
Kybernetika

Jiří Kopřiva
Realization of generalized good translation algorithm on computer

Kybernetika, Vol. 3 (1967), No. 5, (419)--429

Persistent URL: http://dml.cz/dmlcz/124360

Terms of use:
© Institute of Information Theory and Automation AS CR, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124360
http://project.dml.cz

K Y B E R N E T I K A ČÍSLO 5, R O Č N Í K 3/1967

Realization of Generalized Good Translation
Algorithm on Computer

M i KOPRIVA

In section 3, an algorithm performing so called generalized good translation of formal languages
is given in the form of an ALGOL 60 procedure. Its description is given in section 2. It is possible
to translate from a formal (context-free) language into other one with help of this algorithm
if certain conditions hold for both grammars. At the same time, some parts of output text may
correspond to certain chosen parts of input text in such a way that their relation is more general
than the good translatability is.

1.

The notion of the good translatability of grammars and languages was
introduced and exactly defined in references [1] and [2] and then generalized in [3].
The essence of the realization of good translation is certain transformation of the
phrase marker of input sentence with the target to obtain the phrase marker of
output sentence. A little modified form (comparing with [1], [2]) of the condi­
tions of good and generalized good translation will be formulated here in order that
an easier description of our algorithm may be given.

Let G = (Vr, VN, R) and G' = (VT, VN, R') be context-free grammars with VT

and V'T, VN and VN, R and R' terminal alphabets, sets of intermediate symbols, sets
of syntactic rules respectively. We write the rules r e R in the standard form

(1.) r = a0 : : = bkak... M i ^ o

with a0, au ..., ak the nonterminal symbols and b0, blt ...,bk the (possibly empty)
strings on VT. Analogously for R'. The language L defined by grammar G is the set
of all strings x on VT such that there is a derivation (in the wonted sense used in the
theory of context-free languages) with some a e VN the first and x the last member.
Analogously for L' and G'. Let S and S' be functions (meanings) defined on L and L'
resp. The grammar G is said to be well translatable into G' if the following conditions
hold:

a) Let T and <P be mapping from VN into V'N and from R into R' respectively

420 such that from

x' = <P(x) = c0 : : = d,c,... d ^ d , , (r is given in (1))

follows k = I and cnii) = T(A ;) for i = 0, 1, ..., k, where % is a permutation of the
set {1, ..., k} (the permutation depends on r).

b) If x ; e L and x\ e L' is generable from a ; and* c; respectively and if S(x;) =
= S'(x^(i)) /o r i = 1, ..., /c, f/ien

S(bkxk... fojXi&o) = SH** ••• <*i*Wo)
/o r a// r e R.

The phrase marker of a sentence of L (in the sense introduced in [1], [2]) may
be fully described with help of three arrays, which are denoted rule, sup, and dist
here. r«*e; is the number of the rule labelling vertex (level) i (the set R is supposed
to be ordered; the order of m vertices in phase marker will be determined on analysing
input sentence). In what follows, rulet means also the rule from R itself. swp; denotes
the level labelled by the rule whose one intermediate symbol is replaced by the
righthand side of rulet. At last, dist; is a number labelling the oriented branch con­
necting vertices supt and i. It determines the distance of the replaced symbol of
rulesup. from the end of its right-hand side.

The phrase marker of the corresponding sentence in L' will be obtained in the
following way: We replace the rules rulet by <P (rulet) for i = 1 , . . . , m, and the
numbers distt by the corresponding numbers determined with help of permutation %
(for rulesup^)for i = 2, ..., m (suppose the root of the phrase marker is level 1 with
dist1 = 0 e.g.). The mapping T from L into L' obtained in that way is called good
translation from language L into language L.

It is expedient (the reason is given in [3]) to let some subtrees of the phrase
marker in L avoid the good translation procedure. The left-hand sides of the rules
labelling the roots of such subtrees belong to a set of chosen (so called auxiliary)
intermediate symbols. The part of input sentence corresponding to the (maximal)
subtree of that property may be translated or adjusted in an optional way and then,
during the synthesis of output sentence, embeded on the relevant place of it. General­
ized good translation, described at length in [3], comes into being in this way. For
it, the mapping T need not be defined on the whole VN.

