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K Y B E R N E T I K A — V O L U M E 16 (1980), N U M B E R 1 

Time-Optimal Control of a Third-Order 
Plant 

M. MALEK-ZAVAREI 

In this paper the time-optimal control of a plant possessing one pole at the origin and two 
non-zero distinct real poles is studied. Cases corresponding to both non-zero poles in the left-
half-plane and one or both non-zero poles in the right-half-plane are considered. In each case, 
the system is analyzed in the regulating or tracking modes and a controller which simultaneously 
reduces the error and its first and second derivatives to zero in minimum time is designed. For the 
tracking system, the class of admissible inputs is found which, after a minimum transient time, 
can be followed without any error. It is shown that in both regulating and tracking systems if the 
plant is stable the error and its first and second derivatives can be reduced to zero with at most 
two switching reversals of the control. The same is established when the plant is unstable, provided 
that the initial values of error and/or its derivatives fall in a "controllable region". It is shown that, 
with some linear transformations, the equations of the switch curve and the switch surface can 
be made independent of the plant's constant gain and dependent only on the ratio of the non-zero 
pole values. 

1. INTRODUCTION 

There are numerous papers in control literature on the time-optimal control 
problem. A comprehensive treatment of the subject as well as a bibliography of some 
of these papers appear in [1]. Most of these papers, however, deal with second-order 
stable systems with zero input. Control of unstable regulating or tracking systems, 
especially of orders larger than two, has received little attention. Higdon [2] presents 
a study of the control of unstable systems. Also, the class of input signals that an K-th 
order relay-controlled plant can track has been investigated in references [3] and [4]. 

In this paper time-optimal control of a third order plant is studied. The control 
is assumed to be limited in magnitude. The plant is assumed to have one pole at the 
origin of the complex plane and two non-zero distinct real poles. Three pole con­
figurations are considered: both non-zero poles in the left-half of the complex plane; 



one non-zero pole in the left-half plane and the other in the right-half plane; and both 
non-zero poles in the right-half plane. 

It is well-known that the time-optimal control of a normal n-th order plant with 
real poles and with control of limited magnitude is of the bang-bang type. This 
control is unique and can be achieved by at most n — 1 switching reversals of the 
control (cf. [1]). If the plant is stable, any initial state in the state space can be driven 
to the origin in minimum time by the application of the time-optimal control. For 
unstable systems, however, the initial state must fall in a controllable region which is 
a sub-space of the state space. 

The controllable region is determined for the unstable cases and it is established 
that this region reduces as the number of unstable poles increases. Explicit equations 
are obtained for the switch surface and the switch curve within the switch surface 
in each case. Through linear similarity transformations it is shown that the equations 
for the switch curve and the switch surface can be made independent of the constant 
gain of the plant. Further, it is shown that the projection of the switch curve on one 
of the two-dimensional planes in the state space is independent of the pole values, 
and that the equations of the switch curve and the switch surface depend only on 
the ratio of the values of the non-zero poles. Finally, the class of input signals that the 
plant can follow perfectly after a minimum transient time is determined. 

2. PROBLEM FORMULATION 

The block diagram of the system under consideration is shown in Fig. 1 where 
the plant transfer function is 

(1) G t ø -
K 

a + b . 
(s + a) (s + b) ' 

The control u(t) is assumed to be limited in magnitude. Eqn. (1) implies that 

(2) [D3 + (a + b) D2 + abB] c(t) = Ku(t) 

Fig. 1. Block diagram of a relay-controlled plant. 



where D = d/df. The plant output is 

(3) c(t) = r(t) - e(t) 

where r(t) is the input and e(t) represents the error. From (2) note that one can assume 
|«(0| S 1 for all t with no loss of generality. 

For the regulating problem r(t) = 0 for all t and (2) becomes 

(4) [D3 + (a + b) D2 + abD] e(t) = -Ku(t). 

Defining e(t) = e^t), D[e(«)] = e(t) = e2(t) and D2[e(()] = e(t) = e3(f), (4) can be 
written in the matrix form as 

(5) E (0 = A E(t) + ß 1,(1 ) 
where 

'Ы0~ "o 1 0 0 

£(0 = e2(t) , A ~ 0 0 1 and ß = 0 

•»(0 0 -ab -(a + b) -K 

The eigenvalues of the matrix A are the poles of the plant transfer function, i.e., 
A i = 0, k2 — ~a a n d ^3 = ~b- Define matrix A as A = diag \XU A2, 23] . Then 
(cf. [1]) there exists a nonsingular matrix P such that P_1AP = A where P is the 
Vandermonde matrix of the eigenvalues of A, i.e. 

