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K Y B E R N E T I K A - V O L U M E 24 (1988), N U M B E R 4 

ROBUST QUASI-LINEAR SYSTEM IDENTIFICATION 

JAROMÍR ŠTĚPÁN 

The internally robust estimator, which can start from a small sample size, will be proposed. 
It is the nonlinear Output Error (OE) method which uses the linear Gauss estimator as an etalon 
for the solution of the nonlinear identification problem and so we can speak about the quasi-
linear method. The close connection with the approximation method described in ([10], [12]) 
opens the way for deriving approximate models. 

1. INTRODUCTION 

The system identification is a necessary step in any application of the theory 
to real world systems. So it is a link between the mathematical resp. hypothetical-
deductive theories and the real world. This position is the source of many difficulties 
especially by the design of the mathematical apparatus. We can find plenty of nice 
formal identification theories in the literature. Unfortunately these formal theories 
are mostly based on very strong assumptions and so legitimate many procedures 
or methods which stand in contradiction with the real world. They are mostly based 
on the exact system description using error free computers, exact measurements 
and limitless time. Let us discuss some of these assumptions. 

(i) The measurement errors were imbedded in formal theories in a stochastic 
zero-mean component neglecting the fundamental fact that each real measurement 
instrument generates data corrupted by an unknown bias. Therefore we must start 
from the fact that the measurement instruments used in the practice have different 
accuracy and reliability characteristics and the measured data are mostly given with 
a precision lower than two decimal places. Just this limited measurement accuracy, 
i.e. the residual systematic errors, creates the basic part of an uncertainty band 
(see [2], [8], [II]) . 

(ii) Often one does not have the control over disturbances and the form of the 
input signal. Non-zero initial conditions are mostly assumed but they cannot be 
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exactly fulfilled. All these uncertain influences must be included in an uncertainty 
band and decrease more and more the usable information in measured signals. 

(hi) We ask the model which is a good representation of the real system. However, 
the model structure is seldom identical to that of the true system. Approximate 
models are more robust than the exact model if measured signals are corrupted 
with an uncertainty band (cf. [11]). 

(iv) It follows from preceding points that the accuracy of a parameter vector 
estimate cannot be increased arbitrarly by unlimited multiplying the number of 
measured data (cf. [8], [11]). 

So in this paper we shall try to derive the identification procedure which is able 
to master the mentioned difficulties: 

(a) This procedure must be able to solve simultaneously the approximation and 
estimation problem. 

(b) Usable results can be obtained from a small number of measured data. 
(c) This procedure must be sufficiently robust to the uncertainty band which 

corrupts measured signals. 

From all these demands it follows that such a method must substantially differ 
from the known methods. It must be a nonlinear off line working OE method. 
The estimator, which fulfils these demands, is proposed in the next sections. It 
starts from the Damped Nonlinear Least Squares (DNLS) method which was 
published in the literature ([10], [12]) as the method for the approximation of 
signals. So we shall use for it the notation — the DNLS estimator. 

The organization of the paper is as follows. The identification problem is formulated 
and the nonlinear regression functions for the general input signal are derived in 
Section 2. The theory of the nonlinear regression analysis is discussed with respect 
to different modifications of the Newton method in Section 3. The DNLS estimator 
is derived and the main propositions are given in Section 4. The relation of the DNLS 
estimator to the Equation Error (EE) methods is discussed in Section 5. The internal 
robustness of the DNLS estimator is illustrated in Section 6 by an example. 

2. PROBLEM FORMULATION 

Consider a SI SO linear system given by 

(2.1) x(t) = Ax(t) + fiu(t), y(t) = yx(t), 

where the system triple (A, /?, 7) has the appropriate dimension. For the zero initial 
conditions the corresponding transfer function can be written as 

(2.2) F(5) = r ( s / - ^ r ^ = M ^ . 
N(s) 

The pertinent model can be described with the substitute transfer function F(s) 
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(for n _ n,m ^ m) 

<»> " _ * . M - ^ . 
where M(s) = 1 + £ b ^ a n d iV(s) = £ fl,-s' are Hurwitz polynomials without com­
mon factor. • /=1 , = 0 

The pertinent output signal y(f) is nonlinear in coefficients at (i = 0, 1, ... n) 
as it follows from the gradient 

(2.4) grad F(s, b, a) = \jN2(s) (s N(s), s2 N(s),..., sm N(s), 

- M(s), -s M(s),..., -sn M(sj] . 

For the sake of simplicity we shall consider only the nonlinear part of the identifica­
tion problem, i.e. F(s) with M(s) = 1 

(2.5) F(s, a) _ - J — . 

I-,-' 
i = 0 

This case is more illustrative for the explanation and more useful for applications. 
In the literature [12] it is shown how the identification starting from transfer function 
(2.3) can be simply transformed in the considered case. 

2.1. Signals description 

The identification problem can start only from measured points of output and 
input signals, i.e. from the discrete alternative. In this paper we shall consider the 
discrete alternative which is based on the continuous case. The reasons for such 
approach are two: 

(i) The real systems are continuous in nature and so we obtain rather easily 
physical insight in control problems. 