2.

The elements of VT and VN are coded by numbers constituting arrays term (of
length tr) and nonterm (of length nt) resp. The set R (from G) is coded with help
of arrays graml (length gi) and subj (length nr). The right-hand sides of the rules
from R are written sequentially and each of them is preceded by its negative ordinal
number. The array graml ends then with the number — z — 1 if z = card R. Let
us suppose that in the ordering of Rail rules having the same left-hand side (so called
subject) form a segment.

Array su bj contains the subjects of all rules in the order given in R and ends with a zero.

In addition to the arrays rule, sup, dist, in description of the phrase marker, also
arrays init and final are used. initt and final; denotes the subscript of the first and
last element resp. of such part of input text (array input of length it), which is the
value of the subject of rule;. The elements of input are numbered from 1 to il from
left to right. The element input0, coded by the number bsymb, is placed on the begin­
ning of input sentence so that the beginning can be recognized. The syntactical
analysis is performed from right to left with help of an algorithm, which can be called
selective top-to-bottom right-to-left analysis algorithm.

The reason for choosing a right-to-left algorithm is that it was tried out on a frag­
ment of ALGOL 60 syntax containing also left-recursive but no right-recursive
definitions. The top-to-bottom left-to-right analysis would yield no result in some
cases.

On the basis of length il and of grammar, a predetermination of the upper bound
max of the number of vertices of the phrase marker has to be done (here 3 — 4 times il).

The essence of analysis algorithm is rightmost derivation, but each met terminal
symbol is compared at once with the corresponding input symbol. A kind of com­
parison is performed also in case a intermediate symbol of the rule is met. This is done
with help of twodimensional boolean array select (with nt the number of lines and ti­
the number of rows). It is select;j = true iff there exists a value of nonterm; with
termj on its end and select;j — false otherwise. Utilization of select on suitable
places of algorithm precludes us from entering some false ways.

Syntactic analysis algorithm starts with labelling the first level by the first rule with
subject goal (this is the code of the main intermediate symbol, the value of which
the given sentence should be). On reaching the level n we label it by rule„, which is
the first rule having suitable subject. Then the symbols from the right-hand side of
rulen are scanned and compared with the corresponding input text symbols. If some
of them does not agree (in one or other way described in the foregoing paragraph),
we return to the level m, where m is the maximal n reached up to now. We ask now
whether there exists a next rule with the same subject as rulem has. This is done with
help of array subj. If so, we replace rulem by this next rule; if not, we replace m
by m — 1 (provided m > 1) and repeat asking about the existance of a next rule.
If m = 1, the given sentence is not a value of goal.

If terminal symbol from the right-hand side of rulen agrees with the corresponding
input symbol, we go ahead to the neighbouring left symbol in both the input and rule
(the latter shift is realised in graml). If this new symbol in graml is positive, we have
not exhausted the whole rulen and we compare again. If this new symbol in graml
is negative, rule„ has been exhausted and, provided that n > 1, we return to the
level supn (m remains unchanged) and determine the corresponding element in
graml. In case n — I we check whether input0 = bsymb has been reached. If not,
we have a kind of disagreement and we return to the level m.

On meeting in graml a nonterminal symbol and if corresponding select;j — true,

we increase m by 1 and put n — m. rule,, is then the first rule with the met inter­
mediate the subject.

Syntactic analysis algorithm is independent part of the whole algorithm. Cor­
responding procedure STBRL ANALYSIS is declared in the body of the whole
translating procedure in such a way that on replacing formal parameters by actual
ones one can use it independently of main algorithm. (See the note in the following
paragraph.) It yields the phrase marker of input sentence in the form of output
parameters (arrays) sup, dist, rule, init, final.