(6) 

Defining Y(t) = Pl E(t), or 

1 

P = 
1 1 1 
0 -a -b 
0 a2 b2 

(7) 

(5) yields 

(8) 

where 

(9) 

Now let 

* (0 
Уг(t) 
УÁt) 

ab(a - b) 

ab(a - b) a2 

0 b2 

0 -a2 

b2 a-b 
Ь 

«i(0 
e2(t) 

\ Ы<)1 

Ý(t) = A Y(t) + ß u(t) 

ß = p i ß = 
ab(a - b) 

b - a 
-b 

a2b 
- ^ i t ø . ^ ( 0 = ^ ~ ^ ^ ( 0 and x з ( 0 = ^ ^ b ( 0 -



Then from (7), (8) and (9) we have 

(11) k(t) = 

where \u(t)\ % 1 for all t. Let 

(12) x,(0) = {, 

*i(0' 
x2(t) 

*з(0 

0 0 o" "*.(0" — 0 

0 — a 0 x2(t) + ű 

0 0 -ь *з(0j -ft 
«(0 

= £2 and x3(0) = £3 

Note that X(t) does not depend on the plant's constant gain K. Further, note that 
X(t) = 0 o Y(t) = 0 o E(t) = 0. Therefore, driving the state vector X(t) to the origin 
of the state space is equivalent to driving the error and its first and second derivatives 
to zero. Fig. 2 shows how x1(f), x2(t) a n d x3(t) can be obtained from et(i), e2(t) 
and e3(t). 

Fig. 2. Block diagram of the linear transformation generating xx{t), x2{t) and x3(t) from e{t), 
e{t) and e{t). 

System (11) is normal if a H= b (cf. [1]). Then if a and b are real numbers, there 
exists a unique bang-bang control sequence with at most two switching reversals 
which drives any X(0) in the "controllable region" to the origin of the state space in 
minimum time. Hence, we can let u(t) = u = + 1 for all t in (11). 

3. TIME-OPTIMAL CONTROL OF STABLE PLANT 

Let a > 0 and b > 0. Then the plant will be stable (cf. [5]). We first obtain the 
equations of the switch curve and the switch surface. Then we determine the time-
optimal control law and present its engineering realization. 



3.1. Equation of the Switch Curve 

With u(t) = u = + 1 for all t and with initial conditions (12), the solution of (11) is 

(13a) x,(f) = -out + £, , 

(13b) x 2 ( t )= (£2 - u) e""' + u , 

(13c) x3(t) = ($3 + u) t~bt - u . 

Eliminating time t in (13) yields 

(14) x2 = (£2 - u) exp [..(x, - £,)] + u 

(15) *з = (Čз + и) exp - и(x, - £,) 

where the dependence on f is dropped for convenience. Eqns. (14) and (15) express 
the trajectory of the system in the three-dimensional state space, which starts at 
X(0) = (£,, £2, £3)T and is generated by the constant control u. Eqn. (14) represents 
the projection of this trajectory onto the x,x2 plane. Note that this equation is in­
dependent of the pole values a and b. Eqn. (15) which depends on the ratio bja, 
represents the projection of this trajectory onto the XjX3 plane. Figs. 3 and 4 show the 
curves generated by (14) and (15), respectively, for different values of £,, £2 and £3, 

> ><! 

Fig. 3. The projections of the forced trajectories in the xix2 plane for the case a > 0, b > 0 
(The arrows indicate the direction of increasing time.). 



Fig. 4. The projections of the forced trajectories in the x1 x3 plane for the case a > 0, b > 0 
(The arrows indicate the direction of increasing time.). 

The equations of the curves AOA' and BOB' which pass through the origin in Fig. 3 
are x2 = 1 — expx, and x2 = - 1 + exp(-Xj) , respectively. These curves are 
tangent to each other at the origin. Let r12 and I'12 represent the curve sections A0 
and BO, respectively, and let T12 be the union of T+

2 and T12 (Fig. 5). The equation 
of the curve F12 is, then, 

(16) = sgn(x:)( l - exp|x. | 

where sgn (•) indicates the signum function. Similarly, let r13 and F13 represent the 
curve sections CO and DO in Fig. 4, respectively, and let f13 be the union of E+

3 

and r13 (Fig. 6). The equation of the curve F13 is 

(17) x3 = sgn(x.) - 1 + e x p ( - | x , | j . 