(ii) The use of Z-transformation is connected with numerical errors (cf. [4]) 
and does not allow introducing the nonlinear regression functions. 

Now let y = [j>(l), y(2),..., j % ) ] T be for y(tk) = y(k) the measured points of the 
output signal y(t) pertinent to the system S given by transfer function (2.2) and let 
y = [y(l),y(2), ...,y(q)Y be a signal pertinent to the model S given by transfer 
function (2.5). So we consider signals on the time interval At = T2 — r1 with the 
sampling interval Ax = Atjq. 

The output signal of the model can be written in the form of the nonlinear regression 
function (see [10], [12]) 

(2.6) y(t, a) = £ a, »(i)(0 , 
i = 0 

where 
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It follows from the pertinent Laplace transform 

(2.7) Sf{y(t, a)} = FYs, a) u(s) = X{ £ a. »(i)(t)} = 
; = o 

y a,sl , s 

= A J _ U ( , ) = ^I. 
7V2(s) V ' Af(s) 

The discrete form of this regression function is given by 
(2.8) y(k) = iaiV"(k) (k = 1, 2, ..., q) . 

2.2. The identification problem 

The identification of the system S given by the measured points y can be formulated 
in the following way: To the signal y e V find a model pertinent to the signal y e 
eV(Vc V) such that 

(2.9) Q(a) = (y - yf (y-y) = i [y(k) - y(k)Y 
t = i 

takes the minimum value. So we consider the identification problem in sense of the 
nonlinear least squares. We start from the fact that the classical theory of errors 
and, in particular, the principle of least squares is a nonprobabilistic method (cf. 
[3] pp. 249). If we use an approximate model then the approximation error is a bias 
and the system identification may be a nonprobabilistic problem (cf. [11]). 

2.3. General input 

The general regression function of the type (2.6) resp. (2.8) must be derived before 
the system identification can be solved. First let us introduce the sensitivity function 
v[l)(t) pertinent to the unit step. Then the regression function for an arbitrary input 
u(t) can be written in two forms. The first alternative pertinent to relation (2.8) is 
based on a sequence of steps (for w(0) = 0) 

(2.10) y(k) = i i a , v<'\l) [u(k - I + 1) - u(k - /)] = 
i = 0 ( = 1 

= 'iaivii\k)oU(k) (k=l,2,...,q), 
;=o 

where v^(k) ° u(k) = f i><°(Z) [u(k - I + 1) - u(k - I)] . 
i = i 

The second alternative is given by a sequence of impulses (for u<"(0) = 0) 

(2.11) y(k) = iaiU(k)ovi%k), 
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where 

u(k) o vүЏ) = x "(0 Ҝг,(fc - / -ы) - Ąlџ - /)]. 
( = 1 

3. ROBUSTNESS OF NONLINEAR IDENTIFICATION METHODS 

Let us sketch the derivation of the Newton method to get the insight in the non­
linear regression analysis, and especially in the problems connected with its robust­
ness. Let us start with error function (2.9) in the form 

(3-1) Q(a)=f(a)f(a), 

where j(fc, a) = y(k) — y(k, a) (k = 1, 2,..., q), which can be approximated with 
the first three members of the Taylor expansion 

(3.2) Q(a + Aa) = Q(a) + Q'(a) Aa + * Q"(a) Aa2 + .... 

The solution must be iterative and so relation (3.2) with J+la = Ja + A'a will be 
used. Superscripts on the left indicate the iteration steps. Then the solution is given 
by the derivative of the error function 

(3.3) Q(J+ la) = Q(Ja) + Q'(Ja) AJa + \ Q"(Ja) AJa2 

at AJa, i.e. from the condition 

(3.4) Q'(Ja) + Q"(Ja) AJa = 0 

we obtain the known result (see [10], [14]) 

(3.5) AJa= -\_Q"(Ja)Y>Q'(Ja). 

Now let us introduce the notation for the first partial derivatives of Jy(t, Ja) by 

diJy(t, Ja) = — Jy(t, Ja) (i = 0,1, .... n) 
da i 

and the second derivatives by 

d, djy(t, Ja) = — ^ — Jy(t, Ja) (i, e = 0 , 1 , . . . , n) . 
dai dae 

The elements of the matrix Q'(Ja) can be derived from the following relations 

(3.6) d, Q(Ja) = 2 £ dj(k, Ja) f(k, Ja) = - 2 £ 3, Jy(k, Ja) f(k, Ja) 
k=l k=l 

(i = 0, 1, ...,n)(k = 1,2, ...,q) 

and the pertinent matrix form is given by 

(3.7) Q'(Ja)=-2H^(Ja)f(Ja), 

where H(Ja) is the Jacobian matrix. 
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Similarly we obtain the elements of the Hessian matrix 

(3.8) dt de Q(Ja) = 2 ^ 3 ; Jy(k, Ja) de
 Jy(k, Ja) -

k=i 

- 2YJdide
Jy(k,Ja)f(k,Ja) (i,e = 0, l,...,n), (k = 1,2,...,q). 

k~ 1 

The Newton method is given by relations (3.5), (3.7) and (3.8). If we neglect the 
second part of relation (3.8) then we get the Gauss-Newton method and relation (3.5) 
has the form 

(3.9) A Ja = [Hr(Ja) H(Ja)] " 1 HJ(Ja) f(Ja) . 

