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MULTISTAGE STOCHASTIC PROGRAMS: 
THE STATE-OF-THE-ART 
AND SELECTED BIBLIOGRAPHY 1 

J I T K A DUPAČOVÁ 

The paper gives a brief introduction into the problems of multistage stochastic program­
ming with emphasis on the modeling issues (Section 2) and on the contemporary numerical 
advances (Section 3). Extensive classified bibliography is contained in the last Section. 

1. INTRODUCTION 

Mathematical modeling of economic, ecological and other complex systems with the 
goal to analyze them and to find optimal decisions ha§ been studied for many years. 
The challenging problems connected with running market economies, of realistic 
approaches to environmental protection, etc., are that the decisions are to be made 
under uncertainty. Therefore the traditional deterministic optimization models are 
limited in practical applications because the models parameters (future demands, 
interest rates, water inflows, resources, etc.) are not completely known when some 
decision is needed. A typical approach of substituting expected values for all random 
parameters can lead to inferior solutions that discredit both the model designer and 
the use of optimization methods. 

Moreover, in controlling or analyzing complex systems, various levels of uncer­
tainties have to be taken into account: besides of requirements for proper treatment 
of nonhomogeneity of raw input materials, volatility of prices, demands or of water 
inflows one is asked to cope with future development of factors essential for running 
the system such as interest rates or innovations of technological progresses and to 
hedge against legislative changes and complete or partial changes of economic and 
other policies. In principle, these uncertainties can be modeled by various ways and 
one of them is stochastic programming. 

Stochastic programming gives a probabilistic interpretation to the above men­
tioned uncertainties. It deals with optimization problems in which random parame­
ters are explicitly spelled out and allows for incorporation of risk into optimization. 

1 This work was supported by the Grant Agency of the Czech Republic under Grant 
No. 402/93/0631 
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It originated in the late fifties, cf. seminal papers by Beale [Rl], Dantzig [R3], Tint-
ner [R13] and Charnes and Cooper [R2]; some one dimensional examples of stochastic 
programming can be traced even in earlier papers on inventory, maintenance, etc. 

The general formulation of stochastic programming problems, cf. [155], reads: 

Minimize Ef0(x,ui) (1) 

subject to E{/,(t5,w)} < 0, i ={,...,k 

E{h(x,u)} =0, i = k+l,...,k + r (2) 
x£X 

where 
w is a random parameter with support fi, probability distribution P 

and the corresponding expectation E, 
X is a given nonempty closed set, 
/o : R" x Q -> R1 U {+oo}, / ; : Rn x O — R1 are given functions. This 

formulation looks like an ordinary static deterministic program whose objective and 
constraints are of the form of expectations. Still it covers a whole spectrum of 
stochastic programming models - static, two-stage and multistage ones, models with 
probabilistic constraints and those of penalty or recourse type - provided that the 
important requirement of nonanticipativity, i.e., the requirement that decisions must 
occur before observations, has been properly treated. In the simplest case, X C 
Rn and the decision variable x in (1),(2) corresponds mostly to the main decision 
that has to be selected before the realizations of the random parameters u> can be 
observed. In more complicated cases, x consists of several subvectors, say I 1 , . . ., xT 

that correspond to decisions to be taken at the stages 1, . . . ,T of the decision process 
and, as we shall see in Section 2, it may be even convenient to model the decisions 
as random functions. The requirement of nonanticipativity can be incorporated 
into the definition of functions /,- or it can be formulated as an explicit additional 
constraint, see Wets [151] and Rockafellar and Wets [132] for the first developments 
of this idea. 

A typical assumption is that the probability distribution P is known (decision 
making under risk) and independent of decision x, on the other hand, various ap­
proaches have been designed that deal with stochastic programs under incomplete 
knowledge about the underlying distribution P (decision making under uncertain­
ty); for a survey of stochastic programming applications under incomplete knowledge 
about P see [R6]. 

The existence of expectations in the constraints (2) for all feasible decisions x is 
guaranteed by special assumptions from case to case. Proper treatment of expecta­
tions of extended real functions that enter the objective (1) is not straightforward, 
see [155], on the other hand, using this formulation helps to concentrate on influence 
of specific constraints, e. g. of the nonanticipativity constraints, or to study problems 
in which the choice of solutions is limited by implicit, induced constraints on the 
solvability of the system. These constraints are not included explicitly in the system 
of constraints of (2), they can be sometimes detected at least partly by suitable 
preprocessing techniques, cf. [R16], or treated in course of numerical computations. 
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Ability to choose decisions that perform well regardless these hidden constraints is 
one of strongpoints of stochastic programming. 

