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KYBERNETIKA —VOLUME 17 (1981), NUMBER 1 

DISCRETE LINEAR REGULÁTOR REVISITED 

VLADIMÍR KUČERA 

A new technique to calculate discrete-time linear regulators is presented. This technique is 
based upon transfer matrix considerations rather than employing the algebraic Riccati equation. 
The optimal regulator is obtained via spectral factorization and the solution of a simple equation 
in polynomial matrices. 

This approach provides further insight and ties together the state-space and transfer-matrix 
methods. The resulting algorithm seems to be computationally effective. 

INTRODUCTION 

The discrete-time linear regulator has obtained much attention in the control 
literature. In fact, this problem has become standard and indispensable part of 
modern control theory and has found many practical applications. 

The discrete-time, infinite-horizon, time-invariant, linear regulator problem can 
be posed as follows. Consider a reachable system 

(1) x,+ 1 = Fxt + Gu, 

yt = Hxt + Ju, 

together with the cost function 

(2) V=tyTyt 
( = 0 

where yt e R1, ut e Rm, xt e R" and F, G, H, and J are real matrices of compatible 
dimensions. The T denotes matrix transposition and t = 0, 1, ... is the discrete time. 

The yt may be interpreted as an artificially defined output which serves to express 
a general nonnegative cost 

i r T n \RTH H T J 1 M 
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in the form (2). This formulation allows for arbitrary cross-terms and singular 
weighting matrices in the cost function. The standard nonsingular case can be 
recovered by taking H and J in the partitioned form 

•U1-
with J1 J nonsingular. 

The task is to find a regulator, relating ut to x„ which makes the closed loop system 
asymptotically stable and minimizes Vfor every x0. It is well known, see Kalman 
[1] and particularly Silverman [7], that this regulator is linear and given by 

(3) ut = -Kxt 

where 

(4) K = (GTPG + JTJ)~1 (GTPF + JTH) 

and P is the nonnegative definite solution of the algebraic Riccati equation 

(5) P = FTPF + HTH -

- (FTPG + HTJ)(GTPG + JTJ)~1 (GTPF + JTH) 

for which F — GK has all eigenvalues in magnitude less than 1. 

As shown by Silverman [7], the matrix GTPG + JTJ is invertible if and only if 
the system (l) is left invertible. If this is not the case, the pseudoinverse operation 
must replace the ordinary inverse in (4) and (5) and the optimal regulator K is no 
longer unique. 

Ever since Kalman's original paper on the subject, the importance of the Riccati 
equations in linear regulator problems has been widely emphasized. In a recent paper 
[4], however, the author developed an alternative technique of solving the linear 
regulator problem for continuous-time systems. This technique is based upon 
transfer matrix considerations and makes use of polynomial algebra. Throughout 
this decade we have witnessed the growing presence of algebra and the comeback 
of transfer matrix methods in system and control theory. They have proved useful 
in providing further insight, see Rosenbrock [5], as well as in obtaining efficient design 
procedures, see Kucera [3]. Our aim here is to apply this new technique to solve the 
discrete-time linear regulator problem. The basic idea is to use suitable matrix frac­
tions to describe the system; the calculation of the optimal regulator is then reduced 
to spectral factorization and the solution of a simple equation in polynomial matrices. 

PRELIMINARIES 

Let p be a real polynomial in an indeterminate d. By a root of p we mean any 
(possibly complex) number a such that d — a is a divisor of p. 
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Now let P be a real polynomial matrix in d, 

p = p 0 + p l ( i + ... + pkd
k. 

If Pk 4= 0 then k is the degree of P, denoted by deg P. The P is said to be causal 
if it is square and its determinant has no zero root (that is, P 0 is invertible). Further 
we define P to be regular if it is square and its determinant has no root in magnitude 
equal to 1, to be Hurwitz if it is square and its determinant has no root with magnitude 
less than 1, and to be stable if it is square and its determinant has no root whose 
magnitude is less than or equal to 1. Finally P is unimodular if it is square and its 
determinant has no root at all (that is, P""1 is again polynomial). 

Two polynomial matrices P and Q having the same number of rows are said to be 
left coprime if every square common left divisor of theirs is unimodular, and two 
polynomial matrices P and Q having the same number of columns are right coprime 
if every square common right divisor of theirs is unimodular. 

Any real rational matrix R in the indeterminate d can be written in terms of the 
matrix fractions 

R = p - ! g = QP" 1 

where P and Q are left coprime polynomial matrices in d while P and Q are right 
coprime polynomial matrices in d. An alternative expression for R is 

R = Rkd
k + Rk+1d

k+1 + ... 

where k is an integer (either negative, or positive, or zero). It is convenient to define 

R* = RT
kd~k + RJ+1<r(fc+1) + ... 

and to write 

<*> = R0 

for the constant term of R. Finally the symbol J„ is reserved for the n x n identity 
matrix. 

