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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 4 

MULTIMODAL DISCRETE KARHUNEN-LOĚVE 
EXPANSION 

JIŘÍ GRIM 

An approach is suggested which combines the idea of discrete Karhunen-Loeve expansion 
with the centroid method of cluster analysis to optimize an approximation of multimodal data. 
The resulting algorithm is illustrated on the classical iris data of Fisher. 

1. INTRODUCTION 

The discrete Karhunen-Loeve (K.-L.) expansion is well known to be useful 
in different areas because of its optimal properties and a simple implementation. 
Without affecting any aspect of the general problem we shall consider this method 
in the context of approximating. Particularly let X be a real random vector with 
a mean /i and a covariance matrix I 

(1.1) X = (Xl,X2,...,Xd)
TeRd; E{X} = peRd; E{(X - ft) (X - p)T} = I. 

Given a vector ce Rd and a complete vector basis U = {u1; u 2 , . . . , ud} of the space 
Rd we can write 

d 

(1.2) X = c + £ Y i U ; ; c = (Cl,c2,...,cd)
TeRd; u ; = (un, ui2, ..., uid)

T e Rd 
> = 1 

where Y; = Y(X) are coordinates of X related to the basis U. If U is an orthonormal 
basis we have a simple expression for Y;: 

(1.3) Y; = Y;(X) = uT(X - c); i = l,2,...,d. 

For this reason an approximation X + of the vector X is usually assumed in the form 
of truncated orthonormal expansion (1-2): 

do 

(1.4) X + = c + £ Y(X)u;; d0 < d ; ceRd; u ; e U . 
; = t 

One can see that, as the vectors c, u1,..., udo are constant parameters of the mapping 
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(1.4), the approximating vector XeRd is actually determined only by d0 variables 
Yt, Y2,..., Yi0. 

To optimize the choice of the parameters c and U the natural mean square error 
criterion is generally used which can be expressed as follows (cf. (1.2) —(1.4)): 

(1.5) E{| |X-X+H = E{||X-c||2-XY2} = 
i = i 

= E{|X-c| | - } -£U
TE{(X-c)(X-c)T }U j . 

i = i 

Further, using the relations (1.1), we can write 

(1.6) E{[|X-X+P} = E { | [X -^ } + | | ^ - c p -

-iu7lUf.-2«T^-c)(^-c)T
Ui = 

; = i i = I 

= E{||X - H|2} + (, - cf [ i U;u
T] („ - c) - £ ullu,. 

i = d o + l i ' = l 

The second term in the last expression represents a positively semi-definite quadratic 
form which is zero if we set c = //. We have then 

(1.7) E{\\X-X+\\>} = E{X-flr}--Zu7Zui. 
; = i 

Let us recall now that if the symmetrical matrix I is nonsingular then it has d real 
positive eigenvalues Xx, k2,,..,Ad and the corresponding eigenvectors v; can be 
chosen to be orthonormal. Thus, introducing the matrices 

lXx 0 . . . 0 \ 

(1.8) A= ? *2.. ° ; (XxZX2}>...Zld) 

\0 0 ..."J 
V=(vuv2,...,vd); vjvj=dij 

we can write 

(1.9) I = VAVT. 

From the extremal properties of eigenvalues and eigenvectors it follows directly 
that the second term in (1.7) is maximized by the eigenvectors of the matrix E which 
are associated with the d0 largest eigenvalues. The optimal parameters of the approxi­
mation formula (1.4) are therefore 

(1.10) c = ftr, u ; = v ; ; i = 1,2, ...,d0 

and the following relations are easily verified 

(1.11) E{X+} = / . ; E { | | X - X + H = l A,; E{ Y(X) Y,(X)} = A-5y. 
i = d 0 + l 

Instead of exact statistical properties we are given usually only a sample S of 
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independent observations of the approximated random vector X: 

(1.12) S = {x1,x2,...,xN}; x „ 6 « d . 

