (5.5) satisfies 
the inequality 

(5.13) ht < 1 . 

When taking expression (5.5) for ht and substituing it in (5.13), then we can easily 
deduce that condition (5.13) will be satisfied for cti > 0 and ai(cti < 1 if 

(5.14) 0 < cti S l/a.-i 

and 

(5.15) a„ > E \aJt\ . 
J = I 
j * i 

In a similar way we can deduce that for cH > 0 and 1 < ancu the condition (5.13) 
will hold if 

(5.16) l /a„ < cti < 2/(a,, + £ \aJt\). 
j-i 
j*i 

It follows from inequality (5.16) that this inequality holds if inequality (5A5) is 
fulfilled. 

We may say that a sufficient condition of stability for the given system, and for any 
initial condition x;(0), is defined by the inequality (5.15) and by the inequality 

(5.17) 0 < cti < 2j{au + £ \aJt\). 
J = I 
j * i 

When defining the Jacobian matrix of absolute values 

(5-18) J = (N), 



where 

(5.19) ay = dil/ijdxj, j = 1,2, . . . , / , 

then the condition (5.15) means that values of diagonal elements of matrix (5.18) 
must in each column be greater than the sum of values non-diagonal elements of the 
respective column. 

Sufficient conditions for MS stability can be derived by sim.ilar reasoning as in the 
case of one-parameter non-linear digital control system described in paper [8]. 

Suppose we have a multi-parameter non-linear digital .--invariant control system 
with non-linearities IV;;(x;), Nu(xj) and with reference inputs bt. 

It is obvious from the graphical analysis of the control process that under any 
starting conditions x;(0) we can consider only corresponding abscisae in each step 
instead of original non-linearities. These abscisae are marked by thick lines in Fig. 2 
and their tangents a ; i(n) and aji(n) vary in dependence on n. 

It is clear directly from the graphical analysis of control process of the non-linear 
multi-parameter system being considered that for any xt(n) and for corresponding 
values of \]/i(n), the values of actuating signals \\i{n + 1) in the next step may in 
each case be determined as values ^.(l) of the linear multi-parameter system in which 
\j/i(0) = t/>;(n). Supposing that sufficient conditions (5-15) and (5.17) have been 
satisfied in each step and corresponding values of a;;(«) and aji(n) have been sub­
stituted for aH and ajh and taking into consideration the expression (5.10) we can 
easily find out that the following expression holds good also for the non-linear 
multiparameter system under consideration 

i \u» + i)i < x \U")\. 
; = l i = l 

i.e. the control process is stable. 

If non-linearities iV;i(xj) and Ntj(xj) changed into other non-linearities Nit(xt, tt) 
and Nu(xj, fj) over a certain time tu then it would be clear that according to previous 
reasoning the control process must be stable, provided conditions (5.15) and (5.17) 
are fulfilled in each step. Again the values of atl and ajt are replaced in each step 
by corresponding values of a-u(n) and aji(n) in these expressions. Because no referen­
ce input bt occur in expressions (5.15) and (5.17), the system will be stable also for 
reference inputs bt(t), these being functions of time. 

It follows from what has been stated, that the general sufficient stability criterion 
can be expressed as fulfillment of conditions (5.15) and (5.17) in each step, where the 
values of aa and au are replaced by corresponding values of au(n) and a;;(n) in each 
step. Various practical stability criteria for MS can be derived from this general 
sufficient stability criterion. One of them is described in the following text. 

If we use denotation <xw, x;/l> for intervals comprising steady-state values of 
output signals x* of partial controllers Rtt(z), then MS will be stable for any x;(0) e 



e <x;d, x;h} (i.e. conditions (5.15) and (5.17) will be satisfied for corresponding 77 
values a;;(n) and ayj(n) in each step), when: 

I. Condition (5.15) is satisfied if we substitute 

(5.20) a„ = min |3i//;(x, t)/dx;| , 

(5.21) |a,-(| = max | # / x , t)/flx,| , 

where values of a ; ; and |a j ; | are also specified for x ; e <x;d, x;/,> and ( e <0, co>. 

II. Condition (5.17) is satisfied when substituting 

(5.22) au = max | # , ( x , ()/5x(| , 

(5.23) [aJfj = max |#,-(x, ()/5x;| , 

where values of an and \aJt\ are also specified for x ; e <x;d, x;;,> and ( e <0, oo>. 

III. The following relationship holds good in each step for values of output signals 
from partial controllers 

xt(n) e <xid, xih} . 

