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KYBERNETIKA —VOLUME 7 (1971), NUMBER 2 

Stabilization and Control of Some Microbial 
Populations 

JAROSLAV MARŠÍK 

The cultivation process of some microorganisms is inherently oscillatory. However, it has 
been shown that it is possible to stabilize this process by a simple proportional control. An 
aperiodical character can be achieved and the settling time can be substantially reduced. The 
problem was solved on an analog computer. 

1. INTRODUCTION 

In the nature we often find biological processes with an expressive periodical 
character, e.g. such as increasing and dying out of animal species, particularly of 
certain microorganisms. 

Because of a long period and bad damping of the oscillatory process, the industrial 
cultivation of some microorganisms is very difficult. 

The properties of such processes have been analysed by academician J. Kozesnik 
in his paper [ l ] . It has been shown that the mathematical analysis of these properties 
is always laborious. The differential equations describing the process are nonlinear 
but — despite the oscillatory character — always stable (i.e. in the current mathe­
matical sense). Consequently, the application of a usual stability analysis together 
with linearisation — in order to find the conditions for a good transient behaviour — 
is often quite unsatisfactory. 

Thus, an analog computer is the most effective means for solving this problem 
(notwithstanding certain difficulties with inaccuracy, as will be shown later). Using 
the results of the paper [1], we shall show the way of improving the system dynamics 
by automatic control. 

It was found (rather intuitively) that the use of a simple proportional controller is 
likely optimal for this purpose. 

Unfortunately, we did not succeed in finding a satisfactory mathematical proof 
of this assertion, because of the difficulties mentioned above. Therefore we had to 
demonstrate it experimentally by simulating the problem on an analog computer. 



2. DEFINITION OF THE PROBLEM 157 

In accordance with [ l ] , let us analyse the system described by following nonlinear 
differential equations: 

(labc) ^ - - 4 Q C v + C * ~ C s , 
dt 0-2 + Cs 0 

dCv _ CsCv r r Cv 
— — c v c T — , 

dt 0-2 + Cs 0 

*£l = 0-002 C s C v + 0-3CTCv - <2L . 
dt 0-2 + Cs 0 

Remark. This equations correspond to Eqs. (16abc) of [1] with concrete values of constants 
substituted from p. 199. They describe a continuous cultivation in a single (lumped) vessel with 
constant inlet and outlet flow. 

The symbols used in Eqs. (labc) denote: 

Cv — concentration of the microorganisms to be cultivated, 
Cs — concentration of the substrate (food for the cultivated matter), 
C* — concentration of the substrate at the inlet to the cultivation vessel, 
CT — concentration of the inhibitor (another species of microorganisms devouring 

that cultivated one), 
1/0 — flow rate through the vessel (both the inlet and outlet flow are supposed to 

be equal. The quantity 0 can be regarded as a time-lag of filling the vessel). 

First of all, let us take notice of some special properties of the above relations. 
It is evident that the cultivation cannot be started if the initial value of Cv is zero. 

Consequently, the inhibitor would die out as well, even if starting itself with any 
non-zero initial value. 

Further, it must be pointed out that any nonoscillatory steady state can be achieved 
only with certain constraints. It depends not only on the initial conditions but also 
on the flow rate 1/0. 

The behaviour of the system can become most sensitive to parameter fluctuations 
or other disturbances. For illustration, a numerical calculation of the steady-state 
values must always be carried out with a considerable accuracy (at least 5 decimal 
digits), otherwise it would fail. 

These unfavourable properties must be taken into account when Eqs. (labc) are 
simulated on an analog device. 



158 3. ANALOG SIMULATION 

In our case, Eqs. (labc) were transformed by introducing new variables with 
different scale factors: 

C s = 20x , ct = 20x* , 

Cv = 20y , 

Cт = 2z, 

- - - 2«, 

t = iT. 

In that way, following equations were obtained: 

(2abc) — = -0-666 — ^ + 0-333(x* - x) u , 
dx 0-01 + x 

-̂ - = 0 - 1 6 6 — ^ 0-333yz - 0-333uy , 

dT 0-01 + x 

— = 0-003 — - i + >>z - 0-333uz . 
dT 001 + x 

The nonlinear term can be expressed as follows 

(3) r - Xy - y - °-°ly 

001 + x 001 + x 

This decomposition is advantageous because the term r can be generated by no more 
than one servodivider (the adjustment of which, however, must be done with maxi­
mum precision). 

Rearranging Eqs. (2abc) and using Eq. (3) we get 

(4abc) — = -0-333ux + 0-333ux* - 0-666r , 
dT 

^ = -0-333j(u + z) + 0-166/-, 
dT 

— = -z(0,333u - y) +0-003r . 
dT 

Eqs. (4abc) and Eq. (3) were simulated as shown in Fig. 1. 
Since the quantity u is now variable because of being controlled, three diode 

multipliers were applied. 



Using a simple proportional feedback to control x by means of u, i.e. 