The effect of variation of the ratio bja on F13 is shown in Fig. 6. 
Let E+ be the curve whose projections on the X[X2 and XjX3 planes are respectively, 

r12 and F13. The curve E+ is the set of all states which can be forced to the origin 
of the state space in minimum time by the control u = + 1 . Curve E" defined 
in a similar manner is the set of all states which can be forced to the origin in minimum 



Fig. 5. Curve rl2, the projection of the switch curve E on the xyx2 plane when a > 0 and b > 0. 

Fig. 6. Curve r . 3 , the projection of the switch curve Ton the xtx3 plane when a > 0 and b > 0. 



time by the control u = — 1. Note that xr > 0 for T+ and xL < 0 for F~. Define 
curve r as the union of T+ and F~. We call F the switch curve. Thus any state on 
the switch curve F can be driven to the origin in minimum time by the application 
of the control 

(18) u* = sgn (x,). 

Using (16), (17) and (18), the equation of the switch curve is 

(19) 

E = | ( x , , x2, x3) : x2 = u*r[l - e xP ("?*i)] , x3 -» M? - 1 + exp (- u*rxA 1 . 

3.2. Equation of the Switch Surface 

We define the switch surface, S, as the set of all states (xl5 x2, x3) which can be 
driven to the origin of the state space by one of the control sequences { + 1, — l} , 
{ — 1, +1}, { + 1} or { — 1}. Thus the switch surface S contains the switch curve F. 
To obtain the equation of the switch surface, consider a state (xx, x2, x3) and suppose 
that it can be driven to the origin by the control sequence {M, — «}. This would mean 
that the state (x1; x2, x3) can be driven to the switch curve F by the control u and 
subsequently to the origin by the control — u. Suppose that the state (x\, x2, x3) e T 
lies on the trajectory starting at (xls x2, x3) and generated by the control u. Then 
from (14), (15) and (19) we have 

(20a) x2 = (x2 - M) exp [M(XJ - x5)] + u 

(20b) x3 = (x3 + M) exp - M(X1 - X,) - M 

(20c) x2 = - M [ 1 - exp(-Mx1)] 

(20d) x3 = - M | ~ - 1 + e x p ( ' - - M x 1 Y ] . 

Eliminate x1 ; x2 and x3 in (20) to obtain 

(21) l + M[1 + (MX2 - 1) exp (-MXt)]
1/2 = 

= ) 1 — M 1 - (WX3 + 1) exp | MXj j i 

which is the equation of the switch surface S. It can be verified that S is a single-
valued continuous and real surface which separates the state space into two parts. 
For M = + 1 , (21) yields the equation of a surface, S+, which is the set of all states 



(xux2, x3) that can be driven to the switch curve T by the control u = + 1 . For 
u = — 1, (21) yields the equation of a surface, S~, which is the set of all states 
(xu x2, x3) that can be driven to F by the control u = —1. Note that S+ and S~ 
are disjoint and S = S+ u S " . The switch surface S contains the switch curve F. In 
fact r separates S into two parts, F~ cz S+ and T + c: S~. 

Control u in (21) can be determined as a function of xu x2 and x3. From Fig. 3 
and Eqn. (16) observe that (x1; x2, x3) s S+ if x2 > sgn ( x j (1 - exp Ix^), and 
(xu x2, x3) E S~ if x2 < sgn (x,) (1 - exp |x.|). It follows that 

(22) u = u^ = sgn [x2 - sgn (xx) (l - exp |x-|)] . 

3.3. Time-Optimal Control Law 

Consider a state (x,, x2, x3) £ S. Let (xu x2, x3p) be the projection of the point 
represented by (x l s x2, x3) in the state space onto S parallel to the x3 axis. From 
(14), (15) and (21), it can be verified that if x3 > x3 p only the control u = + 1 , and 

if x3 < x3p only the control u = — 1 generates a trajectory which starts from 
(xu x2, x3) and intersects the switch surface S. Therefore, the time-optimal control 
law when a > 0 and b > 0 is as follows: 

1. If (x1, x2, x3) does not lie on the switch surface S given by (21) and (22), the time-
optimal control is 

(23) u* = sgn (x3 - x3p) 

where (x l5 x2, x3p) is the projection of (xu x2, x3) onto S parallel to the x3 axis. 

2. If (xj, x2, x3) lies on S but not the switch curve F described by (18) and (19), the 
control u* given by (22) is time-optimal. 