Function scan declared before analysis procedure is used also in other declared
procedures and looks for the first occurence of u in array w of length v. Its subscript
is scan; if there is no occurence of u in w, we put scan = 0. As a matter of fact,
it should be declared in the bodies of the three main internal procedures.

Comments are put on the proper places of program so that the reader may be
informed of what has beenjust performed. Also following two procedures (translating
and synthetizing ones) are written in such way that they may-be used independently
of main procedure.

Procedure WELL TRANSLATE has arrays describing the phrase marker its
input parameters. It transforms phrase marker in such a way that the result is a
(incomplete, cf. [3], p. 310, IV) phrase marker of output sentence. Also arrays
subj and aux (the latter of length a) belong to input parameters. The latter is a list
of auxiliary intermediate symbols (cf. the end of sect. 1 and also [3]). Suppose a e VN

and T(a) 6 V'N have the same numerical code (for all a e VN) and the numerical codes
of terminals (in both VT and V'T) differ from the codes of all intermediates, only one
specimen of arrays subj, nonterm and aux is sufficient for the whole program.

The procedure we are just looking into, scans the vertices of phrase marker in the
order determined by analysis. On each level n (beginning from the second), the value
dist„ is replaced by value corresponding to n (distn) (permutation for ru/esup J . This
is done with help of arrays pil and pi2 (both of length per). The former has the form

(2) - « 1 . «11» •••> 9 l , r , . -02, 921. •••, <?2,r2, • • •. ~ 9 S , 9S>1, •••, 9 W 0 ,

wherefl ;fori = 1, ..., s are numbers of all such rules of input grammar, which on the
one hand have their images in output grammar and for which, on the other hand,
some of its intermediates have changed their distance from the end of rule (in con­
sequence of <&). The original distances are qu in (2) and the resulting ones are the
corresponding elements in pi2. The rest of pi2 is arbitrary.

Of course, if we meet rulen with an auxiliary intermediate the subject, then after
changing distn we skip the whole maximal subtree with this vertex the root.

Procedure SYNTHETIZE has also arrays sup, dist, rule, init, final its input
parameters. In case array aux is empty the procedure synthetizes a sentence, the
phrase marker of which is determined by the first three of the five mentioned arrays.
The arrays gram (of length g and supposed to be coded in the same way as graml
above) and subj are used for this purpose. The resulting sentence is then in array

output with h + 1 and —1 the subscript of the first and the last element resp. owing
to synthetizing it from right to left.

Here, the considered procedure synthetizes the generalized good translation and
the array aux is usually not empty. Owing to this fact, the order of levels does not
correspond to the rightmost derivation on the one hand (values dist,, have been
changed), and certain subtrees of the new phrase marker will not be used during
synthesis on the other hand. In order that a (optional) translation of those parts
of input, which have the mentioned subtrees their phrase markers, to be embed
into output, procedure TRANSL is declared. It translates sentence AB ... Ac

in an optional way and thus forms sentence DE ... DF and is used on a suitable
place of the body of S YNTHETIZE.

It is obvious that array gram! (of length gl), which is substituted for gram at the
time of invokation of SYNTHETIZE may contain only rules being images of such
rules from graml, which label vertices not belonging to the subtrees mentioned
above. The corresponding rules are denoted by the same numbers.

Realization of synthesis corresponds to a rightmost derivation. Therefore, ore
meeting an intermediate, we have to find always the corresponding level. Scanning
e.g. rule„ we have to find such level d, that simultaneously supd = n and distd is the
smallest one and not zero (dist„ has been put zero always after exhausting rw/e„).
Desired distd is looked for as min, the value of which is rl + 1 at the very ouset and
renewed, if necessary, after passing through a vertex. Here, rl is the length of the
longest right-hand side from graml.

I think, it is suitable to denote some formal and their corresponding actual para­
meters by the same identifiers.

