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KYBERNETIKA—VOLUME 7 (1971), NUMBER 2 

On the Coding Theorem for Decomposable 
Discrete Information Channels I 

KAREL WINKELBAUER 

The entire paper is devoted to analyzing the problem of validity of the Coding Theorem and its 
Converse for a class of stationary discrete information channels which may be decomposed into 
ergodic components. 

The stationary channels we shall deal with, are to possess the property that for 
them the concept of finite-dimensional code as defined by Wolfowitz in [11] makes 
sense; to be realistic, we must require for such channels to be without anticipation in 
time. The class of stationary channels satisfying both the requirements, is exactly 
consisting of those channels that were studied by the author in [6] and called there 
stationary channels with finite past history. 

Our result will be stated as Theorem on the existence of e-capacity since it gives 
a reply to the question on the asymptotic behaviour of the maximum length of 
n-dimensional s-codes. The question was first touched by Parthasarathy in [4]; his 
answer to the problem was given for the class of channels which have additive noise. 
Here a necessary and sufficient condition is stated under which the class of stationary 
channels with ergodic components behaves in the desired manner. Decomposable 
channels with finitely many components were first investigated by Nedoma in his work 
[3]; in this paper we do not restrict ourselves to the class of channels with finite 
number of components, and we shall study the general case. Let us mention that the 
result may be transferred to the case of denumerable alphabets if the notion of entropy 
and similar concepts are properly generalized (as to that cf. [5]). 

CONTENTS 

PART I: 1. Statement of the Theorem 

2. Proof of the Theorem 

References to Part I 



11* PART II*: 3. Proof of the First Inequality 
4. Formula for Capacity 
5. Some Properties of Decomposable Channels 

References to Part II 

* Part II is to be published in the next issue of this journal. 

1. STATEMENT OF THE THEOREM 

In this section we shall develop the concepts together with the terminology and 
notations that are needed in the statement of the theorem on e-capacity. 

Our basic notations will be as follows. If V and W are sets, then the Cartesian 
power Wv represents the class of all transformations which map V into W; in other 
words, Wv is the Cartesian product 

(1.1) Wv = f ] Wu, where Wu = W for all u e V. 
ueV 

If we Wv, then the symbol {wu}tteU for U <= Vwill designate the partial mapping of U 
into Wdetermined by the mapping w; especially, {wu}ueV may be used as an equivalent 
notation for the transformation w and will be sometimes called a parameter family of 
elements in W (with parameters in V). 

Throughout this paper the symbol n(S) means for a finite set S the number of 
elements in S, and for an infinite set we define n(S) = + oo. As usual, the set of all 
integers will be denoted here by J. 

For the sake of brevity, given an arbitrary countable (i.e. finite or denumerably 
infinite) non-empty set M, we shall accept the following notations: The class of all 
finite-dimensional cylinders in the space M1 (cf. (l .l)) will be denoted by KM; ^finite-
dimensional cylinder in Ml is, by definition, any set of the form 

(1.2) {z :ze M1, {z ;} lW e E} , E <=. M1, 0 < n(j) < + oo , 

where J is any finite non-empty subset of the index set / . The coordinate-shift 
transformation of the space M1 (onto itself) will be designated by TM; it is defined by 
the property that 

(1.3) (TMz)i = zl+. for zeM1, iel . 

Finally, the symbol FM will be used to denote the cr-algebra of sets in M] generated by 
the class KM of finite-dimensional cylinders. 

In the ergodic theory of discrete dynamical systems we investigate the class of all 
probability measures in Ml which are invariant with respect to the transformation TM; 
a probability measure \i defined on the class FM is said to be invariant if ^TM

X = fi. 
In the sequel we designate the class of all invariant measures in Ml by J(M. 