The above formulas are also applicable in this case if we replace the expectation 
operator by the corresponding sample mean. Thus the parameters of the approxim­
ation formula 

do 

(1.13) x + = x+(x) = c + £ yfat) vt; yi(x) = v](x - c) ; x e R„ 
i=\ 

minimize the mean square error criterion 

(1.14) Q = i Y ||x - x + P =- i £ ||x - c - i , , . ( x ) V ; p 
JV xeS N XES i = 1 

if 

(Lis) c = ^ i * ; -4 = i E ( ^ - - ) ( ^ - c ) T 

JV xeS JV xsS 

and y l f . . . , vio are the eigenvectors associated with the d0 largest eigenvalues (Xy = ... 
. . . A d o = . . .)of the matrix A. Also, in analogy with ( l .H), we can write 

(1.16) k ^ ( x ) = c ; i y y i ( x ) j , ( x ) = vJAvy = ; ^ i , ; 
N xeS AT xeS 

(1-17) Q = ^ I II* - * T - I S I 3'?(x) = I A,. 
JV xeS JV xeS i = d 0 + l i = d0 +1 

Let us recall that the optimal approximation formula (1A3) is derived from the 
global characteristics (1.15) (cf. also (1.4) (1.10), (1.1)). If the underlying probability 
distribution is multimodal then the parameters c, A in (1.15) (or fi, I in (1.1)) represent 
merely mean values of characteristics corresponding to different modes. In such 
a case the attainable accuracy of approximation would be probably low. For this 
reason it may occur useful to combine the formula (1.13) with a method of cluster 
analysis. First the population (or a given sample S) to be approximated is partitioned 
into clusters and then the approximation formula is applied independently to different 
clusters in a "hybrid" way. 

In this paper an approach is suggested which unifies the two distinct methods 
into a single iterative algorithm closely related to the centroid method of cluster 
analysis. The partition of the approximated population into clusters is optimized 
simultaneously with the respective approximation formulas in order to minimize 
the global mean square error. In this way the approximation accuracy increases 
even if the population does not contain any well separated clusters. 
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2. THE CENTROID METHOD OF CLUSTER ANALYSIS 

The most simple way to approximate a random vector X is to use a finite number 
of constants according to a suitable partition of the sample space. Let D(x), x e Rd 

be a decision function on Rd 

(2.1) D:Rd->{l,2,...,M} 

generating a partition of the sample space Rd into M subsets. Then we can write 
an approximation formula 

(2.2) x + = cD(x) ; x e Rd 

where cm e Rd are constant vectors used to approximate the respective subsets. 
Denoting £PU the partition of the sample S induced by the decision function D: 

(2.3) £fM = {Sx,S2,...,SM}; Sm = {x e S: D(x) = in} ; m = 1,2,..., M 

we can express the mean square error of this approximation of S: 

(2-4) Q = ^ Z l | x - c f l ( x ) | | 2 = i l I | x - c m | | 2 . 
N xeS N m= l xeSm 

It is easy to see that for a fixed partition yM the function Q is minimized by the 
respective means of the sets Sm, i.e. by 

(2.5) c<« = ^ - , I > ; m = l , 2 , . . . , M . 
p m | xeSm 

Consequently, to obtain an optimal approximation (2.2), the criterion Q = Q(SPM) 
is to be minimized by a proper choice of the partition SfM. 

The criterion (2.4) is often used also to define an optimal partition of a given set 
S into M clusters. For this purpose the function Q(&'M) is usually minimized by the 
following well known "centroid" - or "nearest mean" iterative algorithm: 

Step 1: Given a partition £fM of S compute the cluster centers cm by eqs. 

(2.6) cm = 7 ^ - , I x ; m = l , 2 , . . . , M . 
| S m | xeS,„ 

Step 2: Using the cluster centers cm define a new partition &"M = {S[, S'2,..., S'M}: 

(2.7) Sm = {xe{S~\JS'ky. ||x - c„,||2 <; ||x - c , | 2 , j = 1, 2 , . . . , M} 
k=\ 

in = 1,2,... , M . 