3. THE ALGOL 60 PROCEDURE

procedure GENERALIZED GOOD TRANSLATION (graml, gl, nonterm, nt,
term, tr, subj, nr, select, goal, aux, a, input, il, bsymb, max, gram2,
gl, rl, pi\, pi2, per, output);

value gl, nt, tr, nr, goal, a, il, bsymb, max, gl, rl, per;

integer gl, nt, tr, nr, goal, a, il, bsymb, max, gl, rl, per;

integer array graml, nonterm, term, subj, aux, input, graml, pi\, pil, output;

boolean array select;

begin integer d, j , k, m, n; integer array sup, dist, rule, init, final [l : max^;

integer procedure scan (u, v, w); value u, v; integer u, v; integer array w;

begin scan := 0; for j := 1 step 1 until v do

if u = w[j] then begin scan := j ; goto L end;

L: end scan;

procedure STBRL ANALYSIS (gram, g, nonterm, nt, term, tr, subj, nr, select,
goal, input, il, sup, dist, rule, init, final);

value g, nt, tr, nr, goal, il; integer g, nt, tr, nr, goal, il;

integer array gram, nonterm, term, subj, input, sup, dist, rule, init, final;

boolean array select;

begin integer i; i : = il; m := n := 1;

if ~] select {scan (goal, nt, nonterm), scan (input [i] , tr, term)] then goto END;

comment The last symbol of the input text is incorrect and so is the whole text. Thus
run of program is stopped.;

rule [1] := scan (goal, nr, subj); dist [1] := sup [1] := 0; final [1] :=> i; d := 1;

LI : fc := scan (— rule [n] — 1, g, gram) — 1;

comment Now, gram [fc] is the symbol of the right-hand side of rule [n]. ;
L2: if if scan (gram [fc], nt, nonterm) = 0 then gram [fc] + input [i]

else "1 select [scan (gram [fc], nt, nonterm), scan (input [i] , tr, termj]
then goto LA;

comment Either the investigated symbol of rule [n] (in case it is terminal) differs
from the corresponding input symbol or no values of the investigated symbol of
rule [n] (in case it is intermediate) ends with the corresponding input symbol;

if scan (gram [fc], nt, nonterm) + 0 then
begin

m := m + 1; sup [m] := n; n := m; dist [n] := d; final [n] := i;

rule [n] := scan (gram [fc], nr, subj); d := 1; goto LI

end: A new vertex is labelled by rule [n] . ;

k:= fc- 1; i := i - l; d := d + 1;

comment: shift to the adjoining symbol in both the rule and input;

L3: if gram [fc] > 0 then goto LI;

if n + 1 then
begin
d := dist [n] + 1; init [n] := i + 1; n := sup [n] ;

fc := scan (— rule [n] — 1, g, gram) — d; goto L3
end;

if input [i] = bsymb then
begin init [n] := i + 1; goto L5 end: ascend to the higher

level sup [n] after exhausting the rule or (for n = 1) the end
of analysis;

L4: if subj [rule [m] + 1] = subj [rule [m]] then 425
begin n := m; rule [n] := rule [n] + 1; i : = final [n] ; d := 1; goto LI end
descend to the last level m (maximal reached n) and shift to the following rule
with the same subject (if any);

if m = 1 then goto END else begin m : = m — 1; goto L4 end
incorrect input text (for m = 1) or decrease of the maximal reached level m if there
is no further rule being able to be used on the level m;

L5: end STJ5RL ANALYSIS;

procedure WELL TRANSLATE (subj, aux, a, pit, pi2, per, sup, dist, rule);

value a, per; integer a, per; integer array subj, aux, pil, pi2, sup, dist, rule;
for n : = 2, n + 1 while n ^ m d o

begin d := scan (— rule [sup [n]], per — 1, pi l) ;

if d 4= 0 then

begin j := d;

for 7 : = j + 1 while ml [7] > 0 do

if pil [7] = dist [n] then begin dist [n] := pi'2 [/J; goto LI end

end d;s£ [n] is given a new value obtained with help of permutation.;

LI: if scan (subj [rule [n]] , a, aux) = 0 then goto L2;

for 7 : = n, 7 + 1 while j ^ m /\ sup [7] >. n do d := jf;

n : = d ;

comment The subtree with an auxiliary intermediate the root is skipped.;