An invariant measure fi is said to be decomposable if there are ji1, y} e JtM such 



that p. = (1 — a) /u1 + cxfj,2 for some a, 0 < a < 1 (fil 4= ^ 2 ) . An invariant measure 
which is not decomposable, is said to be indecomposable; the class of all inde­
composable (invariant) measures in M 1 will be denoted by J4M. It is a well-known 
fact that the concept of indecomposability coincides with that of ergodicity. 

In what follows we shall make use of some other notations which are chosen in 
accordance with [8] and [9]: we shall set 

(1.4) [z] = {C : C e M1, {Q0<J<n = z} for z e M" ; 

M" = M ( 1 , 2 "} (n = 1 ,2 , . . . ) ; 

(1.5) »„(E) = 2 > [ z ] for EczM"; 

zeEj 

(1.6) L„(e, /.) = min {7t(E) : £ c M " , /.„(£) > 1 - E} 

for 0 < s < 1 , n e ^#M 

(cf. (1.2)); a finite-dimensional cylinder of the form TM'[z], where iel, z e M " 
(n = 1, 2, . . . ) , is usually said to be an elementary one (with base z). The entropy 
rate of an invariant measure is defined as the limit 

(1.7) &(») = lim (1/n) Hn(n) , fieJ/M, 

where we have set 

(1.8) Hn(n) = - X (i[z] log2 M[z] . 
zsM" 

The concept of indecomposable measure enables us to classify the points of the 
space Ml: a point z e Ml is, by definition, regular if and only if there is an indecom­
posable measure fj.. (i.e. \iz e JtM) such that 

(1.9) (iz(K) = lim (lln)ixK(TMz) for all X e KM , 

i.e. the equality holds for any finite-dimensional cylinder; here XK means the charac­
teristic function of the set K. Clearly, the measure \is is uniquely determined by the 
regular point z; let us mention that it suffices to require the equality to be valid only 
on the (countable) class of all elementary cylinders (cf. [9], Sec. 2). The set of all 
regular points in the space M J is denoted in what follows by RM. The important 
property of the set RM that constitutes a basis of ergodic theory, states that \i{RM) = 1 
for any p e J4M. 

Throughout the entire paper we shall assume that we are given two (not necessarily 
distinct) finite non-empty sets A and B; they will be interpreted as alphabets of 
communications channels to be studied, namely A as the output alphabet and B as 
the input alphabet. We shall apply the notation introduced above to the Cartesian 



product M = A x B = AB (i.e. AB stands for A x B as the subscript) and employ 
for invariant measures lying in Ji'AB the generic symbol co. 

For the sake of simplicity and conformity in expressions given in the sequel, we 
shall denote, for x e A1, y e B1, by xy the element in the space (A x B)1 which 
satisfies the relations 

(1.10) (xy)i = (xi,y) for iel; 

as evident, the mapping (x, y) -> xy establishes a one-to-one correspondence between 
the measurable spaces (A1 x Bl,FA x FB) and ((A x B)1, FAB). The same notation xy 
will be employed also in case that x e A", y e J3"; here (xy); = (x;, y(), xy e (A x 5)", 
i = 1, 2, ..., n. If co e .#4B , we define the marginal measures coA e Ji A and coB e ^#B 

by 

(1.11) co^(E) = co{xy :xeE) for E e FA ; 

coB(F) = co{xy : y e F] for F e FB . 

The information rate l(co) is associated with any (stationary double source) cu e J/AB 

according to the definition (cf. (1.4)) 

(1.12) ! ( « , ) - K m (-/») £ co[xy] log2 - " ^ ; 

the existence of the limit is a well-known result of information theory. 
By a (discrete communication) channel we shall mean a parameter family 

(1-13) v = {vy}ysBl 

of probability measures on the measurable space (A1, FA) which satisfies the following 
measurability condition: vy(E) as a function of parameter y is measurable on the space 
(B1, FB) for every measurable set E in A1, i.e. E e FA. 