LINEAR REGULATOR 

The discrete-time linear regulator problem formulated in the Introduction will 
now be solved by applying transfer matrix methods. To this effect, we define the delay 
operator d by dxt+1 = xt for any sequence x = (xt), t = 0, 1, ... . The system equa­
tions (1) and the regulator equation (3) can then be written in the form 

(6) (/„ - dF) x = dGu + x0 

y = Hx + Ju 

u = -Kx 
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and let 

(7) (/„ - dF)-1 clG = BA'1 

where A, B is any right coprime matrix fraction representation of (/„ — dF)'1 dG. 
Clearly, A is m X m and causal whereas B is n x m with <_B> = 0. 

Further let the / x m matrix HB + J A have rank m and construct a Hurwitz 
polynomial matrix C satisfying 

(8) (HB + J A)* (HB + J A) = C*C . 

This operation is known as the spectral factorization; the spectral factor C always 
exists and is unique up to a constant orthogonal multiplier on the left, see Youla [9]. 
Note that 

rank(HB + J A) = rank(HBA_ 1 + J) 

= rank [//(/„ - dF)'1 G + J ] . 

Thus our rank condition is equivalent to left invertibility of system (1). 

Now we are prepared to state our major result. 

Theorem. Let HB + J A have rank m. Then the linear regulator problem is solvable 
if and only if every square right divisor of HB + J A is regular. The optimal regulator 
K, if it exists, is unique and given by 

(9) K = X~1Y 

where X and Y is the constant solution of the equation 

(10) XA+ YB = C. 

Proof. The proof will be divided into two parts. First we shall construct the opti­
mal regulator provided it exists and then we shall discuss its existence and uniqueness. 

Regarding the first part, let a regulator K exist which minimizes the cost (2) while 
making the closed loop system asymptotically stable. This cost can be expressed as 

(11) V=(y.,y} 

and the underlying philosophy of the proof is to express V as a sum of terms with 
only one depending on K so that the optimum is obtained by setting this term to 
zero. 

Define rational matrices M, N and M, N by the relations 

(12) MA + NB = Im 

(I„ - dF)M + dGN = I„ 

and 

(13) K = M~'N = NM~1 . 
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It then follows from equations (6) that 

u = -(/,„ + KBA'1)^,, - dF)-1 x0 

= -AN(I„ - dFy1x0 

and 

so that 

Therefore 

where 

x = -BN(I„ - dF)-1 x0 + (I„ - dF)-1 x0 

y = H(I„ - dF)-1 x0 - (HB + JA)N(I„ - dF)-1 x0 . 

У*У = xlV0x0 

(I„ - dF)* V0(I„ - dF) = HTH - HT(HB + JA)N -

- N*(HB + J A)* H + N*(HB + J A)* (HB + JA)N = 

= HTH - HT(HB + JA)N - N*(HB + J A)* H + N^C^CN 

with C defined in (8). Completing the squares, we get 

v0 = v1 + W^W, 

where 

(/„ - dF)* V,(I„ - dF) = 

= HTH - HT(HB + J A) C~1Cl1(HB + J A)* H 

and 

W1 = C*\HB + J A)* H(I„ - dF)'1 - CN(I„ - dF)-1 . 

Now decompose the first term of Wt as 

C;\HB + J A)* H(I„ - dF)'1 = C^Z* + Y(I„ - dF)"1 

where Yand Z are polynomial matrices such that <Z> = 0. In fact, Yis a constant 

matrix. Then 

wt = c ; % + W 
where 

W= Y(I„ - dF)-1 - CN(I„ - dF)'1 = 

= Y(I„ - dF)-1 [(I„ - dF)M + dGN] - CN(I„ - dF)-1 = 

= YM + YBA-yN - CA-'N = 

= YM - (C - YB)A~XN = 

= YM - XN 

on employing (12) and (10). 
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The cost function (11) can now be written as 

V= <4[r t + ( c ; % + w% (c»% + FT)] X0> . 

By construction of Z, the cross-terms above vanish: 

<ZC-1(T> = < ^ C ; 1 Z * > = 0 

and hence Vcan finally be given the form 

V*» <4(Vi + ZC~'Cl'Z*)x0) + (xlW*Wxo) 

in which the first term does not depend on K. Thus Vis minimized by setting Wx0 = 0. 
Since x0 is arbitrary, this calls for 

(14) YM = XN . 

Any solution X, Y of equation (10) is related to X, Yby 

(15) [X Y] = [X Y] + r [ - d G /„ - dF] 

for some polynomial matrix T. As a result, the [X Y] is a remainder after dividing 
[ - d G /„ - dF] into [X Y]. Hence deg [X Y] < deg [-dG J„ - dF], that is, both 
X and Y are constant matrices. Moreover, the X is invertible since X(A) = <C> 
and both A and C are causal. Thus the optimal regulator (9) follows from (13) and 
(14) combined. 

As to the second part of the proof, observe that the existence of K hinges on that 
of C. Equation (10) tells us that the determinant of C is the characteristic polynomial 
of the closed loop system, see Kucera [3]. Thus C must be stable, not merely Hurwitz, 
and this property depends on HB + J A having only regular square right divisors. 