L2: end WELL TRANSLATE the phrase marker;

procedure SYNTHETIZE (gram, g, rl, nonterm, nt, subj, aux, a, output, sup, dist,
rule, init, final);

value g, rl, nt, a; integer g, rl, nt, a;

integer array gram, nonterm, subj, aux, output, sup, dist, rule, init, final;

begin integer h, f, min;

procedure TRANSL (A, B, C, D, E, F); value B, C, F; integer B, C, E, F;

integer array A, D; begin .. . end TRANSL;

n := 1; h := — 1; min := rl + 1;

LI: if scan (subj [rule [n]] , a, aux) 4= 0 then
begin TRANSL (input, init [n], final [n], output, f, h); h: = f - 1;

comment The segment (of input) being a value of an auxiliary intermediate
symbol is translated (optionally) and the obtained text is embedded into
output.;

426 L2: d := dist [n] + 1; dist [n] : = 0; n := sup [n] ;

fc : = scan (— rule [n] — 1, a, gram) — d
end ascend to the level sup [n] after exhausting the right-hand side of rule [n]

or after embedding the translation of the part of input into output
else k := scan (— rule [n] — 1, g, gram) — 1;

L3: if gram [k] < 0 then goto if n = 1 then L4 else L2;

if scan (gram [k], tit, nonterm) = 0 then
begin output [h] := gram [fc]; h : = h — 1; fc : = k — 1; goto L3 end
The corresponding terminal symbol from rn/e [n] is put into output.;

for j := n + 1 step 1 until m do
if sup [;'] = n then begin

if if dist [j] #= 0 then dist [j] < min else false then
begin min : = dist [j]; d : = j end

end The last up to now unused intermediate in rule [n]
is found.;

min := rl + 1; n : — d; goto LI;

L4: end SYNTHETIZE;

body: STBRL ANALYSIS (graml, g\, nonterm, nt, term, tr, subj, nr, select, goal,
input, il, sup, dist, rule, init, final);

WELL TRANSLATE (subj, aux, a, pil, pi2, per, sup, dist, rule);

SYNTHETIZE (graml, gl, rl, nonterm, nt, subj, aux, a, output, sup, dist, rule,
init, final);
END:

end GENERALIZED GOOD TRANSLATION;

4.

It would be more natural to write analysis and synthesis algorithms in the form
of recursive procedures. But they were tried out (in the form published here) on the
computer DATASAAB D21 and D21 ALGOL does not allow recursive procedures.

The following grammars have been used. Input langauge grammar (a fragment
of the ALGOL 60 syntax for arithmetic expressions):

(letter) \'. = b \ c \ d \ e I i
(digit) : : = 0 | l | 2 | 3 | 4

k I I m\n\p\s
5 | 6 7 | 8 | 9

(identifier) \ \ = (letter) | (identifier) (letter) | (identifier) (digit)
(unsigned integer) '. \ = (digit) | (unsigned integer) (digit)
(decimal fraction) \'. = . {unsigned integer)
(unsigned number) '. := (unsigned integer) | (decimal fraction)^

(unsigned integer) (decimal fraction)

(adding operator) ..= + | —
(multiplying operator) '.'.= x | /
(primary) '.'. = (identifier) | (unsigned number) | ((arithmetic expression))
(factor) : : = (primary) | (factor) T (primary)
(term) ; : = (factor) | (term) (multiplying operator) (factor)
(arithmetic expression) '. '.= (term) | (adding operator) <?erm>|

(arithmetic expression) (adding operator) (term)
Output language grammer (for arithmetic expression written in reverse Polish

notation): All rules with (letter >, . . . , (multiplying operator> the subjects remain
unchanged. Then it follows
(primary) ; \= (identifier) | (unsignednumber) | (arithmeticexpression)
(factor) : : = (primary) | (primary), (factor)]
(term) : : = (factor) I (factor), (term) (multiplyng operator)
(arithmetic expression) \'. = (term) | (term) : (adding operator) |