If necessary, we shall refer to a (measurable) family (IT3) as a channel with output 
alphabet A and input alphabet B; if convenient, we shall make use of the symbol 
v(. | y) to denote the probability measure vy for y e B1. 

Our interest will be devoted to the class of stationary channels: a (measurable) 
family (1.13) is, by definition, a stationary channel if 

(1.14) v(TAE\TBy) = V(E\y) for E e FA , y e B1 

(cf. (1.3)). To have a concise notation, we shall designate the class of all stationary 
channels (with the given alphabets A, B) by Jf(A | B) or Jf. 

Elements lying in the class JtB are called stationary inputs of channels belonging 
to the class Jf(A | B)). If n is a stationary input and v a stationary channel (i.e. n e JiB, 
v e ATA | B)), then the symbol vfi will mean the (stationary double source, viz.) invariant 



measure in JtAB which is defined by the equation 

(1.15) vp(G) = L(Gy) dfi(y) , where Gy = {x : xy e G} , G e FAB . 

As pointed out in the introductory part of this paper, the theorem on capacity we 
are going to state in this section, will concern the class of stationary channels with 
finite past history. Perhaps the nomenclature chosen by the author in [6] may be 
regarded as a misnomer compared with the concept of past history as developed by 
Wolfowitz in [11]; it could be better and more precise to call such channels as 
defined below, channels with finite input memory. Nevertheless, we will keep on the 
original terminology; it is because the finite-memory concept is well-established in 
literature for a narrower class of discrete channels. 

A stationary channel with finite past history is defined as a parameter family (1.13) 
of probability measures which satisfies the stationarity condition (1.14) and the fol­
lowing finite-past-history condition 

(1.16) v([x] | / ) = v([x] | y) for x e A", y, >•' e B1 

if y'i — yi f ° r —m 5» f < it (n = 1, 2, ...) , 

for some non-negative integer m. The least non-negative integer m for which the latter 
condition is satisfied, will be denoted by m(v); it represent the duration of the past 
history (i.e. of the input memory). The condition (1.16) implies the validity of the 
measurability condition required for channels. We may denote the class of all 
stationary channels with finite past history, given the alphabets A, B, by ^f.past or 

•^f.pasL4 I B)-
The following notations make sense only for channels satisfying condition (1.16): 

we shall set 

(1.17) • vn(E | y) = Y K M I n) for £ c = A " 
xeE 

if n e Tm[j>] , yeBm+n; m £ m(v) ; 

(1.18) S„(»A; e, v) = n{y : y e B**"+", vjty-^y} \ y) > 1 - s] 

for iPe(BMv>+n)A"; 

(1.19) S„(e, v) = max {S„(i/r; e, v) : ij/ e (Bm^ + n)A"} 

for 0 < e < 1 (n = 1, 2, ...) , v e .^f.pMt. 

The notations are chosen in accordance with [6] and [8]. 

Remark 1. Given y : A" -> Bm+n (m = m(v)), then the parameter family 



where Y(y/) is the set of those parameters y in Bm+" that satisfy the inequality v„(y/ 1{y} \ y) > 
> 1 — e, is nothing else than an «-dimensional «-code of length N= S„(IJ/; e, v) (in [11] a code 
(n, N, X) with X = 1 — e is such a code for which the latter inequality is taken in the non-strict 
sense, i.e. with >); the number S„(e, v) represents the maximum length of n-dimensional s-codes. 

Remark 2. The Coding Theorem is concerning the asymptotic behaviour of the sequence 

- l o g 2 S„(e, v), « = 1, 2, . . . ; 
n 

taking in the above definitions any integer m > m(v) instead of m(v) itself, and denoting the cor­
responding maximum length of extended n-dimensional c-codes by S'„(e, v), then the asymptotic 
behaviour of the sequence 

- log2 S'„(e, v), n = 1 ,2 , . . . , 
n 

must be the same since 

S„(e, v) ^ S'„(e, v) < S„(e, v) [n(B)]-^ , 

as immediately follows from the definitions. 