Here the partition &"M in Step 2 can be equivalently specified (cf. (2.3)) by the decision 
function 

(2.8) D(x) = min {1 ^ m ^ M: ||x - c,„j|2 ^ ||x - cy[|
2; ; = 1, 2 , . . . , M} ; 

xeRd 
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The centroid method of cluster analysis and its numerous modifications have 
been considered by many authors (see e.g. the references in [3]). An important 
advantage of this algorithm is the computational simplicity and also the fact that 
the function Q(£fM) is nonincreasing at each iteration of the eqs. (2.6), (2.7). As 
the number of partitions of the set S is finite, the algorithm converges to a minimum 
of the nonnegative function Q(S^u) i n a finite number of steps. A more detailed 
discussion of these questions can be found e.g. in [9]. On the other side the separation 
of clusters is linear and frequently only a local minimum is achieved — especially 
when the dimensionality is high. 

The centroid algorithm can be derived (cf. [5]) as a particular case of the classifica­
tion maximum likelihood method suggested by John [7]. Unfortunately this alterna­
tive technique of identifying normal mixtures was shown to produce asymptotically 
biased estimates of the parameters of components [1], [8]. The theoretical justifica­
tion of the centroid method of cluster analysis is therefore questionable (cf. [5]). 
The normal mixture model identified by means of the EM algorithm (see e.g. [2], 
[5], [6], [12]) seems to be preferable as a method of cluster analysis as long as the 
data set is not extremely large. 

It should be emphasized, however, that in approximation problems the very objec­
tive is to minimize the mean square error Q(SfM) whereas in cluster analysis the same 
criterion is only an intuitively chosen tool to find an optimal partition of the set S 
into clusters. This formulational difference has some important consequences. 
Thus, in the context of approximating the linear separation property is unessential 
as well as any comparison with the finite mixture model. Further, any local solution 
is equally applicable if the achieved approximation error is sufficiently small. A diffi­
cult task in cluster analysis is to determine the true number of cluster M whereas 
in approximation problems it may be viewed as an input parameter. 

3. MULTIMODAL DISCRETE KARHUNEN-LOEVE EXPANSION 

A natural way to approximate multimodal populations is to apply the discrete 
K.-L. expansion to each mode. However, this approach can be viewed as a general­
ized centroid method and also analogously optimized. 

Particularly, let SfM = {S1?..., SM} be a partition of S generated by a decision 
function D(x). Applying the formula (1.13) to each set Sm e £f M we obtain the follow­
ing approximation: 

M do 

(3.1) x+ = £ 5(m, D(x)) [cm + £ ymi(x) vmi] ; yjx) = (x - cm)T vmi. 
ra=l i = l 

Let us recall (cf. Sec. 1) that the parameters cm, vml, ...,vmdo minimize the mean 
square error on the respective subsets Sm. Thus, to obtain optimal parameters in the 
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formula (3.1), the global mean square error given by the equation 

(3.2) Q = Q(<?M) - ^ I | * - * + « | 2 = ~ £ Z I* ~ cm - £ yMi(x) r.J» 
iV xeS i V m = l x e S m i = l 

is to be minimized as a function of the partition yM. 

For this purpose we can modify the centroid algorithm as follows: 

Step 1: Given a partition S"M compute the centers 

(3.3) c„ = - 1 - Y x ; m = l ,2 , . . . ,M 
V V — I _ I La * , , , 

\Sm\ xeSm 

and construct the bases Vm = {vml, vm2,..., vmio}, m = l ,2 , ..., M by 
choosing the eigenvectors associated with the d0 largest eigenvalues of the 
respective covariance matrices Am: 

(3.4) Am = - i - £ (x - c,„) (x - cm)T ; m = 1,2,..., M . 
\Sm\ xeSm 

Step 2: Using the centers c l t c 2 , . . . , cM and the bases Vu V2,..., Vu compute 
the quantities 

(3.5) ymi(x) = (x - c,„)T vmi; x e S ; m = 1, 2 , . . . , M ; i = d0 + l,...,d 

and define a new partition y'u of S by 

(3.6) Sm = { x e ( S x V S ; ) : £ >£,(*) ^ £ ^-(x), y = 1, 2 , . . . , M} 
/ = l i = do+l i = do+ l 

m = 1 ,2 , . . . ,M. 