3. If (xu x2, x3) lies on F, the control u* given by (18) is time-optimal. 

Thus, the control sequence {u*, u*, u*) drives any state (x l5 x2, x3) which does not 
lie on S to the origin of the state space in minimum time. Note that this sequence is 
either { + 1 , — 1, +1} or {— 1, + 1 , — 1}. Also note that a maximum of two switching 
reversals of control is required to drive any state to the origin in minimum time. 

3.4. Realization of the Time-Optimal Control 

An engineering realization of the time-optimal control law is shown in Fig. 7. 
For each state (xu x2, x3), the value of x3p is calculated, compared with x3 and 
applied to the relay R to obtain u* given by (23). The block indicated by "Switch 



Fig. 7. Block diagram of the time-optimal control system. 

Curve S" in Fig. 7 receives xu x2, u* and bja as input and calculates x3p which by 
(21) is given by 

(24a) 

where 

(24b) 

-K* + u*sM
b'"(2 - Mb'") exp ft u*xA 

M = 1 + «J[1 + (w|x2 - lJexpC-fiřxOl1!2 

An analog simulation of (24) can be used for the corresponding block in Fig. 7, or 
a digital computer can be used to calculate x3p. Note that only the ratio bja of the 
non-zero pole values plays a role in determining the time-optimal control. 

4. TIME-OPTIMAL CONTROL OF UNSTABLE PLANT 

When the plant is unstable, the initial state X(0) can no longer be arbitrary. Only 
initial states that fall within a certain sub-space of the three-dimensional state space 
can be driven to the origin by the application of a bang-bang control. We refer to 



this sub-space as the controllable region. We consider the cases where one or both 
of the non-zero poles are in the right half of the complex plane. The controllable 
region and the time-optimal control law will be determined in each case. 

4.1. The Case of One Unstable Pole 

Let a < 0 and b > 0. Then Eqns. (13), (14), and (15) still hold. Suppose that the 
initial state (£u £2, £3) can be driven to the origin by the application of the constant 
control u and that the required time is T. Then x2(T) = 0 and (13b) yields £2 = 
= M[1 - exp (aT)]. 
Now since |w| :S 1, a < 0 and T > 0, we have 

(25) | { a | g l - e x p ( a T ) < l . 

Note that no restrictions on £j and <J3 are required in order for Tto be a finite positive 
real number. Therefore, the controllable region in this case is 

(26) - c o < < J j < c o , — 1 < £2 < + 1 , - o o < < ^ 3 < + c o . 

The curves generated by (14) for different values of f. and £2 in this case are similar 
to those shown in Fig. 3 when the directions of the arrows are changed. The curves 
generated by (15) for different values of ^ and <J3 in this case are similar to those 
shown in Fig. 3 except the dashed curves correspond to u = + 1 and the solid curves 
correspond to u = — 1. The equations for the curves T12 and T13 in this case are as 
follows: 

(27) T12: x2 = - sga(x1) [1 - exp ( - | x 1 | ) ] 

(28) T13: x3 = - sgn (x.) V I + exp . J - - |x,|YV 

Note that bja < 0 in this case. The curves T12 and Tj 3 as well as the effect of variation 
of the ratio bja on T13 are shown in Figs. 8 and 9. 

Again define the curves T+ and T~ as in the previous case. In this case, any state 
on the curve T = T+ u f " can be driven to the origin of the state space in minimum 
time by the application of the control 

(29) M * = - s g n ( x , ) . 

The equation of the switch curve T in terms of M* in this case is identical to that in 
the previous case [Eqn. (19)]. Since the system of equations (20) have not changed, 
the equation of the switch surface S in terms of u* in this case is also the same as 
before [Eqn. (21)]. However, in the present case a < 0, |x2 | < 1 and 

(30) «* = sgn [x2 + sgn (xt) (1 - exp ( - U ) ) ] . 
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Fig. 8. Curve r12, the projection of the switch curve r on the xtx2 plane when a < 0 and b > 0. 

b 

Fig. 9. Curve r 1 3 , the projection of the switch curve F on the x^3 plane when a < 0 and Z> > 0. 



The time-optimal control law in this case is as follows: 

1. If (xx, x2, x3) does not lie on the switch surface S given by (21) and (30), the 
time-optimal control u* is given by (23). 

2. If (x1, x2, x3) lies on S but not the switch curve T described by (19) and (29), 
the control w| given by (30) is time-optimal. 