In this paper a stationary channel v with finite past history is said to be strongly 
stable if there is a real number C such that 

(1.20) - log2 S„(e, v) -> c, n -* oo ; 0 < s < 1 ; 
n 

i. e. the limit exists and does not depend on e. 
By definition, an ergodic channel is a stationary channel with finite past history such 

that, for any ergodic input n, i.e. \x e Jt*B, the (double source) v/x is an ergodic (i.e. 
indecomposable) measure, i.e. vfi e Ji*AB. Denoting by Jf „% (or Jr

erg(A [ B)) the 
class of all ergodic channels (with the alphabets given), we shall designate the class of 
those ergodic channels which are at the same time strongly stable, by Jf*rg (or 
J/"*Tg(A | B)); the latter class will play a fundamental role in our investigations. Sum­
marizing in symbols: 

(1.21) JT*ts = {v : v e Jferg, v satisfies (1.20)} ; 

•^erg = {v : v 6 J/~(.pasi, vn e J/AB for any \i e Jt*B} ; 

^f.pasi = {v : v e Jf, v satisfies (1.16) for some m} . 

The notations employed are partly chosen in accordance with [8] (cf., in particular, 
Sec. 1.6). 

Remark 3. Stationary channels with finite past history are, in general, non-ergodic. Examples 
were first given by Nedoma in [2]. Especially, any non-degenerate decomposable channel as 
defined in the sequel, represents an example of non-ergodic channel. On the other hand, the 



well-known finite-memory channels constitute a class of ergodic channels which are strongly 
stable: the condition of strong stability as given in (1.20) is nothing else than a restatement of the 
Coding Theorem together with its Strong Converse in the sense of Wolfowitz. A class of channels 
which are, in general, not of finite memory but which may be at the same time ergodic, is formed 
by channels with additive noise as studied by Parthasarathy in [4]. 

As well-known, for any stationary channel v the ergodic and stationary (informa­
tion-rate, or transmission-rate) capacities are defined by the formulas 

(1.22) ^ r g (v) = sup {/(VM) : n e J/ets} , J/etg = M% , 

<^st(v) = sup {I(v/x) : \x e J?st} , Jtst = JlB , 

as the corresponding suprema of information rates l(vfi); both the capacities coincide 
with one another (as shown independently by Jacobs, and by Parthasarathy), and we 
shall denote their common value by ^(v): 

(1.22) 1f(v) = #erg(v) = #st(v) for v e Jf . 

An immediate consequence of Theorem 3, Sec. 21 in [6] is the fact that (cf. (1.20)) 

(1.23) - log2 S„(e, v) -> <T(v) , n-> oo; 0 < e < l ; ve JT*n ; 
n 

i.e; (1.23) is valid for any strongly stable ergodic channel v. 
A parameter family {v*}assi of channels with parameters in a measurable space 

(sf, A) is said to be measurable if the function v"(E I y) as a function of parameter a 
is measurable on (si, A) for every E e FA and y e B1. In what follows any probability 
measure £, defined on A will be referred to as a channel distribution of the (measur­
able) family {v%„. 

Let {va}ae^ be a measurable family of strongly stable ergodic channels having 
a channel distribution £,. It is an easy consequence of definition (1.18) that S„(ij/; s, va) 
as a function of parameter a is measurable so that from (1.23) it follows that capacity 
^(va) as a function of parameter a is measurable as well. We shall set 

(1.24) c(6, E) = M{r : £ {a : %(va) ^ r} ^ 0} , 0 < 6 S 1 . 

As immediately follows from definition (1.24), c(9, £,) as a function of parameter 9 is 
monotonically increasing in the open interval (0, 1) of real numbers (the quantity 
c(9, £) represents the quantile of order 6 of the probability distribution of the random 
variable ^(vx)). The quantity defined by (1.24) will play a fundamental role in the 
statement of the theorem on e-capacity given below. 