(5) u=(w - x)A 

we can write following equations of the system (A being the controller gain): 

(6abc) — = -0,333x[Ax* + (w - x) A] + 0-333AWX* - 0-666/-, 
dx 
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= -0-333>>[(w - x)A + z] + 0-166/-, 

= -z[0-333(w - x)A- y] + 0-003/-. 

Fig. 1. 

Having compared the Eqs. (4abc) with Eqs. (6abc), we can say: 

a) As for the variable x, it is evident that its dynamic behaviour will be consider­
ably improved by control. The velocity of its motion increases, the coupling with the 
other variables decreases (the term r, which represents the coupling, become relatively 
small) provided that the gain A is sufficiently high. Consequently, the other variables 
can now be regarded as disturbances. These mathematical considerations correspond 
to the physical ones as well. 

b) As for the variables y or z, respectively, the influence of control cannot be 
judged as easily as in the previous case. Nevertheless, it can be seen that the variable 
flow u = (w — x) A makes the system more stable than if u = const. 



160 In order to prove this assertion, we can write the Eq. (6b) in the form (having 

used Eq. (3)): 

(7) --- = -0-333 Г(w - x) A + z - 0-166 1 
dт [_ 0-01 + xj 

The steady state can be maintained only if the term in parentheses is zero. Further 

it is apparent from Eq. (4a) or Eq. (6a) together with Eq. (3) that any growth of y 

must cause a corresponding decrease of x. However, the decrease of x makes the term 

in parentheses in Eq. (7) positive and therefore y must finally decrease, too. This 

stabilizing effect is much higher in the controlled system than in the uncontrolled one. 
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Fig. 2. 



In the uncontrolled system, the only stabilizing term was that nonlinear one — namely 
x/(0-01 + x) — while in the controlled system, we have, in addition, the term Ax 
whose influence is much greater (see Eq. (7) again). 

Similar analysis can also be applied to the variable z with similar results. 
However, all these considerations are rather qualitative and inaccurate. Without 

any physical imagination they were uncertain and hardly convincing. That's why 
some experiments had to be carried out on the computer. 

4. EXPERIMENTAL RESULTS 

In order to compare the transient response of the controlled system with that of the 
uncontrolled one, following procedure was applied: 

Fig. 3. 



Firstly, the plant under control was tested and then, havjng been started with the 
same initial conditions x(0), y(0), z(0) and with the same steady flow w(oo), the 
experiment was repeated without control. 

Many tests were made with the pure proportional control described above. In 
addition, another control was examined, with y as the controlled variable (according 
to the control law « = - (w - y) A). Finally, both methods were combined, (the 
control law being u = (w — x + ky) A). 

In all cases, the tests were quite satisfactory. It has been found that other types of 
controller, e.g. I, PI, PID, give always inferior results. 

nbined conlrol 

U r-4\A 

Fig. 4. 6 

It must be pointed out that we did not search any conditions for the optimal 
production. Nevertheless, under any reasonable conditions for cultivation, the sta­
bilization was excellent. 

Some experiments were made under wrong conditions, too (near the state of 
wash-out or starvation, respectively). In these cases, the transient process was good 
only for a short time, thereafter it broke down. 

From numerous experiments three examples were selected to demonstrate the 
typical effect of the control. The most illustrative case is shown in Figs. 2a and 2b. 
It is evident that not only the directly controlled variable x but also the variables y 
and z are stabilized. 

A similar but more detailed case can be seen in Figs. 3a and 3b. 
In Fig. 3a, the relation among all uncontrolled variables is recorded, in Fig. 3b, 

we have the same case but with x being controlled. In addition, the flow rate u is 
attached so as to judge its influence. 

Finally, the above mentioned combination of controlling both the variables x a y 
(the control law being u = A(w — x + \y)) is shown in Fig. 4. 



Comparing the results from Fig. 3b and Fig. 4, we can say that the control of x is 
quite sufficient. Consequently, the combination is supposed to be unnecessary, but it 
could ever be used if it were advantageous for any reason. 

5. CONCLUSION 

It has been shown that certain microbial cultivation processes, which are inherently 
oscillatory, can be stabilized and controlled by simple means without any difficulties. 
In our case, a pure proportional controller proved to be optimal for this purpose. 
Perfect transient responses have been achieved, however, some tests of actual plants 
would be necessary to confront our theoretical results with the practical ones. 
Especially all transport lags must be taken into account and made as small as possible. 
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Stabilita a řízení některých populací mikroorganismů 

JAROSLAV MARŠÍK 

Proces rozmnožování některých mikroorganismů má výrazně cyklický charakter, 
který je při kultivaci zdrojem značných potíží. V článku jsou ukázány možnosti 
jednoduchého řízení tohoto procesu, kterým lze dosáhnout aperiodického průběhu 
i podstatně rychlejšího ustálení. Problém byl řešen na analogovém počítači. 
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