Comments 

1. There is no need to consider the sufficient stability condition III for a linear 
multi-parameter digital control system which is a special variant of MS. 

2. The sharper the inequality (5.15) which is a part of condition I, i.e. the larger 
the value of the left hand side of inequality (5.15) than its right-hand side for each 
i = 1, 2, ..., /, the larger the probability that condition III is also fulfilled when 
sufficient stability conditions I and II are satisfied. 

3. It follows from expression (5.17), the elements of which are specified by expres­
sions (5.22) and (5.23) that the sharper the inequality (5.15) containing elements 
specified by expressions (5.22) and (5.23) the nearer the values of gain factor c i ; to 
boundary values 2/a;;, where values of a ; ; are determined by expression (5.22) 
(compare with boundary gain factor of one-parameter non-linear digital control 
system described in the paper [8]). 

4. Upper bounds of intervals <xid, x;,,> can be estimated for example by systematic 
trials in such a way that it may hold for all values of xih simultaneously t//( < 0. 

Lower bounds can be estimated in a similar way with the result that it holds good 
for all xid simultaneously i//; > 0. 

The smaller the difference between values of output signals from partial controllers 
and the sharper the inequalities (5.15) which are part of the sufficient stability con­
dition I, the simpler the described procedure. 



Some methods of random searching with and without learning ability [4], or 
possibly other methods can also be utilized for the determination of the intervals 

<*w, xiky. 

5. When there is a need to satisfy the sufficient stability condition I, can of methods 
from two groups be employed. 

Group 1. The original MS can be easily modified in such a way that an appropriate 
aditional multi-parameter system characterized by a matrix of operators J^* (a dia­
gonal matrix with linear partial operators which are time independent) is connected 
in paralel to the multi-parameter controlled system being described by a matrix of 
operators !<F*. However this can be done only when we do not insist on steady-state 
values of output signals from partial controllers in the modified MS being exactly 
the same as in the original MS (for example when specifying approximate values of 
x*, further when specifying appropriate initial conditions X;(0), etc.). 

Group 2. The original MS described by the matrix equation —N+b = 0 can in 
each case be transformed by various methods into a system which is described by an 
equivalent matrix equation — NN + bN = 0 and a corresponding required matrix 
(5.18), if it is required that steady-state values of output signals from partial controllers 
in the modified MS be the same as in the original MS. Here are some examples: 

a) The elements on the left-hand side of matrix equation (1.7) are arranged pro­
perly. 

b) These elements are multiplied by proper constants, or appropriate substitutions 
are introduced. 

c) We can prove easily that the equivalent matrix equation 

(5.26) MAT(Ax + b) = 0 

contains the matrix (5.18) in the form 

(5-27) y N = | D A | ( | X . | ) , 

where M = (Na,j) is a square matrix of properly selected constants, Ar is a transponed 
matrix of subdeterminants of matrix A, and DA is a determinant of matrix A, if this 
is a special case of MS with a linear ^-invariant matrix of operators J^* = (fly), 
where al7 > 0 and with a corresponding matrix equation (1.7) in the form 

(5.25) Ax + b = 0 , 

where A = (atj). 

It follows from the described situation that a equivalent matrix equation (5.26) 
with a prescribed matrix JN, i.e. with the matrix (5.18), can be constructed in each 
case. It is recomended to choose the elements of matrix _/N in such a way that all 



elements au are equal and ratio 

(5.28) p = £ !«,,.(/«,,• <S 1 

is also equal (for example p = 0,1). 

Inequalities (5.15) are then sufficiently sharp. 
When elements of matrix (1.7) are non-linear functions, then elements a,7 which 

are needed for the construction of matrix AT can be determined for certain values 
of Xt e <xid, xihy by a proper linearization. 

d) If — instead of values of ai; — we consider such positive numbers vu in the 
sufficient stability condition I that the condition is satisfied, then the values c;i = ljvti 

can be utilized as approximate stable values of gain factors. 

6. The sufficient stability condition III can be satisfied, if need be, by selecting 
different initial conditions, by decreasing gain factor cu, by expanding intervals 
<xw, xih} and by calculating new values of gain factors cu, by properly defining new 
non-linearities for xih < xt < xid, by utilizing some of the methods mentioned in 
comment 5, or by combinations of the above mentioned possibilities. 

7. If nonlinearities Nu(xu t) turn into negative values and then have an ascending 
character, or if they have descending character, or if they alternately descend and 
ascend, then we can use a similar procedure as in the case of one-parameter non­
linear digital control systems [7; 8]. 