To prove the uniqueness of K, note that for any C the constant solution X, Y of 
(10) is unique due to (15). Since any two spectral factors C are left orthogonal multi­
ples of each other, the same must be true of the corresponding solution matrices 
[X Y]. Therefore X and Ydepend upon C but K is unique. • 

EXAMPLES 

To illustrate the preceding theory, consider system (l) with the matrices 

"Co] G = 

H = [ - 1 0 ] J = [ l ] 

and find the regulator K which minimizes the cost (2). Denoting £. and £2 the state 
variables, this is equivalent to minimizing 

V=fy? 
( = 0 
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subject to 

and 
íit+i — 5 u + ut > izt+l ~ ut 

yt = " t - tit-

The first step is to obtain the polynomial decomposition (7). Since 

_d 

(/„ - dF)'1 dG = 1 - d 

d 
we have 

we have 

so that 

B - [*-4 --P-4-
Next we have to calculate the spectral factor C defined in (8). Seeing that 

HB + J A = 1 - 2d 

(1 - 2<T1)(1 - 2d) = (2 - c."1)(2 - d) 

C = 2 - d. 

Finally the equation (10) becomes 

and we easily find the constant solution 

X = [2] , Y = [1 0] . 

Hence the optimal regulator K is given by 

K = [0.5 0] 

and produces a closed loop system with the characteristic polynomial 2 - d. 

To illustrate the significance of HB + J A not having rank m, consider system (1) 

F = [1] , G = [1 1] 

H = [1] , J = [1 1] . 

described by 

This gives 

and 

B-ЏOЬ --[í-'-ìl 

Яß + JA = [1 0] . 



There is no Hurwitz spectral factor C satisfying(8); however, a detailed analysis shows 

that the regulators 

ЧЇ-J 
whete x is any real number yield the closed-loop system matrix F - GK = 0 and 

hence all must be optimal with respect to (2). Thus the optimal regulator is not unique 

for non-left invertible systems. 

DISCUSSION 

The transfer matrix solution to the discrete-time linear regulator problem advanced 

in this paper has several interesting features. The design procedure consists of three 

steps: the calculation of an appropriate matrix fraction, the spectral factorization, 

and the solution of a linear equation in polynomial matrices. Computationally, the 

central problem is to perform the sectral factorization. There are efficient iterative 

algorithms reported by Kazanjian [2] and Kucera [3]. However, a matrix version 

of the polynomial algorithm developed by Vostry [8] is to be preferred, for it com­

bines efficiency with quadratic convergence. The calculation of right coprime matrix 

fractions is described e.g. in Kucera [3]. An efficient way of finding the constant 

solution X, Y of equation (10) is to equate the coefficients at like powers of d. 

Denoting Ah Bh and C ; the coefficients of A, B, and C at d\ we have to solve the 

system of linear equations 

XA0 = C 0 

YBi=Ci-XAt, i = 1,2,..., d e g B . 

From the theoretical point of view, it is interesting that the solution of the algebraic 

Riccati equation, a complicated quadratic problem, separates here into a simpler 

quadratic problem of spectral factorization and a linear problem of solving matrix 

polynomial equation. In fact, the process of solving equation (10) can be interpreted 

as the assignment of desired invariant polynomials (i.e., dynamics and structure) 

to the closed loop system, see Kucera [3]; the spectral factorization then simply tells 

us which polynomials are to be assigned. The relationship between spectral factors 

and the optimal system dynamics has been around for some time but the direct way 

of obtaining the regulator via the solution of matrix polynomial equation is believed 

to be original. Of course, the overall characteristics of the optimal system, such as the 

return-difference matrix, can be obtained without actually computing the regulator, 

see Shaked [6]. 

In addition to providing further insight and relating the state-space and transfer-

matrix techniques, this approach seems to be computationally attractive. The com­

putational savings are associated with the reduction of dimensionality at the expense 
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of introducing polynomials: the complexity of calculations with real matrices is 

proportional to the third power of their dimensions while the complexity of polynomial 

manipulations grows only with the second power of their degrees. 

All the results which have been given for the regulator problem translate at once 

into dual theorems concerning the discrete-time stationary estimation (filtering). 

This problem can be posed in terms of the dual of system (l) 

w,+1 = Fw, + HTvt 

zt = Gwt + JTvt 

where vt e Rl, z, e Rm, and w, e R". The v = (vt) is a zero-mean, Gaussian, white 

noise sequence with unit covariance matrix. Note that this model allows for arbitrary 

cross-correlation between input and output noise processes and noise-free measure­

ments. The estimate wt of wt which minimizes the variance ofjT(wt — w,) for arbitrary 

vector j , given the observations z from the infinite past up to but not including 

time t, is generated by the system 

wt + 1 =(FT -KTGT)wt+KTz, 

where the gain matrix K is given by (4) and (5). Thus our Theorem can directly be 

applied to solve the linear estimator problem as well. 

(Received April 11, 1980.) 
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