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KYBERNETIKA — VOLUME 7 (1971), NUMBER 2 

Some Problems of System Identification 
JAROMÍR ŠTĚPÁN 

The paper deals with the influence of the form of the input signals upon the accuracy of the 
results of the identification. It is shown, that the system identification in open control loop cannot 
mostly result in sufficiently accurate estimates nor in coefficients a3. Perspectives of identification 
methods are discussed. The possibilities of system identification in closed control loop are 
demonstrated by an example. The treatment sets out from the least squares estimator. 

1. INTRODUCTION 

At present there exists an extensive control systems theory, however, the utilization 
of this theory in the treatment of practical problems is rather limited [1]. In this 
connection one often speaks of a gap between theory and practice of control system 
design. One of the main causes of this situation is the identification of systems. So far, 
no sufficiently reliable method of identification has been established, not even for the 
simplest types of systems, and it is questionable altogether wether such a method can 
be found at the present state of measuring technique. Authors of papers and books 
employ the usual phrase: "Let us consider a system described by a differential equation 
(or a transfer function)." In practical problems, however we can always find only an 
estimate of the transfer function. Further calculations of the synthesis of control 
systems, which necessarily must set out from the results of identification, can be 
reasonable only if we know the accuracy of the estimates of the transfer function 
coefficients. This paper represents an attemp to analyze this problem. Especially we 
shall try to analyse the connection between the variances of the estimates and the 
properties of the functions to be identified. 



2. BASIC RELATIONS 

Single-input-single-output systems will be discussed, which can be described by 
transfer functions of the type 

(2,1) F,(p) = ^ ) = J _ = _i_, 

* ) "W £«„• 
i = 0 

where x(p) is the Laplace transform (L-transform) of the output signal and y(p) the 
L-transform of the input signal. Only deterministic input signals and initial zero 
conditions will be considered. 

Let us start from the following response curves shifted so that x(oo) = 0: 

x(t) — ideal response pertinent to the transfer function (2,1), 
x(t) — measured response, 
x(t) — substitute response calculated by the approximation (evaluation) of the 

response x(t) and pertinent to the transfer function, 

(2-2) ^l^^h^nr1— • 
i = 0 

Let us consider the linearized substitute function x(t) in the form 

(2-3) *x(0 = I > i V ^ ) 

where 

(2-4) ^{^(t)}=^S{p). 

S(p) is L-transform, which describes the form of the input signal. 
Further on only two forms of input signals are considered and denoted by super­

script on the left. The unit step input signal carries the superscript 0 and unit impulse 
input signal is denoted by superscript 1. 

In this case we can write the function (2.3) in the form 

(2.30 •sW-Z-W'XO 

where 

(2.40 * < • " » > - 4 ) • 

The suitability of the form (2.30 °f t n e substitute function x(t) follows from 



relations (for n = n): 

for unit impulse input signal (/ = i) 

(2,) n-m\.,..-S^„mr^rn>m 

for unit step input signal (/ = ;' — l) 

a T 1 n Y,aiPl~l 

(2.6) J?{°X(t)} Si=ai = £• VI J.] + i = ^ - = 

p LN2G>) «oJ lv20) 

--'atpi 1 1 r 1 n 
= i^> L _ I J L _ _L = &iox(t)\ 

pN2(p) aoP PIN(P) a 0 J l W J ' 

Functions t;(,)(r) were derived in reference paper [10] in connection with deriving 
the linearized sensitivity functional of the estimates of coefficients at. 

Let us assume that functions y(!)(t) are known and that these functions do not 
depend on the estimates of the coefficients at. Let us start from the procedure of 
identification on the basis of the linear least squares estimator [4] for the limit case 
of the discrete alternative — for the single response x(t) composed from the points of a 
measured responses Xj(t). We shall consider only independent, stationary, ergodic 
Gaussian noise. In this case we must start from r points of each response Xj(t) with 
minimal distance AT. In limit case for one point of each response Xj(t) we can write 
the estimate of the variance a2 in the form 
(2.7) ' 2 = - £ [ * X ! A t ) - x ( , A , ) ] ^ . 

q j=o At 
Hence for t e (0, T) 

o2q At = o2x = P = t [xj(j At) - x(j At)]2 At = (\x(t) - x(t)f df 
r;=o j 0 

where 52 is the estimate of the measurement error. We consider the resulting response 
as one point with the variance a2. 