8. When some or all nonlinearities Nii(x;, t) are descending, then these systems 
may be solved as the MS which was defined in the introductory part of this paper by 
introducing proper substitutions. 

6. QUALITY OF THE CONTROL PROCESS 

The quality of the control process can be judged according to the size of the 
absolute control area. The latter will be defined by the following expression 

(6-1) P„A - T I i \h(n)\ • 
n = 0 i = 1 

Optimum gain factors of the transfer matrix of controllers (3.7) will be such gain 
factor cu, for which the absolute control area PMA is minimal, or at least nearly 
minimal. 

The values for selection of optimum gain factor cu in MS will be derived next. 
Suppose we have a multi-parameter non-linear digital control system with non-

linearities Nu(x^), Ntj(x}) and with reference inputs bt. Let us further suppose that 
sufficient conditions of stability defined in chapter 5 are satisfied for this system. 



Expression (5.10) holds good for such a system. The expression (6.1) can be written 
in the form 

(6.2) PMA - T[ I |̂ ;(0)| + i |^1)| +H \Un)\] . 
/ = i ; = i n = 2 ; = I 

As expression (5.10) holds good, it follows from expression (6.2) that: 

a) The absolute control area PMA will depend on the selection of initial conditions 
; 

x;(0) and it will be the smaller, the smaller the sum £ |^i(0)| for the chosen initial 
; = i 

conditions. If we knew the steady-state values of partial controllers output signals x* 
; 

and if we chose x;(0) = x*, than it would hold good that i//;(0) = 0, £ |i//;(0)| = 0 
;= I 

and PMA = 0. Actuating signals would equal zero already at the beginning of the 
first sampling period. If there are some non-zero actuating signals resulting from 
changes of non-linearities or control variables, these can be eliminated for any stable 
values of gain factors c;;. This can be proved by performing the calculation according 
to expression (4.3). 

/ 
b) If we select x,(0) 4= xf, then the smaller the sum £ |^ ;( l ) | for the same values 

/ = i i 

of x;(0), the smaller the absolute control area PMA. It is obvious that the sum £ |^,-(l)| 
i = i 

may be influenced by the selection of gain factor ci;.The smaller each value of |iA;0)|> 
or possibly the smaller the differences |x ;(l) - x*| (see graphical analysis of the 

/ 
control process in Fig. 2), the smaller the sum £ |i/;;(l)|. 

i = l 

It goes from expression (4.3), that in this case |i/';(l)| can be equal to zero after one 
step, if we choose 
(6.3) c , = (x*-x;(0))M;(0), 
i.e. if the steady-state values of partial controllers output signals x* are known. 
However the gain factors c ; ; calculated by means of expression (6.3) must be situated 
in regions of stability, because in the reverse case a non-stable control process could 
occur even for small changes of non-linearities or reference inputs. 

When steady-state values of output signals from partial controllers are not known 
(this is the case when calculating the extremum of the multi-variable object function, 
when designing an adaptive system for automatic seeking of extremum, etc.), then 
the optimum gain factor c ; ; can be determined only approximately. For example, the 
approximate value of xf can be substituted for x* in expression (6.3) and this ap­
proximate value can be calculated numerically as follows: Values of gain factors c i ; 

are selected in such a way that an oscillating control process occurs, i.e. for example 
the following inequality holds good 

(6.4) x;(n) < x{n + 2) < x,(n + l ) , 



where n is a serial number of a certain step, then the value of x* can be taken as the 
first estimate 

(6.5) x* = 1/2 . [x,(n) + x{n + 2)/2+ x(n + l)] . 

c) A simple criterion for the selection of optimum gain factors c;i can be derived 
by the following reasoning: 

Let us first suppose that we have a linear (-invariant multi-parameter digital 
control system. The sharper the inequalities (5.15) the more justified the replacement 
of this system by / mutually independent one-parameter linear digital control system 
(see paper [8]), as far as the control process is concerned. The optimum gain factors 
of these systems can be specified by using expression 

(6.6) c f . - » l / a H . 

When we have a (-invariant non-linear multi-parameter digital control system or 
possibly also a (-variant non-linear multi-parameter system with small changes of 
non-linearities and reference inputs, and when inequalities (5.15) with elements 
specified by the expressions (5.20) and (5.21) are sufficiently sharp and intervals 
<xid, xift) are not very large, then parts of non-linearities can be substituted by lines 
and, taking into consideration the previous reasoning, the recommended optimum 
values of gain factors cn can be calculated in this case according to the expression 
(6.6), in which the values specified by the expression (5.22) are utilized. 