Before we analyse the robustness of the considered methods let us first define the 
term "robustness" because its meaning is vague in the literature. We shall use this 
term for the insensitivity of identification and control algorithms to errors of input 
data. Let us emphasize in this connection the fundamental problem of control 
practice how to include in the pertinent algorithms the measured data, i.e. data which 
are mostly given with precision lower than two decimal places. On the other side 
the computation on digital computers can have essentially higher precision, e.g. 
the double precision. Now, if we are not able to separate these different precision 
levels then the robustness analysis is a complicated problem which is hardly solvable 
(cf. [11]). So we must distinguish at least two parts of the robustness problem. 
The ,,internal" robustness is connected with the high precision of the computation. 
It must be first assured and then the analysis of the "external" robustness, i.e. the 
robustness to errors of measured data, makes sense. This external robustness is connec­
ted with the empirical (resp. a posteriori) identifiability of systems (cf. [7], [8]). The 
internal robustness is therefore the topic of numerical mathematics whereas the 
external robustness is related to statistics. 

Let us revert to the robustness analysis of the considered methods. Here we can 
essentially simplify the analysis of the internal robustness and to analyze only the 
inversion of the information matrix, i.e. the main computation line of the con­
sidered algorithms. The elements of the information matrix pertinent to the Newton 
method are given by measured data too as it follows from relation (3.8). So we cannot 
expect that the pertinent inversion will be internally robust because we mostly lose 
during the computation for n > 2 more than two decimal places. Here we can 
formulate more general statement: All methods, which are based on the inversion 
of matrices given by measured data, cannot be in nontrivial cases internally robust. 
Therefore the internal robustness of the Kalman-Bucy filter or EE estimators can be 
expected only near the asymptotic solution (see Section 5). 

On the contrary the inversion of the matrix (HT(Ja) H(Ja)) pertinent to the Gauss-
Newton method is internally robust because the elements of this matrix can be 
computed with the double precision. So the loss of a few decimal places during 
the computation cannot influence the results. This conclusion is corroborated with 
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the experience given by testing different modifications of the Newton method (cf. 
[14] pp. 229). 

Let us remark that the internal robustness of the individual iteration steps does 
not lead automatically to the convergence of the sequence of iterations. So we must 
pay for the mentioned advantage by the transition to the next step. The Gauss-Newton 
method can be effectively used if the following condition holds (see [10], [12]) 

(3.10) (HT(J+1a) H(J+ la)) « (HT(Ja) H(Ja)). 

At the present time there is no procedure how to predict H(J+1a) from the parameters 
of the jth iteration step. The change of H(Jd) to H(J+i a) is not under the computational 
control (cf. [10]). This is the main reason why the applicability region of the Gauss-
Newton method is so small and why different modifications are used. 

This problem was solved by deriving the DNLS method in ([10], [12]). In the 
next section we shall show how these results can be used by deriving the robust 
estimator. 

4. THE DNLS ESTIMATOR 

The DNLS estimator must always start from a curve of signals or better from 
measured points of signals. That is the main difference to the DNLS method which 
was derived for the signal approximation from a known original transfer function 
(cf. [10], [12]). On the other hand the idea of this approximation method, how 
to solve the problem connected with relation (3.10), can be used by deriving the 
DNLS estimator. As we shall show later it is necessary to introduce the linear Gauss 
estimator as an etalon for the solution of the nonlinear regression problem. In this 
way the DNLS estimator loses the character of the Newton method and belongs 
rather to the quasi-linear regression methods. 

In the next sections we shall use if possible the same notation as in the literature 
([10], [12]) where the continuous case was considered. Let us show how this conti­
nuous case is related to the discrete version pertinent to the DNLS estimator. If 
the integral part J™ Jy2(t) dt ->• 0 and the discretization error is sufficiently small 
then the difference between these two cases is approximately given by the factor AT 
as it follows with respect to Paragraph 2.2 for r, = 0 and AT = t2/q from the relation 

(4-1) NIL = io JY(t) dt = ^I^ll2 = Ax t Jf(k). 
k = l 

4.1. The linear regression function 

Let us assume that the regression function (2.6) resp. the discrete case given by 
(2.8) is linear, i.e. the sensitivity functions vU)(t) resp. »(0(fc) (k = 1,2, ...,q) are 
known. Then the discrete linear regression function can be written in the matrix 
form 
(4.2) yL = HLa . 
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Subscripts L indicate the linear case. The necessary condition that a be a minimizer 
of QL = (y - z)T (y - z) for y e Vand z e V(V c: V) is that 

8QA (4.3) 
дa 

= 2HlHLá - 2Hl y = 0 . 

We obtain the known result 
(4.4) a = (HlHLYl HTy 

and the solution is given by the unique best regression function z = HLa. 
The following proposition will be later useful. 

Proposition 4.1. If the system given by transfer function (2.5) is stable, i.e. N(s, a) 
is the Hurwitz polynomial, then the matrix (HL(a) HL(a)) is nonsingular. 