Regularity condition. Let c be a channel distribution of a measurable family 
{v"}«erf °f strongly stable ergodic channels, let F be the probability distribution func­
tion of the random variable #(v*), i.e. 

F(t) = £{a : ̂ (v") ^ t} , t real, 



and let D be the (countable, maybe empty) set of all discontinuity points of the distri­
bution function F, i.e. 

D = {t : F(t + 0) - F(t - 0) > 0} . 

Then the channel distribution £ is said to be regular if and only if both (1) the con­
dition that, 

(1.25) for any t < r and for any 0 > F(r - 0), there is some j.i e J(% (i.e. an ergodic 
input) such that 

£ { a : / ( v » < ? } < 0 

(cf. (1.12), (1.15)) is satisfied for all those reD having the property that either 
F(r - 0) = 0, or F(r - 0) = y > 0 and c(y, c) < r, and (2) the condition that, 

(1.26) for any real t, either there is some n e Ji% such that 

{{a : I(v«n) < t] < F(r - 0 ) , 

or 

{{« : / ( v » < t, ^(v") < r} > E(r - 0) for all n e Ji% 

js fulfilled for every r lying either in D and such that F(r — 0) = y > 0, c(y, <f) = r, 
or in some countable set Q of nonnegative real numbers such that c(F(r), £) = r £ D 
for every r e Q, and such that Q is dense in the numerical set 

{r :r$D,r = c(0, £) for some 0(0 < 0 < l) . 

The sense of the regularity condition just stated will be fully cleared up in the sub­
sequent analysis (in the subsequent sections). Let us point out that examples may be 
found in which the regularity condition is not satisfied. 

In the sequel a stationary channel v is said to be decomposable if there is a measur­
able family {v*}a6J;/ of channels va e -Wi^t with parameters in (stf, A) such that 
m(v") < m(a e s4) for some integer m, and 

(1.27) v(E | y) = f va(£ | y) d£(a), E e FA , y e B1, symbolically 

: d£(a) 

for some channel distribution { of the family {v*}^, for our purposes it will be con­
venient to have an alternative notation and to put 

(1.28) c(6, v) = c(0, 5) , 0 < 0 g 1 , 

replacing the symbol of channel distribution by that of decomposable channel itself. 



It is clear from the definition that a decomposable channel v is of finite past history, 
i.e. v e -/Tf.past (cf. (1.21)). Our main interest will be directed to channels decomposable 
into strongly stable ergodic components, i.e. for which the components va are lying 
in jV*Ig; for the latter channels we shall now state the main theorem of this paper, 
viz. the theorem on the existence of e-capacity. 

Theorem on e-Capacity. Let {va}ctsrf be a measurable family of strongly stable 
ergodic channels, with a channel distribution £ and such that the duration of past 
history m(va) of channels va is bounded a.s., i.e. 

£{a : m(va) 5S m} = 1 for some nonnegative integer m . 

Then a necessary and sufficient condition that, for any real number r less than 
the essential supremum of(€(ya), i.e. 

r < ess. sup {<%(va) : a e ^ [ c ] } , 

there be a countable subset Er of the open interval (0,1) of real numbers such that 
the limit 

lim - log2 S„(e, v[r]) 
n n 

exist and equal c(s,v^) for all s£Er, 0 < e < 1, where v w is the decomposable 
channel defined by 

(1.29) v M = l ^ [ v^(a)> 

Ar = {a: <€(va) = r} , 

is that the channel distribution £ be regular. 