The prevailing theoretical issue in models with probabilistic constraints turned to 
be the convexity property of the resulting deterministic program of type (1),(2) with 
indicator functions at the place of some of /,•; cf. Prekopa [R8] for the important 
breakthrough. 

The theoretical results have been collected in various works, e.g., monographs 
[R7], [165] and collection [D]; for more recent results see survey [155] or the new 
textbook [85]. The progress in designing efficient algorithms (cf. Part II of [P-W], 
[E-W] and Part II of [B-W]) has resulted into special software packages suitable for 
solving large stochastic programs that arise in a variety of applications such as power 
generation planning, financial modeling or location analysis. The main stumbling 
block for algorithms is necessity to compute repeatedly values of multidimensional 
integrals (expectations of recourse functions or probabilistic constraints) that enter 
the nonlinear program (1),(2). To overcome this problem various approximation 
schemes, both stochastic and deterministic ones, were designed; see, e.g., [R18] 
and the references therein. In connection with evaluation of their properties and 
with the need for proper treatment of uncertainty about the probability distribution 
of random parameters, various error bounds have been derived and miscellaneous 
results on stability and postoptimality have been achieved; see, e. g., Part I of [P-W], 
Part I of [B-W] or survey papers [R4], [R5] and the references therein. A new area 
of interest is integer stochastic programming with many open theoretical problems 
and various interesting applications; one of the first papers is [126]. 

The present stage of knowledge and of computer technologies gives a chance to 
turn attention to the dynamic multistage stochastic programming problems. This 
area was mentioned already in the seminal paper of Dantzig [R3] and in his mono­
graph [27] and the first theoretical results on multistage stochastic programs with 
recourse were obtained as generalization of those valid for two-stage stochastic pro­
grams, e.g., [113], [118] - [121], [149], [150]. Deep theoretical results closely connect­
ed with the crucial problem of modeling the multistage nature of the decision process 
can be found, e. g., in [32] - [34], [128] - [135]; in these papers, multistage stochastic 
programs are treated as optimization problems in infinite dimensional spaces. For 
expositions concerning multistage stochastic programs with probabilistic constraints 
see, e.g., [47], [124], [162]- [166]. 

Besides of finance, the most popular areas for applications of multistage stochastic 
programs seem to be for the present production planning and management including 
electric power generation and transmission, transportation, optimal exploitation of 
exhaustible resources and water resources management; see Section 4 for references. 

Except for bibliography (Section 4), we shall limit ourselves to multistage stoch­
astic programs with recourse. After discussing briefly the modeling issues (Section 
2), we shall turn our attention to scenario based multistage stochastic programs with 
recourse and in Section 3, we shall report on the relevant numerical methods. 
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2. MULTISTAGE MODELS 

Consider first the two-stage stochastic programming problems: A decision x 6 X 
should be selected before realizations of random parameters can be observed or their 
values revealed. After this information becomes available the decision process con­
tinues by the second stage, i.e., by the choice of an auxiliary decision that depends on 
the first-stage decision and exploits the already obtained information. The second-
stage decision is interpreted as an updating activity (portfolio revision, adjustment 
of the production plan, etc.) that brings about additional, recourse costs. The re­
quirement that the first-stage decision x depends only on the past information and 
that it cannot depend on future observations of random parameters corresponds to 
the more general nonanticipativity property of the multistage decision processes. 

It is important to realize that the stages do not necessarily correspond to time 
periods. The first-stage decisions consist of all decisions that have to be selected 
before the information is revealed whereas the second-stage decisions arc allowed to 
adapt to this information; for a detailed explanation and examples see [49]. 

The model formulation that reflects the above verbally described decision scheme 
can be written in the following way: 

Let X\, X2 be nonempty closed sets in Rnt, R"2, respectively, and let ( Q , £ , P ) 
be a probability space, fu, Vi given functions on R"1, f2i, Vi given functions on 
H x Rni x Rn2 that are P measurable for each x1 £ R™1, x2 £ R"2. The problem 
is to 

minimize fl0(x
1)+ I f20(x\x2(w),w)P(Aw) (3) 

Jti 

over all x1 € R"' that satisfy 

xleXx and /i.C*1) < 0, i = l , . . . , m i (4) 

and x2 measurable such that P almost surely (a.s.) 

x2(w)eX2 and f2i(x
1,x2(w),w) < 0, i = l , . . . , m 2 , (5) 

an optimization problem in a suitably chosen infinite dimensional space of measur­
able functions. 