Proof. Each stable signal pertinent to transfer function (2.5) can be written in 
the form of regression function (4.2) and therefore the backwards linear regression, 
i.e. the minimizer of QL = (yL — z)T (yL — z) = 0, must exist. • 

4.2. The gradient vector 

The linear regression function from Paragraph 4.1. can be introduced in each 
iteration step of the procedure given by relation (3.9). In this paragraph we compare 
the gradient vectors pertinent to the linear case given by JyL = HL('a) Ja and the 
nonlinear case given by J'y = H(Ja) Ja. For the sake of simplicity we shall start 
from the continuous case to be able to use the pertinent Laplace transforms. The 
considered functions resp. functional can be used if the pertinent systems are stable. 
Therefore let us introduce the following definition: 

Definition 4.1. The vector of the coefficients Ja pertinent to the model with the 
transfer function JF(s, Ja) = JN~1(s) is an element of the subset Qa of stable vectors 

-
Ja if JN(s) = Yt J'ais' ' s the Hurwitz polynomial. 

i = 0 

In this paper we assume that the stability difference between the continuous and 
discrete case is negligible small with respect to the error given by an uncertainty band. 

Now let us prove the following proposition: 

Proposition 4.2. If 

(i) Ja e Qa, 
(ii) JyL, Jy e 7(7 c V), 
then the gradient vector of Jy(t, J'a) at Ja is given by the negative gradient vector 
JyL(t, Ja) at Ja, i.e. it holds 

(4.5) g(t,Ja)= -gL(t,Ja). 

Proof. The gradient vector of JyL(t,Ja) at Ja for the known functions V ! )(f) 
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(i = 0, 1, ..., n) follows directly from relations (2.6) 

(4.6) gL(t, Ja) = [V0)(f), V 1 ^ ) , - . , V«(*)]T -

The gradient vector pertinent to the nonlinear regression function Jy(t, J'a) is given 
by the relation 

(4.7) d{
 Jy(t, Ja) = ¥iy(t, Ja) + £ ae d, JvM(t, Ja) = 

e = 0 

= V)(/,Ja) + ^-jia e (V^#^U 
1 ' l«=o JN2(s,'a)$ 

I - 2 JN(s,Ja) u(s) s> £ J V 
= V>(f, V) + JSP" — - . - - ° 

JN4(s, Ja) 

= V°(f, J'o) - 2 V ; ) ( / , J'«) = - V"(f, Ja) . 
Hence 
(4.8) g(t, Ja) = [-V°>(t) , - V»( t ) , ..., - V r ' ( r ) ] T . D 

From this proposition it follows with respect to relations (2.6), (2.8) and (4.2) 
that it must hold for the pertinent Jacobian matrices 

(4.9) H(Ja)= -HL(Ja). 

4.3. Basic relations of the DNLS estimator 

Relation (4.4) can be used in the form 

(4.10) ' + 1 « - 'a = A W = [HT
L(Ja) tfYV)]"1 HT

L(Ja) (y - Jy) 

with respect to the relation 
Ja=[HT

L(Ja)HL(Ja)Y1HT
L(Ja)Jy. 

Relation (4.10) differs from relation (3.9) only in the sign. Therefore the DNLS 
estimator is given by the following two relations 

(4.11) J+1a = Ja + Jn[HT('a) H(Jaj] ~J tf T(Ja) f(Ja) = 

- U - Jn[HT
L(Ja)HL(Ja)Y1HT

L(Ja)f(Ja) 
and 
(4.12) J+1a = Ja + Jn[HT

L(Ja) HL(Ja)]~' HT
L(Ja)f(Ja) = 

=- >a - Jn[HT(Ja)H(Ja)y1 HT(Ja)f(Ja), 

where Jn e (0, 1) is the damping factor. 
If we multiply relations (4.11) and (4.12) containing HL(Ja) with the matrix HL(Ja) 

so we obtain the following functions 

(4.13) Jy(ja, J+1a, V) = HL(Ja)J+1a = Jy(Ja) - Jn A Jy 
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and 

(4.14) J
z(

Ja, J+1a, J(i) = HL(Ja) J+ la = Jy(Ja) + J> A Jy 

where Jy(Ja) = HL(Ja) Ja, A Jy = HL(Ja) A JaL and A JaL = -AJa = J+1a - Ja = 
= Ja-J+1a. 

The linear case given by (412) and (4.14) serves as an etalon for the solution 
of the pertinent nonlinear case given by (4.11) and (4.13). 

Let us prove one important property of this estimator connected with the internal 
robustness. 

Proposition 4.3. If {Ja} e Qa then the nonsingular matrix 

(4.15) tfT(» H(Ja) = Hl(Ja) HL(Ja) 
must always exist. 

The p roof follows directly from the linear part of the DNLS estimator, i.e. from 
Proposition 4.1 and 4.2. 