The vector of the estimates of coefficients «,- is determined by relation 

(2.8) a = T f(GGT) dtY1 f (G Jjc) dt 

where 
aT = (f l0a, ...a„), 

GT - ( ^ l ) ^ l ) . . . » * l . 



136 The pertinent covariance matrix can be written in the form 

(2.9) "P = <5 2 [T(GGT )dt l *- 52A~1, 

where the elements ahi of the inverse matrix A - 1 can be calculated from 

(2.10) a"' = 1̂ 4 . 
\A\ 

\Aih\ is the complement of element aih in determinant \A\. \A\ is the determinant of 
matrix A. Elements aih of the matrix A are determined by relations 

(2.11) aih = (t'(i), t>(A)) = |V>(f) v™(t) dt, 

a.. = („<», i(0) = | w ( 0 | | - . 

For the unit impulse input responses ft, i = 0, 1, 2, ..., ri. The lenght of the time 
interval T will be chosen so that j - ^ 0 u(0(t) u(ft)(t) dt is negligibly small. 

The utilization of the given relations for practical identification of the systems would 
encounter some problems. It is not the objective of the present paper to design 
a practical identification method. The subject matter of this paper is the problem of 
the accuracy of the estimates of coefficients at. Thus we can start from the most 
favourable characteristics of the estimates a ; given by relations 

(2.12) E ( a ; ) = a ; , 

D(a;) = d2ali. 

The dependence of the variances of the estimates a ; on the type of function 
describing the system is determined in the considered theoretical case by the scalar 
products (2.11). 

The kernel of useful signals of considered types lies in region for t < 2a x. Therefore 
the integration interval of the noise will be chosen 

(2.13) T=2a1<T. 

The measurement error is 

(2.14) b2 = Ta2 . 

We consider so the favourable alternative. 
The dispersion a2 or the standard deviation a gives a tolerance strip, in which the 

measu-ed responses will lie, e.g. the measured response x(t) for 0 ^ t ^ T will lie 
with the probability P = 95% inside a tolerance strip of the breadth of 1,96c « 2a i.e. 

(2.15) x(t) -2a = x(f) g x(t) + 2a . 



3. INFLUENCE OF THE FORM O F THE INPUT SIGNALS UPON 

THE RESULTS OF THE IDENTIFICATION 

In this section we shall analyse the influence of the form of the input signal upon the 
accuracy of the estimates of the coefficients of the transfer functions and we shall 
mainly try to show the incorrectness of the statement, often quoted in the literature, 
regarding the highest possible information of the responses to the input signal in the 
form of an impulse. We shall limit this analysis to a step and to a Dirac impuls input 
signals, i.e. to extreme cases of the range of input signals most frequently employed 
in theory. For both alternatives the measuring error will be the same. 

The suitability of the considered input signals can be judged in the best way 
according to the ratio of the respective variances. For the ratio of the variances of the 
coefficient a„ of the substitute transfer function (2.2) for a0 = a0; at = a.; a2 = 
= a2\...; «„_! = aB_! we can write on the basis of the relations (2.10) and (2.12) 

V 

(з.i) я я = ^ = 
°D(ãn) 

The lower index n denotes the order of the transfer function (2.1) pertinent to the 
norms ||»«>||. 

The ratio of the variances R„ is given only by the properties of the function 
describing the system. 

For the norms ||t>(,)|| pertinent to the transfer functions of the type (2.1) we can 
write the Schwarz-Bunjakovski inequalities (for I = 0, 1, 2 , . . . , n and for x = oo) 

(3.2) Jy(,)|| p ! + 2)|| ^ [(»<» t , ( i + 2 ) ) | = | |P ( / + 1)||2 . 

Hence holds 

(3.3) 

The inequalities (3.3) show that the responses to an impulse or to input signals 
near an impulse, are mainly suited in the identification of the coefficients at the 
highest powers of the complex variable. 