Especially, if v is a decomposable channel with strongly stable ergodic com­
ponents va(ae J</) the channel distribution £ of which is regular, then the limit 

(1-30) CE(v) = lim - log2 Sn(e, v) 
n n 

exists and equals 

(1.31) inf {r : £{a : #(v") < r} fc e} 

for all s, 0 < e < 1, except a countable set ofs's. 
A much more general class of strongly stable ergodic channels than the class of 

finite-memory channels is that of channels with additive noise whose noise distribu­
tions are ergodic. A channel with additive noise, as defined by Parthasarathy in [4], 
the noise distribution of which is an invariant measure n e JiA, is a channel v satisfying 
the condition 

(1.32) v(E\y) = ix(E - y) , E e FA , y e B1, 



provided that A is an additive Abelian group, and that both the alphabets A and B 
are identical with each other; the additive group operation in A1 is defined by co­
ordinates, and E — y is the set of x e A1 such that x + y e E. If the noise distribu­
tion fi is ergodic, the channel v is said to be with additive ergodic noise. 

A channel with additive noise as defined with the aid of an invariant measure 
\JLEJ4A by (1.32), is always stationary and with zero past history. It may easily be 
shown that a channel with additive ergodic noise is ergodic; it is, at the same time, 
strongly stable as follows from Theorem 3.1 stated in [4]. 

Corollary. If v is a channel decomposable into components with additive ergodic 
noise each, then the limit Ce(v) given by (1.30) exists and equals the quantity (1.31) 
for 0 < e < 1, except a countable set of s's. 

We shall see that the statement of the Corollary to the main theorem follows from 
the fact that any channel of described type behaves regularly in the sense of conditions 
(1.25), (1.26). 

The next section is devoted to the proof of the theorem on the existence of £-
capacity. The proof will be based upon a group of theorems which may be of some 
interest taken only for themselves. The group of theorems just quoted will be proved 
in Part II of this paper. 

2. PROOF OF THE THEOREM 

Before proceeding to the proof of the main theorem, we must develop some auxilia­
ry notations. First of all, we shall make use of the following concise notations: 

(2A) c(s, v) = lim inf — log S„(s, v) ; log = log2 ; 
n n 

c(s, v) = lim sup - log Sn(s, v) , v e JTtiVmt. 
n n 

We shall set 

(2.2) c*(6, v) = sup {c*(0, v / i ) : / ie Ji*B} , 

c*(6, vfi) = sup {r : vfx{Ixy ^ r] ^ 1 - 9} , 0<9<1, ve JfUvuX, 

where 
vn{Ixy ^ r} = v/i{xy : xy e RAB, Ixy ^ r], Iz =-. I(wz), z'e RAB . 

The following theorem will be proved in Section 3. 

Theorem 1. For any stationary channel v with finite past history, i.e. v e ^Tf.pasf 
the following inequality holds: 

c*(6, v) <.c(e,v) for 0 < 9 < s < 1 . 



The capacity C(v) of a channel v e .ff.p,,, as introduced in [6], may be defined by 
the formula 

C(v) = lim c(e, v) . 
£-»0 

For the capacity we obtain the relation (proved in Section 4): 

Theorem 2. If v is a stationary channel with finite past history, i.e. v 6 ./Ff pas„ 
then its capacity C(v) has the following property: 

C(v) = limc*(0, v) = c*(0 + , v ) . 
0^0 

As an immediate consequence of the well-known facts of ergodic theory we obtain 
that 

(2.3) vu:{Ixy^r} = vy{Ixy=r} a.s. [>J , z e RB (ve>) ; 

cf. (1.9). It is because Ixy is an invariant function (with respect to the automorphism 
TAB; cf. (1.3)) and so is vy{lxy — r}; on the other hand, p,: for z e RB is an inde­
composable measure so that vy{Ixy ^ r} as a function of y must be constant a.s. 

In the remainder of this section the letter v will denote a decomposable channel 
with strongly stable ergodic components {va{aerf the channel distribution of which 
will be designated by the letter £; cf. (1.27). This convention enables us to simplify 
our notations in suppressing the letter v, e.g. c*(9), c(0) will stand for c*(0, v), c(6, v); 
cf. (1.28), (1.24). 