4.4. Main propositions 

First let us discuss the prediction of the matrix H(J+1a) from the parameters 
of thejth step, i.e. the problem connected with relation (3.10). Let us start with the 
following proposition: 

Proposition 4.4. If 
(0 {Ja}eQa, 
(ii) J+1y(J+1a, Jn) - Jy(Ja, J+' a, J / ;) = 2 V A Jy , 

then it holds 
(4.16) J+ {y(J+»a, V) = Jz(Ja, J+1a, Jfi). 

Proof. Relation (4.16) resp. Hypothesis (ii) are valid for J/j, = 0. Now Hypothesis 
(ii) holds according to relation (4.7) for J/i > 0 if we are sufficiently near to the 
linear case, i.e. 

(4.17) J+1y(J+1a, J » = HL(J+1a) J+1a = Jy(Ja, J+1a, J » + 

+ 2 ip A Jy = HL(Ja) J+1a + 2 Jfi HL(Ja) A JaL . 

Insert (4.13) into (4.17) and with regard to (4.14) the result is 
J+ 'y(J+1 a, J(i) = Jy(Ja) + J> A Jy = Jz(Ja, J+ 'a, J » . D 

The prediction of the matrix H(J+1a) resp. Hr(J+1a) H(J+1a) is replaced with 
the prediction of the function J+1y. Therefore the functionals yT J+1y and J'+1j>T . 

j + i y = Ip-*-'1-!2 can be assessed with respect to the etalon Jz according to the 
relations 

(4.18) fJ+1y = yTJz + vt(
Jfi) 

and 

(4-19) F + 1 5 l 2 = = | N 2 + V2(V), 
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where the errors vt(>[i) and v2(>fi) can be governed by the damping factor according 
to two demands: 

(i) The solution must be sufficiently near to the linear etalon to be able to predict 
the characteristic parameters in (j + l)th step without a laborious experimentation. 

(ii) The factor >/.i must be selected as large as possible to get a rapid convergence. 
Now let us introduce the following functionals 

(4.20) V = \\Jy - Jz\\2 = \\>y - Jy\\2 = ||_ ^ | | 2 

and 
(4.21) >Q = J?A>y = ?>y- \\Jy\\2 . 

With respect to these functionals we can write 

(4.22) \\>z\\2 = ||J-|]- + 2 V e + W 
resp. 

(4.23) I'y||2 = IW--V« + VV. 
Further let us introduce the error of the linear solution 

W = }9 -'if = W -2j?r*z+ I'zj2 

and with respect to relation (4.3) in the form 

(4.24) JaT Hl(>a) HL(Ja) Ja - JaT HT\Ja) y = |pz||2 - JzTy = 0 

we obtain 

(4.25) '*a = fl*!2-|M2-

Similarly we can derive from relation (4.3) 

(4.26) JaT HT
L(Ja) HL(^a) Ja - JaT Hl(>a) y = >yT >z - JyTy = 0 . 

The connection of the linear and nonlinear part of the DNLS estimator opens 
the way for deriving the very rich theory (cf. [10], [12]). Here we shall present 
only some relations which are necessary for deriving the next propositions. 

Only the parameters of the jth step are used in the following proposition and so 
the damping factor Jn = 1 is considered. 

Proposition 4.5. If {>a} e Qa then for the functions yeV, >z e V(V _ V), Jy e 
6 V(V <= V) the following relations hold: 

(4.27) l y - ^ l ^ ^ + V . 
(4.28) f A Jy = yT(Jy - Jz) = JQ + > 2 , 

(4.29) Jy\2 - f Jy = J52 + V + Jg . 

Proof. Relation (4.27) can be arranged 

\\y - >z + >z - Jy\\2 = \\9 - J 4 2 + l'« - ^ l l 2 + 
+ 2(y-Jz)T(Jz-Jy) 

and with respect to (4.20), (4.24), (4.25) and (4.26) we get (4.27). Similarly we obtain 
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for (4.28) resp. (4.29) with respect to (4.22), (4.24) and (4.26) 

f(Jz - Jy) = \\Jzl2 - JfJz = \\Jz\\2 - \\Jy\\2 ~ J? * Jy = 

= \\AJy\\2 + Jf AJy 

resp. with respect to (4.21), (4.26) and (4.27) 

\y\2 - f Jy = \\y - Jy\2 - |p>||2 + f Jy = Js2 + V + Jy A Jy = 
= Jb2 + Jcp2 + JQ. D 

The main result is given by relation (4.27). The separation of the error J5 pertinent 
to the linear part from the error Jq> pertinent to the nonlinear part of the DNLS 
Estimator is the main novelty against all other nonlinear regression methods. This 
separation allows deriving the simple condition for the existence of the global mini­
mum (see Paragraph 4.5). Further we can explain why the EE estimators are linear 
whereas the OE estimators are nonlinear and so to analyze the failure of the EE 
estimators in many practical tasks (see Section 5). 

Finally let us show how the important functional J+iQ and J+1cp can be predicted 
from the parameters of the jth step. 

Proposition 4.6. If {}d\ e Qa and yeV, Jy e V(V c V), Jz e V (V a V) then the 
following relations are valid 

(4.30) i+ - c - . '+-<>, + V l(V) - v 2 ( » , 

(4.31) J+i(p2 = J+iip2
P + v3(V) + J'<52 - J+^2 , 

where J+1QP = (1 - J>) (J8 + W V ' + V P = (! - V ) 2 V and v3(
Jfi) = 

= v2(V) - 2v.(V). 