Now let us show that for the considered systems does generally not hold 

(3.4) Rn = 1 . 

We start with the first order systems. According to the relation (3.1) we get 

(it\ R , D M . . . I-'""!' 



The norms ||if(0>|| and | i » ( 1 ) | in relation (3.5) can be calculated numerically by 
means of the Routh-Schur algorithm for the stability test [7]. This algoritm is given 
in Appendix A. According to the relations (A.7) and (A.8) we get for the transfer 
function 

(3.6) *WV)) = Г ^ V = — • - ~ - — г (a0 + aLp) c0 + cLp + c2p 

(3.7) II Ľ < 0 ) l 2 - * - * (3.7) 
ICQC^ 4alat ' 

(3.8) || u ( 1 ) | | 2 - l - * - ] ] (3.8) 
2cLc2 2.2a0aL.a\ 4 a0a\ ' 

Hence 

(3.9) R - a ì 

Rí~T2-

We can assume a0 = 1. The ratio of the variances according to the relation (3.5) 
depends therefore on the magnitude of the coefficient at. The influence of this coef­
ficient is judged best according to the magnitude of the norms of the corresponding 
responses. The norms relating to the responses to the input step signal (s = 0 and 
°x(t) shifted so that °x(oo) = 0) or to the impulse input signal (s = 1) are defined by 
the relations 

(3.10) \\s4~\\ s*2(t)dt\U2 

and can be calculated numerically by means of the algorithm given in Appendix A. 
Both these norms are connected by the Schwarz-Bunjakovski inequality. For the 

transfer function (2.1) we can write 

(3-ii) MMfcKV*)|-;-V-
l a0 

The sign of equality in the relation (3.11) holds for norms pertinent to the systems 
of first order. The dependence of the norms ||°x||, \">\ and the ratio of variances RL 

according to the relation (3.5) on the magnitude of the coefficient a± is given by the 
following extreme cases (for a0 = 1) 

(3.12) B l - l ; | | o x | = | | l x | | = _ L ; tf1 = l ; 

« i - » 0 ; | |°x| -> 0 ; | 1 x | - + o o ; Rt -> 0 ; 

at -* oo ; |°x|| -* oo ; pxjl -> 0 ; jRx .-> oo . 



In practice we are always limited in the range of measurable amplitudes, so that 
mostly we cannot utilize the magnitudes of the responses to the impulse input signal 
for at < 1 (regardless of the realizability of the Dirac impulse). For systems of the 
first order thus holds on the mentioned assumption and for the responses, which can 
be realized with the maximum unit amplitude 

(3.13) „ . _ 1 . 

The relations (3.5), (3.9), (3.12) hold only for an independent estimate of the 
coefficient at i.e. for a0 = a0. Now let us calculate the ratio of variances Ry for the 
case that the estimate of the coefficient at depends on the estimate of the coefficient 
a0. According to the relations (2.9), (2.10) and (2.12) we get 

(3 14) R - * 6 ^ > - l - ^ B T i _ __!______M 
j l -Dfa) IkTL M-1 )IVaTj 

By means of the algorithm in Appendix A we can calculate 

(3.14') R! = 0 2 — . 
a0 

For the assessment of the influence of the form of the input signals it is necessary 
to derive the relations for the ratio of the estimate-variances of the coefficient a0. 
According to the relations in Appendix A we get for dependent estimate a0 

(3l5)

 16(«o)_M-Tr, _ (.^-",/ir i_fl v 

{ ] ^ o " H^TL M-TIMTJ °' 
and for independent estimate a0 

The relations (3.15) and (3.16) show, that it is advantageous to identify the coef­
ficients a0 and ay separately. The relation (3.5) garantees then better the conditions 
for the assessment of the influence of the input signals. 

The situation is analogous for systems of higher order. For the ratios of the vari­
ances of the estimates of the coefficients an of the second and third order systems of 
the type (2.1) we can derive general relatively simple relations. We start from the 
transfer function 

1 1 
(3.17) Fs(p) = 

1 + У apl l + aiP + xaÌP + *Qa\P 

where x = a2\a\ and Q = 03/0^;,. 