The sharper the inequalities (5.15) with elements specified by expressions (5.20) 
and (5.21), the greater the changes of non-linearities and reference inputs for which 
the described recommended optimum values of gain factors c i ; are valid. 

Comments 

1. If we have a (-variant non-linear digital control system, we can define a certain 
state of non linearities and reference inputs, for which the optimum values of c ; ; 

can be derived by some of the described procedures. 

2. If inequalities (5.15) with elements specified by expressions (5.20) and (5.21) 
are not sharp enough, large oscillations can occur in the given system for values 
of cH specified by expression (6.6) and the quality of the control process is low. In this 
case we can use some of the methods for securing the sufficient condition I of MS to 
increase the sharpness of inequalities (5.15). 

3. It may happen in some cases during the control process calculation, that because 
of the selected calculation precision the solution "will come to a stop" even if elements 
of the actuating signals vector are not yet equal to zero. In this case we can continue 
in such a way that we increase the gain factors c i ; in a stability region, select other 
initial conditions x;(0) or increase the precision of calculation. >-*f**'T-*,' 
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by similar reasoning as in paper [8], but the resulting expression is more complex. 

5. From what has been stated in this paper we can formulate the principles for 

selecting proper gain factors, which vary in each step or after a certain number 

of steps. 

Note that the approach used in this paper can be utilized for other, more complex 

types of nonlinearities too. 

Let us solve one simple example to illustrate at least one of many possible ap­

plications of methods described in the paper. 

EXAMPLE OF APPLICATION 

Find the extremum of the object function 

_(*! , x2) = 4exi + 5e*2 + xxx2 + x\ + x2 - 18,676*! - 24,375x2 , 

by selecting proper constants c ; ; and by transforming this problem into the MS solution. 

Solution. Firts the components of the object function gradient will be specified and modified 
into forms 

ty. = _(4ex i + 2x. + x2) + 18,676 , ij/2 = - ( 5 e « + 2x2 + xt) + 24,375] . 

In order to solve the given problem we have to find the needed gain factor in a certain fictitious 
MS, which is specified by a transfer matrix of controllers (3-7) with non-linearities and referen­
ce inputs not varying in time. Steady-state values of output signals from partial controllers are 
coordinates of the extremum being sought. 

Estimate the intervals (xid, xih}. For example we can select xld = x2h — 0-00 in the given 
case because y1(xli, x2d) > 0, w2(xu, x2d) > 0, and xlh = x2h = 1-60, because W\.(xlh, x2h) < 

< 0, V2(*1A» x2h> < °-
Construct the matrix (5.18) with elements specified by expressions (5.20 and (5.21): 

/ = 
4e 0,00 1 

1 5e0 '00 + 2 

where it holds for columns 6 > 1 and 1 < 7. 

6 1 

1 7 

Table 1. 

11 x,(n) Vi(n) í ц ^ l W x2(ri) џ2(ri) CцV^ri) 

0 1-600 -5-936 -0-273 1-600 - 5 1 9 0 -0-192 

1 1-327 -0-466 -0-021 1-408 -0-208 -0-008 

2 1-306 - 0 1 0 0 -0-005 1-400 - 0 0 0 6 — 0-000 
3 1-301 -0-018 - 0 0 0 1 1-400 - 0 0 0 1 - 0 0 0 0 
4 1300 0000 0-000 1-400 0000 0-000 



The elements of matrix / satisfy inequalities (5.15). Because these inequalities are sharp enough, 
we can calculate approximate optimum values of gain factors simply by using expression (6.6), 
in which the values of au are calculated by means of expression (5.22): c l l = 1 /( 4 e ! ' 6 + 2) = 
= 0-046, c 2 2 = I / O 1 ' 6 + 2) = 0-037. 

The steady-state values of output signals from partial controllers can be calculated one after 
the other by means of expression (4.3). From Table 1 we can see the course of the control process 
for the calculated values of cn and for the initial conditions xx(0) = x2(0) = 1-600. We can see 
that if three decimal places are valid, then the control process will be finished after the fourth 
step. 

The following coordinates of the object function extremum can be read from the last row of 
the Tab. 1: x\ = 1-300, x% = 1-400. Min E(xt, x2) = E(x\, x%) = -17-983. 

(Received February 6, 1971.) 
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