Let us note that the partition 5^M (cf. (3.6)) may be specified by a related decision 
function D(x), (cf. (2.3)): 

d d 

(3.7) D(x) = min {1 jg m ^ M: j ym,(x) ^ j j ^ (x) , 7 = 1, 2 , . . . , M} ; 
i = <io+l i = «io+l 

xeW d 

or equivalently by the function 

D(x) = min {1 ^ m g M: ||x - c j - - £ ymi(x) ^ ||x - c , f - £ j^ (x) , 
i = l i = l 

7 = 1, . . . , M } ; xeRd 

which is advantageous for d0 small. In some cases it could be also of interest that, 
applying the formula (1A7) to each subset Sm, we can write 

Jf l o | r . < - | M l o l d 

(3.9) Q(S*M) = I l a U - £ \\x - x+fl- U £ l&l £ Ami 
m = l iV L | S m | xeSm J m = l iV i = d 0 + l 

where Xmi, i = L 2 , , . . , d are the eigenvalues of the covariance matrix Am. 
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One can easily verify that the criterion (3.2) is nonincreasing at each iteration 
of eqs. (3.3) —(3.6): In the first step the approximation error is minimized indepen­
dently for each subset Sm by means of the optimal parameters c„„ Vm (cf. Sec. 1). 
In the second step the approximation error decreases for each reclassified vector 
and remains unchanged otherwise. Thus, as the number of partitions of the set S 
is finite, the algorithm converges to a possibly local minimum of the function Q(£fM) 
in a finite number of iterations. Let us remark also that, by increasing the number 
of subsets M, the attainable approximation arror is nonincreasing. 

As it appears the classification rule (3.7) was introduced by Watanabe [10] for 
use in pattern recognition. To characterize this rule let us note that for any vector 
x from a subspace spanned by a basis Vm, i.e. for 

do 

(3.10) x = cm + £ ritVmi; ni e « i 
;= I 

it holds 

(3.H) i J4M= I [(x-cm)Tv„,]2 = 0. 
i = d 0 + l i = do+l 

Thus any vector x satisfying eq. (3.10) will be assigned to the mih class (except for 
possible ties) even if the distance |[x — cm |2 is large. The classification rule (3.7) is 
therefore suitable for separation of classes of elongated form lying in different 
subspaces. From the point of view of approximation, this question is not of qualitative 
importance as it may influence only the resulting accuracy. 

4. NUMERICAL EXAMPLE 

To compare the considered multimodal modifications of the discrete K. - L. 
expansion we chose the classical iris data of Fisher [4] (see also [11]). The sample 
includes 150 observations of three different species of iris (iris setosa: S* = {x1( ... 
..., x 5 0 } , iris versicolor: S* = {x 5 1 , . . . , x 1 0 0 } , iris virginica: S3 = {x 1 0 1 , . . . , x150}) 
with each observation consisting of four measurements: x = (x1; x2, x3, x4)T 

(X! - sepal length, x2 - sepal width, x3 — petal length, x4 — petal width). 
First we applied the centroid algorithm (2.6) —(2.7) to comupte an optimal partition 

of the iris data into three clusters. The best solution we obtained is defined by the 
centers 

Cj = (5-006, 3-428, 1-462, 0-246)T, 

(4.1) c2 = (5-884, 2-741, 4-388, 1-434)T, 

c3 = (6-854, 3-077, 5-715, 2-054)T, 

and yields the partition £f3, (cf. (2.7)) which is not identical with the original one: 

(4.2) Sf3 = {S1; S2, S3} ; S1 = S* ; |S2 | = 61 ; |S3 | = 39 .; 

\S2 n S*2\ = 47 ; |S2 n S*| = 14 ; |S3 n S*| = 3 ; |S3 n S*| = 36 . 
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The corresponding value of the mean squares error criterion is 

1 
(4.3) Є = — 7 7 \\x-

150 ^ìjsj 
c j l 2 = 0-526 

Several other local minima we found were characterized by significantly higher 
values of the criterion (4.3). 