(term), (arithmetic expression) (adding operator)

If we declare <identifier> and <unsigned number> the auxiliary intermediate
symbols, only rules from the 31st one (i.e. <adding operator> :; = +) to the end
may be put into gram2. Then arrays pil and pil are e.g.
pi\: - 3 7 , 2, - 3 9 , 1, 3, - 4 1 , 1, 2, 3, - 4 3 , 1, 2, - 4 4 , 1, 2, 3, 0
pi2:0,l, 0 ,4 ,2 , 0 , 4 , 1 , 2 , 0 , 3 , 1 , 0 , 4 , 1 , 2 , 0

The following declaration of the procedure TRANSL has been used;

procedure TRANSL (A, B, C, D, E, F); value B, C, F; integer B, C, E, F;
integer array A, D;

begin
for j : = 0 step 1 until C - B do D[F - ;] : = A[C - / J ;

E:= F - C + B
end;

Therefore identifiers and unsigned numbers from input are put into output without
any change.

Besides others also expression

((d21 - /1905c) t -5 t (minskll - 1) + (-/Z>m360 + 13.0))/c4100 - (c803 + 19) x
Ipsl

was translated and the correct result

Ipsl, 19, <?803 + x , e4100, 13.0, ibm360 :- + , 1, minskll - , .5, /1905c, dll -

TT + / -

was obtained. The phrase marker of the given expression has 157 vertices and was
printed in the form shown on Table (only several highest levels are shown here).

LEVEL SUP DIST RULE INIT FINAL

1 0 0 44 1 65
2 1 1 41 52 65

3 2 1 38 62 65
4 з 1 35 62 65

5 4 1 24 62 65

6 5 1 13 65 65

7 5 2 23 62 64
8 7 1 11 64 64
9 7 2 23 62 63

10 9 1 10 63 63

11 9 2 22 62 62

The described way of analysis (syntax directed analysis) is not too effective and

should be replaced by other one in case algorithm is really used. The analysis takes

up most of the used time. The problem of efficiency of different methods of syntax

directed analysis is open as yet in spite of care of it (cf. e.g. references [4] and [5]).

But these problems overpass the scope of this article.

(Received February 1.0th, 1967.)

REFERENCES

[1] Culik Karel: Well-Translatable Grammars and ALGOL-like Languages. Formal Language
Description Langauges for Computer Programming, Proceedings of the IFIP Working
Conference. T.B. Steel, Jr. (Editor). North — Holland Publishing Company, Amsterdam 1966,
7 6 - 8 5 .

[2] Culik Karel: Semantics and Translation of Grammars and ALGOL-like Languages. Kyber-
netika 1 (1965), 1, 4 7 - 4 9 .

[3] Kopfiva Jifi: Generalization of Well-Translation of Formal Languages. Kybernetika 2
(1966), 4, 305-313.

[4] Griffiths T. V., Petrick S. R.: On the Relative Efficiencies of Context-Free Grammar Recogni­
zers. CACM 8 (May 1965), 5, 289-300.

[5] Kuno, Susumu: The Augmented Predictive Analyser for Context-Free Languages — Its
Relative Efficiency. CACM 9 (Nov. 1966), 11, 810-823.

Realizace algoritmu zobecněného dobrého překládání na počítači

JIŘÍ KOPŘIVA

Ve tvaru (nerekursivní) procedury jazyka ALGOL 60 je zapsán algoritmus pro
tzv. zobecněné dobré překládání bezkontextových jazyků (viz [2], [3]). Obsahuje
samostatné nezávislé podprocedury pro syntaktickou analýzu, zobecněný dobrý
překlad frázového ukazatele a syntézu. Podrobné vysvětlení tohoto algoritmu
je podáno v oddílu 2.

RNDr Jiří Kopřiva, CSc, Laboratoř počítacích strojů, Brno, Třída Obránců míru 21.

		webmaster@dml.cz
	2012-06-04T13:49:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