Proof. Relation (4.30) resp. (4.31) can be derived from relation (4.21) with regard 
to (4.18), (4.19), (4.22), (4.28) 

J^Q = fJ+iy - \\J+iyf = fJz + Vl(V) - N | 2 - v2(V) = 

= f Jy + Jfif A Jy - \Jy\\2 - 2 Jpi JQ - V J<p2 + vx(
Jn) -

- v2(V) = (i - W e + V V ) + vt(V) - v2(V) 

resp. from relation (4.29) with regard to (4.18), (4.28), (4.30) 

; + V = ||>~||2 - fJ+1y - J+is2 - J+i
Q = |jj|2 - fJy -

- JH(JQ + Jcp2) - v,(V) - J+i52 - J+iQP ~ v.fy) + 

+ v2(V) = (i - V)(Js + V ) - (i - V)(Je + V V2) + v3(V) + j<52 -
- J ' + J c 5 2 . D 

Relation (4.31) can be written in other forms 

(4.32) ; + V + i + 1 < 5 2 = i + Y = J$2 + J + V P + v3(V) 
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resp. with respect to relation (4.30) 

(4.33) > + y = J52 + J+\p2
P + J+,gP - J + , g - v.(V) = 

= J52 + ({- V) (JQ + V ) - J+iQ ~ v,(V) -

Relations (4.30) to (4.33) are formally equivalent with the relations in the literature 
(cf. Paragraph 4.2 in [12]). We have reached stage by stage to the relations which 
allow using the procedures resp. the algorithm from the paper [12] where pertinent 
details connected with deriving the optimal damping factor can be found. 

4.5. The convergence problem 

The given propositions simplify the convergence analysis e.g. the simple condition 
for the existence of the global minimum can be derived. First let us introduce the 
notation: the asterisk on the left indicates the coefficients and functionals pertinent 
to the global minimum and (-)(Jn = 1) = (•)(!), e.g. J+,)f(J/i = 1) = !+y(l). 

Proposition 4.7. If 

(;) {/«] £ ®a , 
(ii) > 2 > v3(l) > 0 for Vy ^ 0, 

then the sequence {Ja} converges as j -*• oo to the global minimum *a given by the 
etalon *z, i.e. it holds *r\ = *8 for *<p = 0. 

Proof. By Hypothesis (i) the matrix HL(Ja) H,(Ja) is nonsingular with respect 
to Proposition 4.1 and thus the linear solution must exist in each iteration step. 
Let us suppose that 
(4.34) y = HL(Ja)J+,a. 

Then we can write the relation 

QL(Ja)=\\y-HL(Ja)Ja\2 = 

= Iff - f HL(Ja) Ja - Jar Hl(Ja) y + V Hl(Ja) HL(Ja) Ja 

in the form 

(4.35) QL(Ja) = \\y\\2 + \\HL(Ja) (Ja - J+,a\2 - \\HL(Ja) J+,a\\2 . 

Since each term in (4.35) is positive it must hold 

(4.36) QL(ia) = \\y - HL(Ja) Ja\\2 > \\~y\\2 - \\HL{Ja) J+ la\\2 . 

Relation (4.34) is another form of relation (4.4) for the jth iterations step and so 
relation (4.36) proves that (4.4) yields an absolute minimum for the linear case in 
each iteration step. 

With respect to Proposition 4.6 the discussion of the global minimum will be 
limited on the case with Jfi = 1. Therefore we shall start from relation (4.31) in the 
form 
(4.37) ; + V ( l ) = v3(l) + ^ 2 - ; + , < 5 2 ( l ) 
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and with regard to Hypothesis (ii) we obtain 

(4.38) J + y ( l ) = v3(l) + JS2 < V = V + JS2 . 

If we suppose JS = *S then it must hold according to (4.38) and Hypothesis (ii) 
y + V ( l ) > *S2. The sign of equality can hold only for v t(l) = 0 and v2(l) = 0, 
i.e. v3(l) = 0, and we obtain according to relations (4.18), (4.19) the equality *y = *z 
and so with respect to (4.36) *^ = *S. • 

The simpler proof for the existence of the global minimum was used in the paper 
[10]. The end of the iteration process is given with respect to relations (4.11) and 
(4.12) by A *aL = 0, i.e. \\A *y\\ = *<p = 0 (cf. relations (4.13) and (4.14)), and 
the global minimum is then given by relation (4.36) for *a. The local minima cannot 
exist. It follows from the fact that the spaces Lp and lp for 1 < p < oo are strict 
convex. 

Let us emphasize in this connection that none of the procedures so far described 
in the literature is really reliable as a general purpose procedure for solving the 
system identification from an arbitrary initial vector of coefficients. Therefore the 
key problem of the system identification is to find an initial vector which is sufficiently 
near to the global minimum and then to obtain the stable sequence {Ja} e Qa (cf. [12]). 
So at least three groups of problems must be distinguished. 