3. If (x1, x2, x3) lies on T, the control u* given by (29) is time-optimal. 

Thus, the control sequence {u*,u*,u*} drives any state (x1,x2,x3)£S in the 
controllable region (26) to the origin of the state space in minimum time. Note that 
a maximum of two switching reversals of control is required to drive any state in the 
controllable region to the origin. An engineering realization of this control law can 
be obtained by modifying the block diagram of Fig. 7 according to (29) and (30). 

4.2. The Case of Two Unstable Poles 

Let a < 0 and b < 0. Again Eqns. (13), (14), and (15) hold. Since b < 0, from (13c) 
with an analysis similar to that which led to (25) we obtain |<^3| < 1 — exp (bT) < 1. 
Thus, the controllable region (26) is further restricted to 

(31) - 0 0 < ČІ < +00 , - 1 < Ç2 < + 1 , - 1 < Ç3 < + 1 . 

Fig. 10. Curve F13, the projection of the switch curve Ton the xtx3 plane when a < 0 and b < 0. 



The curves generated by (14) for different values of £j and £2 in this case are exactly 
the same as those for the case a < 0, b > 0. Thus, the equation for the curve T12 is 
given by (27) which is illustrated in Fig. 8. The curves generated by (15) for different 
values of £, and £3 in this case are similar to those shown in Fig. 4 when the direc­
tions of the arrows are changed. The equation for the curve F13 in this case is given 
by (28). Note that bja > 0 in this case. The curve E13 as well as the effect of varia­
tion of the ratio bja on it is shown in Fig. 10. 

The equations of the switch curve F and the switch surface S in this case are iden­
tical to those for the case a < 0 and b > 0. That is, E is expressed by (19) and (29) 
and S is expressed by (21) and (30). Note that in these equations a < 0, b < 0, 
|x2 | < 1 and |x3 | < 1. With these restrictions, the time-optimal control law in this 
case is the same as that in the previous unstable case. 

5. ADMISSIBLE INITIAL CONDITIONS 

There are no restrictions on the initial conditions et(0) = e(0), e2(0) = e(0) and 
e3(0) = e(0) when the plant is stable. Restrictions are placed on these initial conditions 
by (26) and (31) when the plant is unstable. In order to determine these restrictions 
note that from (10) and (7) we have 

*a(t) - - £ V e(t) + m a*d *»(') - - • £ [ - <*) + <<)] • 
A. J\ 

Therefore — 1 < £2 < + 1 implies that 

(32) \b e(0) + e(0)\ < M . 
— a 

Similarly, — 1 < £3 < + 1 implies that 

(33) \a e(0) + e(0)\ < M . 

Thus, from (26), (32) must hold when a < 0. Also, from (31), (32) and (33) must 
hold when a < 0 and b < 0. 

6. ADMISSIBLE INPUT FOR TRACKING SYSTEM 

Thus far the input r(t) has been assumed to be identically zero (regulating system). 
From (2) and (3), the inputs r(t) that the system can track with no steady-state error 
must satisfy 

(34) [D3 + (a + b) D2 + abD] r(t) = 0 . 



If (34) were satisfied, Eqn. (4) would still hold and the analysis would be exactly 
the same as when r(t) = 0 for all t. The class of inputs r(t) that satisfy (34) are of the 
form 

(35) r(t) = r0 + ,-..--"» + r2e~bt 

where r0, r1 and r2 are arbitrary constants. The plant output c(t) can follow inputs 
of the form given in (35) with no steady-state error with at most two switching 
reversals of the control. Note that (35) has the same form as the impulse response 
of the plant G(s). 

7. CONCLUSIONS 

A third order relay-controlled plant possessing one pole at the origin and two 
non-zero distinct real poles was analyzed. Cases corresponding to both non-zero 
poles in the left-half plane or in the right-half plane as well as the case with one pole 
in each half plane were studied. By simple linear transformations, the system was 
transformed to a canonical form which is independent of the plant's constant gain. 
The equations of the switch curve and the switch surface were derived in each case and 
it was shown that these equations are independent of the constant gain of the plant 
and that they depend only on the ratio of the non-zero pole values. The controllable 
regions were determined for the cases where the plant is unstable. It was shown that 
when the plant is stable, the controllable region is the whole three-dimensional state 
space. It was established that with a maximum of two switching reversals of the 
control any error and its first and second derivatives can be simultaneously brought 
to zero in minimum time provided that they are initially in the controllable region. 
The control law and its engineering realization were obtained in each case. Finally, 
the class of inputs which the plant can perfectly track with at most two switching 
reversals of the control were obtained. It was shown that this class of inputs has the 
same form as the impulse response of the plant. 

(Received March 28, 1977.) 
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