Lemma 2.1. There is a countable subset E of the interval (0,1) such that 

c*(0) S c(0) for all 0 $ E , 0 < 0 < 1 . 

Proof. Under the-assumptions made for the decomposable channel together with 
the ergodicity of its components we have 

v ^ ^r} = Z{l(v"fi) ^ r} , a e M% , 

-since 

vn(G) = i^(G) d$(a) for any G e FAB , 

and v*[i{Ixy = r} = 0 or 1 according to l(v*u) < r or = r. Using the latter equality, 
we easily find on the basis of the definitions of c* and c that 

(2.4) c*(et) = c(92) for 0! < 02 , 

since the contrary would lead to the contradictory inequalities 

c(02) < ry < r2 < c*(91) for some r1,r2. 



120 From (2.4) it immediately follows that c*(9) _ c(9) must be valid at least at all 
continuity points 9 of the function c. 

We shall now state two theorems the proofs of which are postponed into Section 5. 

Theorem 3. / / v is a decomposable channel with strongly stable ergodic com­
ponents, then the following inequality is satisfied: 

c(e, v) < c(6, v) for 0 < s < 6 < 1 . 

Theorem 4. / / v is a decomposable channel with strongly stable ergodic com­
ponents, then 

lira c*(9, v) = ess. sup {^(v") : a e J / [ £ ] } . 
9-»i 

Let us define another auxiliary quantity by 

(2.5) c'(9) = c'(6, v) = sup {r : £{a : V £ r} = 1 - 0} , 0 < 6 < 1 , 

where we have set 

(2.6) V = <€(vT), a e r f . 

It is an immediate consequence of the definition that 

(2.7) c'(0.) < c(92) for 0 < 6, < 92 < 1 ; 

it is because c' is monotonically increasing similarly as c. 

Now we shall prove a basic lemma which shows the sense of the regularity con­
dition stated in Section 1. 

Lemma 2.2. i / the channel distribution £, is regular, then there is a countable 
subset E of the interval (0,1) such that 

c*(9) = c(9) for all 9 $ E , 0 < 0 < 1 . 

Proof. I. Let £ be a countable subset of the interval (0, 1) having the property that, 
f o r a l l 0 £ E , o < 9 < 1, 

(1) c*, c are continuous at 9, and c'(9) = c(9) ; 

the existence of E follows from the elementary properties of the functions considered, 
and especially from (2.7). 

Let y(0 < y < 1) be such that y $E and c(y) = r $ D, where D is the set of all 
discontinuities of the distribution function F of the random variable c€x. Owing to 
(1), we easily obtain that 

£{a : <%* < r} = y . 



Let us define an auxiliary decomposable channel v' by 

(2) V = - f v" d{(a) , 
y J A 

A = {a : V < r) . 

Making use of Theorem 4, we get the equalities 

lim c*(9, v') = ess. sup W : a e A[£]} = r 
9 - 1 

because of (1). On the other hand, it again follows from (1) and y £ E that 

lim c*(0, v') = lim c*(6 . y, v) = c*(y-) = c*(y) , 
9 - 1 9 - 1 

i.e. c*(y) = r = c(y); cf. Lemma I in [10]. 
II. Let 9 (0 < 9 < 1) be such that c(9) = r e D, and that the point y = F(r - 0) 

is a point of continuity for c, i.e. r = c(y + ) = c(y). (Let us point out that c is con­
tinuous from the left.) Since £fa : <tfa < 7*}= y, we may define channel v' by (2) as 
above and find by the same reasoning that c*(y) _ c(y) = r; hence 

c*(9) ^ c*(y) ^ r = c*(0) for 7 -g 0 = 7' = E(r + 0 ) . 