If the initial vector of coefficients 

(4.39) °« e <[>0 = {Ja: > < JS, JS ~ *S} , 

i.e. the initial vector °a is near the global minimum, then all known methods are 
practically equivalent (cf. [12]). The convergence of the sequence {Ja} is governed 
in this region by the linear case. Therefore the linear EE estimators can generate 
acceptable results in this region (see Section 5). But this region is small and so it is 
practically impossible to get °« 6 <P0. 

The second group of problems is given by the cases in which the sufficiently good 
linear etalon exists. The boundary of this group is approximately given by the con­
dition V 2 > 1S2 — *S2 resp. for XS g> *S by the simplified condition x(p2 > 1S2 

(cf. Table 3 in [12]). The effective use of the DNLS estimator is connected above 
all with this second group. 

Problems, which belong to the third group, must start from a misleading etalon, 
i.e. from parameters r(p2 < JS2 - *<52. Here the methods with a broader convergence 
domain, i.e. the gradient resp. compromise-gradient techniques, should be used. 
Unfortunately all these methods have the lower convergence rate and so they are 
not suited for the solution of control problems (cf. [12], [14]). The theory of the 
DNLS estimator together with the apparatus of the control theory open mostly 
simpler and rapider ways for the solution of such cases (cf. [12]). 
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5. The relation to the EE estimator 

The greater part of identification procedures described in the literature belongs 
to the linear Equation Error (EE) methods (cf. [5], [13]). So the relation of the 
DNLS estimator, which belongs to the Output Error (OE) methods, should be 
analyzed to find its position in theory and practical tasks. The main difference 
between the EE and OE methods lies in the fact that the EE procedures are linear 
in the unknown parameters, while the OE estimators are nonlinear (see [13]). So 
the EE approach looks simpler as it follows from the pertinent difference equation 

(5.1) y(k) = 0r r(k) + vv(fc) , 

where 0 = [a{, ..., a,„ bl, ..., 5,„]Tand 

r(k) = [~y(k - 1 ) , . . . , -y(k - n),u(k - l),...,u(k - m)]r. 

The parameter vector 0 is to be estimated from the measured points y(k) and r(k). 
The "equation error" vv(fc) is then given by 

(5.2) QE(0)~- Z [y(k) - Gr r(k)f . 
q k=\ 

The pertinent solution has the form 

(5.3) 0(q)~[ir(k)rr(k)]^ir(k)y(k) 
k=l 4 = 1 

provided the inverse exists. 
The noise in (5.1) can induce an asymptotic estimation bias (see [5], [13]) and so 

it is necessary to introduce an additional complexity into the solution to obviate 
this difficulty. E.g. the Instrumental Variable (IV) method (see [5], ]13]) is designed 
to overcome this convergence problem. The instrumental variable g(k), which 
should be uncorrected with w(fc), is introduced and we obtain 

(5.4) 0(q) = [ie(k)rr(k)]^ie(k)y(k)-
k=l k=l 

A common choice of the instrumental variable is 

(5.5) Q(k) = [~yM(k - 1), ..., -yM(k - n), u(k ~ 1), ..., u(k - m)]r , 

where vM(fc) is the output of a deterministic model driven by the actual input u(k). 
This is the non-symmetric IV method where the instrumental variable can be derived 
by the recursive-iterative instrumental variable algorithm (see [13] pp. 134). This 
version is suited for the comparison of EE methods with the DNSL estimator. 

First the EE methods cannot be internally robust. The matrices in relations (5.3) 
and (5.4) are given by measured data and so its inversion may be an ill-posed problem 
especially for a small sample size. 

The second disadvantage, i.e. the pseudolinearity of difference equation (5.1), 
is the reason why the recursive EE methods are used for a relatively large sample 
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size, i.e. for q > 100 (cf. examples in [5], [13]). This confirms the use of iterative 
steps by the IV methods (cf. [13] pp. 134): The recursive-iterative solution of IV 
equations yields with respect to its off-line nature better results than the equivalent 
on-line version in the sense that, for a given finite set of sampled data, the recursive-
iterative estimates have lower estimation error variance. Of course, this advantage 
becomes less as the data base is increased in size, simply because the additional 
improvement obtained via iteration itself becomes less. 

Let us discuss this problem from another viewpoint. All purely theoretical analysis 
of the estimators is based largely on the asymptotic behaviour (see [5], [13]). So 
only the cases with a large sample size are covered with these theoretical results. 
On the other hand the small sample theory has not been developed (cf. [13], pp. 214) 
and here the theory of the DNLS estimator can be useful. Let us outline some points 
which can contribute to the solution of the problems connected with a small sample 
size: 

(i) The DNLS estimator is internally robust (cf. Section 3) and so it can yield 
estimates under fairly mild, non-restrictive conditions on the nature and the size 
of the measured data. This is an important advantage with respect to the uncertainty 
band as it was discussed in the introduction. 

(ii) The close connection with the linear Gauss estimator (cf. relations (4.4), (4.12) 
and (4.14)) allows to distinguish the region in which the identification problem is 
strongly nonlinear. Here the DNLS estimator can generate the solution without 
increasing the sample size. This may be useful by an adaptive control when the 
input changes rapid, e.g. by an identification from a step response (see [1], [9]). 