Accordingly to the "hybrid" approach the standard K.-L. expansion was applied 
independently to the cluster Su S2 and S3. First the sample covariance matrix was 
computed for each of the clusters and then the respective eigenvectors and eigenvalues: 

0-063)т, Xu = 0-232, 

0-131)т, Xl2 = 0-036, 

0-195)т, X19ш 0-026, 

0-970)т , Я 1 4 = 0-009 , 

vu = ( 0-669, 0-734, 0096, 

(4.4) v 1 2 = ( 0-598, -0-621, 0-490, 

v 1 3 = (-0-440, 0-275, 0-832, 

v 1 4 = (-0-036, -0020, -0-240, 

v 2 1 = ( 0-531, 0-231, 0-739, 0-344)T , X21 = 0-423 , 

(4.5) v22=( 0-767, 0-203, -0-403, -0-457)T, X22 = 0-124, 

v 2 3 = (-0-253, 0-937,-0-184, 0-154)T , A23 = 0-064 , 

v 2 4 = ( 0-256,-0-163,-0-509, 0-806)T , 1 2 4 = 0-017 , 

v 3 1 = ( 0-674, 0-078, 0-727, 0-105)T , X31 = 0-413 , 

(4.6) v 3 2 = (-0-384, 0-472, 0-195, 0-769)T, A32 = 0-113, 

v 3 3 = ( 0-504, 0-678, -0-535, -0-029)1", A33 = 0091 , 

v 3 4 = ( 0-380,-0-559,-0-384, 0-629Y , 1 3 4 = 0-035 . 

The approximation based on the centers (4.1) and the respective first two eigenvectors 
of (4.4)-(4.6), (d0 = 2, cf. (3.1)) yield the mean square error 

1 
(4.7) 

150 ш=l xєЅ„ 
- Уmi(x)vяi - > ' m 2 ( x ) v , „ 2 | 2 =0-077 

Obviously the result (4.7) may be influenced by the chosen method of cluster 
analysis. Thus, to obtain another independent solution, the method of mixtures 
was applied. Particularly, the normal mixture with three components 

(4-8) / ( « ) = £ 
= i V((2тr)4 det Am) 

exp { - i ( x - cm)T Am'(x - cm)} , x e 

was fitted to the sample. Using the EM algorithm we obtained the following m.-l. 
estimates of the parameter w„„ cm and Am: 

(4.9) /-122 -097 -016 -010\ 
w. = -333, c1 = (5-006, 3-428, 1-462, 0-246)T , = -097 -141 -011 -009 I 
w2 = -299, c 2 = (5-915, 2-778, 4-202, 1-297)T , 1 " \ -016 -011 -030 -006 ' 
w3 = -368, c 3 = (6-644, 2-949, 5-480, 1-985)T , \-010 -009 -006 -011/ 

336 



(4.10) A, = 

/•275 -097 -185 -054\ l-378 -092 -303 -06l\ 
-097 093 091 -043 , -092 -110 -084 -0561 
•185 -091 -201 061 ' 3 I -303 -084 -328 -074 

\-054 -043 -061 -032/ \-061 -056 -074 -086/ 

and further, by means of the Bayes decision rule, the corresponding partition of S: 

(4.11) ^ 3 = {Si, S2, S3} ; S; = Sf ; \S2\ = 45 ; | S 3 | = 55 ; 

|S2 n S*| = 45 ; |S2 n S*| = 0 ; |S3 n S*| = 5 ; |S3 n S*| = 50. 

Again, according to the hybrid approach, we computed the sample means and sample 
covariance matrices for each of the clusters S[, S'2, S3 (they are generally different 
from (4.9), (4.10)) and then the respective eigenvectors and eigenvalues: 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Уц = 