Because of the fact that c(9) 4= r outside the interval [7, 7'] we have proved the 
implication 

(3) if c(9) = r then c*(9) = c(9) 

for the case considered. 
III. Let 9 (0 < 9 < 1) be such c(9) = r e D, and that y = F(r - 0) is a disconti­

nuity point of c, i.e. £(7) < c(y+) = r for 7 > 0, or 7 = 0. Applying the regularity 
condition (1.25), we immediately obtain according to (2.2) that 

c*(9) = r = c(9) for 7 < 9 = 7' = E(r + 0 ) . 

Hence it follows the implication 

(4) if c(9) = r then c*(9) = c(9) 

for the discontinuity point r of F having the above properties. 
Summarizing the facts obtained during the proof (cf. especially (3) and (4)), we 

have shown that 
c*(9) = c(9) for 9$E, 0 < 9 < 1 , 

which is the desired result. 
P r o o f of the Theorem on e-capacity. I. Under the assumptions made in the 

theorem, let us assume first that the channel distribution £, is regular. Owing to 



122 Lemma 2.1 and Lemma 2.2, there is a countable set E of numbers lying inside the 
interval (0,1) such that 

c is continuous at 9 , c*(6) = c(6) for 9 <£ E , 0 < 9 < 1 . 

Applying Theorem 1 and Theorem 3 to channel v[r] as defined by (1.29), and making 
use of the equalities (cf. Lemma II in [10]) 

(1) c*(9, vCr]) = c*(9r + 9.(1 - 9r)), 

c(9, vCr]) = c(9r +9.(1 - 0r)), 

where 9r = 1 — £(A r) , we obta in the relat ions 

c(9, vCr]) = c*(9, vCr]) ^ c(s, vCr]) ^ c(e, vCr]) g c(0', v [ r ]) 

for 9 < e < 9' , 9" $ E, where 0(1 - 9r) + 9r = 9" ; 
hence, 

lim c(9, vCr]) = c(e, vCr]) = c(s, vCr]) for e(l - 9r) + 9r = e' i E 
B-*E 

because of the continuity of c at s', which shows the sufficiency of the regularity 
condition. 

II. Let us make the assumption that the channel distribution £ is not regular. Using 
the notations of the statement of the regularity condition given in Section 1, we may 
assert that either (a) there is an r e D such that 

(2) c*(9) < c(0) = r for y < 9 ^ 90 , y - F(r - 0) 

for some 90 ^ F(r + 0), or (b) there is an r$ D such that c(F(rj) = c'(F(r)) = r, 
and that 

(3) c*(y-) =[c*(y) = c*(y + ) < c(y) = r for y = F(r) . 

Taking the channel v[r] defined by (1.29), applying Theorem 2 to channel v[r], and 
using the above equalities (l), we obtain 

c*(y + ) = lim c*(9, vCr]) = lim c(e, v w ) . 
e->o ;E^o 

The latter equalities together with (l) and (2), or (3) show that the assertion of the 
theorem cannot be valid for r just considered, which shows the necessity of the 
regularity condition, Q.E.D. 

Rephrasing the terminology of Section 1, we may say that a decomposable channel 
is regular if the channel distribution defining the channel is regular. 

The assertion of the Corollary to Theorem on £-capacity for channels with com­
ponents having additive ergodic noise immediately follows from the subsequent 
theorem: 



Theorem 5. Any channel decomposable into components with additive ergodic 123 
noise is regular. 

The p roo f of Theorem 5 will be given in Section 5 (cf. Part II of this paper to be 
published in the next issue). 

(Received November 13, 1970.) 
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K větě o kódování pro rozložitelné diskrétní sdělovací kanály I 

KAREL WINKELBAUER 

Příspěvek je věnován analýze problému platnosti věty o kódování pro třídu sta­
cionárních diskrétních kanálů, jež lze rozložit na ergodické složky. Výsledek je for­
mulován jako teorém o existenci e-kapacity, ježto podává odpověď na otázku 
o asymptotickém chování maximální délky n-rozměrných e-kódů pro každé s zvlášť. 
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