(iii) The DNLS estimator is well suited for deriving the simplified models of real 
systems (cf. [11], [12]). The pertinent theory constitutes a basis for including an 
approximation error, i.e. a multiplicative systematic error, in identification pro­
cedures (cf. [11]). 

6. EXAMPLES 

To demonstrate the internal robustness of the DNLS estimator the identification 
of the system with the transfer function 

1 
-M-) = 5 + lбs + 79s2 + 120s3 

was considered. All experiments with q = 16 and Ax = 2 were realized on the digital 
computer. The error of measured data was simulated by a roundoff noise, i.e. points 
of the unit step response y(k) (k = 1, 2, ..., 16) were given on one decimal place. 
The sampling instants follow from the relation tk = 2/c — 1. This approach has 
one important advantage over the random noise: the experiments can be simply 
repeated and verified. It must be assumed in identification problems that little will 
be known of the model parameter values. So starting function °y given by the transfer 
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function 

°F.(s) = - , 
5 + 12s + 40.s2 + 40.s3 

which is far from the global minimum, was used. The considered example shows 
that the DNLS estimator can solve problems which start from signals corrupted 
with a large uncertainty band and given with a small sample size. 

Jð2 

J,,2 

ľ , ( l ) AJu2 

ľ 3 ( l ) AJuъ 

1 0-82 1-8. ш-2 
- 3 - 8 . 10 2 18 

6-8. 1 0 " 2 8-6. ш-2 2-3 Ш " 2 21-6 

2 0-66 11 . ш-2 
- 8 - 9 . ю-3 

52-4 
2-9. ю-2 4-0. ш-2 2-2. 1 0 " 2 -23-2 

3 0-72 1-45 ю-2 
9-0 . 10" 3 - 7-6 

5-2. І 0 ~ 3 1-98. Ш " 2 1-6. ю-3 131 

4 0-93 1-36 ш~2 
- 1 - 3 ю- 3 - 9-2 

9-5 . ю-4 1-45. ш-2 2-0 ш-5 -18-3 

5 0-84 1-35 ю-2 
- 2 - 5 . ш-5 

-0-04 

8-7. 1 0 " 5 1-35 ю-2 1-6 . 1 0 " 5 14-6 

6 1 1-35 ш-2 
- 4 1 . 10~ б - 0-4 

3-4. ю-6 1-35. 1 Q - 2 1-1 1 0 " 7 - 10 

Table 1 contains important parameters computed with a double precision PL I 
program based upon the algorithm from the literature [12]. The first two steps 
illustrate the influence of the nonlinearity of the pertinent regression functions 
(cf. parameters Jq> and J'S in Table 1). On the other hand the solution for / > 3, i.e. 
for the conditions J5 = *5 and Jcp < J5, is governed by the linear case (cf. vx(l) 
and v3(l) in Table l). The convergence rate of the coefficients Ja2 and Ja3 to the 
resulting values given by the transfer function 

6E,(-s) = 
4-7 + 16-7.S + 75.s2 + 131s3 

follows from A Ja2 and A Ja3 in Table 1. 
The signals Jy and pertinent sensitivity functions V 1 ' (i = 0, J. ..., n) were 

computed with the procedure based on scaling and squaring (see [6]). While the 
double precision can be used in the main computation line (cf. Section 3) the obtained 
results are sufficiently correct with respect to the low accuracy of measured data. 
This relatively complicated way was used to secure the numerical robustness (cf. 
Paragraph 2.1) and to make possible deriving simplified models. 
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Let us show the importance of this last problem, i.e. deriving simplified models, 
and consider the identification of the system with the transfer function 

1 
F2(s) = 

5 + 16s + 77s2 + 134s3 + 72s4 

by the same conditions (q = 16, Ax = 2) as in the previous example. The reader 
can test how difficult is deriving the reliable result especially if the starting point is 
far from the global minimum. On the other hand we can simply derive the approxi­
mate model given by the transfer function 

6F2(s) = 
4-8 + 18-4s + 67-8s2 + 1.75s-3 

which is more reliable as the model for n = n (see [11]). 
Let us add that the applicability of derived models must be tested with respect 

to the external robustness, i.e. according to the conditions connected with the 
empirical identifiability (see [7], [8], [9]). This problem is beyond the scope of this 
paper. 

7. CONCLUSION 

The DNLS estimator is an iterative procedure with maximum utility in those 
situations where the structure of the model is known or simplified models can be 
used and the parameters characterizing the model are time-invariant over the ob­
servation interval. This interval can be very short (cf. example in Table 1). The 
DNLS estimator is internally robust (see Section 3), i.e. it can start from signals 
corrupted with a broad uncertainty band. It is constructed as the method for deriv­
ing the interpolation function with the known structure from given points and the 
inaccuracy of these points is not implicated in the numerical procedure (cf. relations 
(4.H), (4.12) and Propositions 4A , 4.3, 4.7). Its close connection to the approxima­
tion method from [12] opens the way for the use of approximate models in control 
theory and practice (see [11]). 

(Received June 2, 1987.) 
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