Уxг = 

*iз = 

* 1 4 = 

Угx = 

* 2 2 = 

v 2 3 = 

v 2 4 = 

^ 3 1 = 

^ 3 2 = 

^зз = 

^ 3 4 = 

c. = (5-006, 3-428, 1-462, 0-246)T , 

c 2 = (5-904, 2-776, 4-193, 1-293)T, 

c 3 = (6-554, 2-951, 5-489, 1-989)T , 

0-669, 0-734, 0-096, 0064) T , j . u = 0-232, 

0-598,-0-621, 0-490, 0131) T , Xl2 = 0036, 

-0-440, 0-275, 0-832, 0195) T , 1, 3 = 0-026, 

-0-036, - 0 0 2 0 , -0-240, 0-970)T , A14 = 0-009 , 

0-712, 0-335, 0-587, 0-189)
т
 , *21 = 0-476, 

-0-654, 0-579, 0-356, 0-332)
т
, x22 

= 0-065 , 

-0-246, -0-665, 0-701, -0-075)
т
, ^23 = 0-038 , 

0070, -0-332, -0192, 0-921)
т
, X2Ą = 0007, 

0-714, 0-220, 0-645, 0159)
т
, Язi = 0-683 , 

-0-292, 0-723, -0-076, 0-622)
т
 , я

32 
= 0-111 , 

-0-547, -0-404, 0-671, 0-295)
1
", Я

33 
= 0057, 

0-324, -0-516, -0-357, 0-708)
7
 , Я34 = 0-034. 

The approximation based on the first two eigenvectors yields the mean square error 

(4.16) e ( ^ 3 ) = 0-059 . 

Finally the generalized centroid algorithm (3.3) —(3.6) was applied to compute 
an optimal multimodal discrete K.-L. expansion. The best solution we obtained is 
defined by the centers 

e. = (5-006, 3-428, 1-462, 0-246)T, 

(4.17) c 2 = (6-157, 2-870, 4-768, 1-549)T, 

c 3 = (6-381, 2-874, 5-062, 1-819)", 
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and vectors 

(4.18) 

(4.19) 

Vц = 

*12 = 

v 1 3 = 

V l 4 = 

v 2 1 = 

* 2 2 = 

*23 = 
Vл, = 

0-669, 0-734, 0096, 

0-598, -0-621, 0-490, 

-0-440, 0-275, 0-832, 

-0-036, -0-020, -0-240, 

0-558, 0-255, 0-735, 

0-064)т, (Л.. = 0-232) 

0-131)т , (X12 = 0-036) 

0-195)т, ( l í 3 = 0-026) 

0-970)т , (Xы = 0-009) 

0-288)т , (X21 = 0-943) 

0-716, 0-256, -0-447, -0-471) т , (X22 = 0-185) 

-0-073, 0-646,-0-417, 0-636)т, (Д23 = 0-031) 

0-539)т , ( 1 2 4 = 0-018) 

0-321)т, (X31 = 1-340) 

0-489)т , (X32 = 0-144) 

0-036)т , (X33 = 0-033) 

0-810)т , (X34 = 0-022) 

0-414, -0-673, -0-292, 

v 3 1 = ( 0-561, 0-144, 0-749, 

(4.20) v 3 2 = (-0-347, 0-794, -0-102, 

v „ = ( 0-750, 0-225, -0-621, 

= (-0-046, -0-546, -0-207, 

The corresponding partition &"3 induced by the parameters (4.17)-(4.20), (cf. (3.6)) 
has the properties 

(4.21) 9>"3 = {S'i, S"2, S3} ; S'i = S* ; | S 2 | = 53 ; | S 3 | = 47 ; 

| S 2 n S * | = 3 3 ; |S 2 n S*| = 20 ; |S 3 n S*| = 14 ; |S 3 n S*| = 30 . 

The approximation based on the first two eigenvectors (d0 = 2) of (4.18) —(4.20) 
yields the mean square error 

(4.22) Q(&%) = 0-047 . 

It is easy to see that the approximation error (4.22) is always less than (or equal to) 
that obtained by a hybrid approach (cf. (4.7), (4.16)) but the actual difference is 
data dependent for obvious reasons. 

5. CONCLUSION 

The use of the suggested multimodal discrete K.-L. expansion may be expected 
to be efficient especially when the underlying probability distribution really shows 
well separated modes. However in other problems the number of components M 
and the number of vectors d0 may be connected with some technical limitations. 
In such a case the two numbers may be viewed as input parameters to be chosen as 
large possible. More generally, if only the total number of vectors is bounded, e.g. 
because of a limited storage capacity available, we could improve the approximation 
accuracy by allowing the number of vectors d0 to be different in different subsets. 
In view of the formula (3.9) the optimal vectors can be determined in this case by 
ordering the quantities |S m | Xmi. 

(Received April 23, 1985.) 
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