For the second order systems (Q = 0) we get 

* - ^ - | £ F - * — 
The calculation of the norms |2 t , ( 1 ) | | a n d ||21'(2)|| is given as example in Appendix A. 

Similarly we get for the third order systems 

(3.19) R 3 .!Pi£3) = M3L2
 = o;*±<0. 

The values of the dimensionless parameters x and g vary in a narrow range for 
the majority of practical control systems (x e (0-04; 0-4); Q e (0-02; 0-2)). The ratios 
of the variances according to the relations (3.18) and (3.19) depend therefore mainly 
on the magnitude of the coefficient at. The influence of this coefficient can be judged 
according to the Schwarz-Bunjakovski inequality (3.11). For considered systems there 
holds a weak inequality in this relation. For a± > 1 however in the case of responses 
to an impulse input signals it can be better utilized the zone of measurable amplitudes. 
Since we are limited even in these cases to systems with the coefficient at in a certain 
narrow zone, the responses to the impulse input signals or to the signals near impulse 
signal have the limited significance for practical identification. 

4. SYSTEM IDENTIFICATION IN OPEN CONTROL LOOP 

Under the term "system identification in open control loop" we shall understand 
identification on the basis of the responses of systems in distinction to identification 
on the basis of responses of closed control loops. In this section we limit our consi­
deration only to stepinput signals (see sec. 3). 

First we define the relative standard deviation of the estimate of the coefficient a; 

["J 
(4,) . . , -ZPf i f f i ! . 

ai 

For Gaussian noise the values °st indicate limits round the correct value of the 
coefficient a ; (e.g. a ; + 0-4a; for °s ; = 0-4) within which the estimate of the respective 
coefficient will lie with the probability P = 68%. 

First we shall analyse the third order system of the type (3.17). The relative standard 
deviation of the estimate of the coefficient a3 (for at = at; a2 — a 2 ) is given by the 
relation (S = a ^J(2a^j) 

(4.2) °«- = — i — - gV(2fli) 
»зГ „(2)11 

In following sections we shall consider only the substitute transfer functions of the 
third order, therefore we omit the index on the left. By means of the algorithm in 



Appendix A we can determine a general expression for the norm ||f(2)|. The relation 

(4.2) can then be written in the form 

(4.3) . , . L _ _ _ _ : , 

The dimensionless parameters x and Q pertinent to third-order systems of the type 

(3.17) with real poles lie in the intervals x e (0; 0-33); Q e (0; 0T1). This is shown by 

the Euler inequalities 

(4.4) „ ^ a i _ 1 „ . + 1 ^ i + I^ 1 +_l_ 

(4.5) a\ _: 3a 2 => ^ = x = 0-33 , 
a i 

(4.6) a\ = 3a,a3 =>^ = x = 3 3 - = 3Q , 
«i axat 

Q __ I = 0-11 . 

The relative standard deviation of the estimate a3 diminishes with the rising para­

meters x and g. Hence we can put for third-order systems with real poles 

(4.7) °s*>____i_J__Ll =32,. 
{ } e(x + ey

/2 fc:S:__ 
Similarly, we can determine the relative minimum standard deviation of the estimate 

of the coefficient a3 of systems with real poles, without limiting the order, with the 

transfer functions of the type (2.1) (for a0 = 1), which can be approximated by third 

order systems. We start from the unfavourable case — from the minorants of the 

systems of the type (2.1) with real poles, which are given by systems with transfer 

functions of the type [10; 11; 13] 

e-TdP i 

(4.8) FS(P) = 
1 + тlP (1 + TiP)íí + TđP + ̂ P

2 + ... 

where Td is the transport lag. For the coefficients of the polynomial with real poles 
the following inequality holds [6] 

(4.9) 4["'-'Ҷ1+тз~x)(1+ҶтЬ- ]• 
[^Ҷ i+ггfïï)(i+ïŕiЬHÈ 

- ['<-« Ҷ1 + ïттn)(1 + тéi)H2 
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