An alternative formulation of the type (1),(2) reads 

minimize E{/o(a;1,w)} subject to the constraints (4) (6) 

with fo(xl,w) defined as follows: 

f0(x\w) := f10(x
l) + inf [f20(x\x2,u>)\ f2i(x\x2,w) < 0 Vi, x2 6 X2] , (7) 

The function f20(x
x, x2,w) that appears in both formulations gives the cost of 

the recourse connected with the (not necessarily optimal) second-stage decision x2 

in case that x1 is the accepted first-stage decision and w is the subsequently observed 
realization of the random parameters. The function / io(* 1) corresponds to the costs 
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that are independent of the second-stage decisions and it can be also defined as an 
expectation. 

For the convex case and for x2 in (3), (5) restricted to the class of essential­
ly bounded measurable functions, Rockafellar and Wets [Rll] gave relatively weak 
conditions under which the introduced formulations are equivalent. The result ap­
plies, for instance, to X\ and Xi bounded. The first formulation is suitable for 
theoretical analysis such as optimality conditions or duality properties for problem 
(3) - (5) . The results depend, inter alia, on the considered space of the measurable 
functions x2(u). We refer to the series of papers [R9] - [R12] or to [32]. 

Special attention has been paid to the class of two-stage linear stochastic pro­
grams, known under the name stochastic linear programs with recourse. Their 
generic form that corresponds to the formulation (6), (7) reads 

minimize E {c(ui)Tx + Q(x,u)} on the set K\ = {x € R+l : Ax = b} (8) 

with the recourse costs Q(x,u) defined for a given x and u as the optimal value of 
the auxiliary second-stage program 

minimize q(ui)Ty (9) 

subject to y £ R^1 that satisfy W(w)y + T(ui)x = h(u). 

Notice that only the expectations of the random coefficients c(ui) enter the above 
formulation (8) so that fixed costs c can be used without any loss of generality. 

According to properties of the recourse matrix W(ui) this stochastic linear pro­
gram (SLP) is classified as 

o SLP with fixed recourse if W(ui) — W, a fixed matrix, 
o SLP with fixed complete recourse if W(u) = W and if for an arbitrary right 

hand side w the system Wy = w has a nonnegative solution, 
o SLP with reiativeiy complete recourse if the second-stage problem (9) is a.s. 

feasible for an arbitrary x G K\ and w g 0 , etc. 
Induced constraints concern the case when the second-stage program may happen 

to be infeasible for a first-stage decision x £ K\ and a realization of the random pa­
rameter u). From the point of view of the modeled problem, accepting such decision 
may lead to disaster (interruption of the production process, bankrupcy, environ­
mental catastroph, etc.) and infinite costs Q(x,u) can be used to reflect this fact; 
compare with possibly infinite values of f0(x,u>) in (1). Another idea is to com­
plete the constraints of the deterministic program (8) to avoid accepting first-stage 
decisions that may lead to infeasible second-stage program (9); we shall denote by 
Ki the set described by induced constraints. As to the structure of the resulting 
deterministic equivalent program 

minimize E {c(ui)T x + Q(x,u)} on the set K\C\K2 (10) 

it is possible to prove that (10) is a convex program provided that W is a fixed 
matrix. Additional conditions are needed to guarantee that the objective function 
is well defined; for instance, a sufficient condition is the existence of all second-order 
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moments of the vector of all random parameters. For SLP with fixed recourse the 
set K,2 of induced constraints can be written as 

K2 = {x :3y>0 such that Wy = h(u) - T(w)x a.s.} (11) 

so that (10) is equivalent, compare (3) (5), with 

minimize E {c(ui)Tx + q(ui)Ty(u)} (12) 

subject to x 6 ICi and y(w) > 0 such that 

Wy(ui)+T(ui)x = h(ui) a.s. 

Moreover, under additional conditions on the probability distribution P, such as 
T(u>) = T or for a discrete distribution P, the set K2 is convex polyhedral so that 
it can be generated by a finite number of suitable cuts step by step. For a detailed 
survey see [R17]. Characterization of SLP with random recourse is more demanding. 
The cases where the above results remain valid are, e. g., SLP with random complete 
recourse and problems with discrete distribution P; cf. [R16]. In the latter case, 
for instance, one can index by s = 1 , . . . , £ the vectors of all possible realizations of 
the random coefficients in q, W, T and h and those of the corresponding second-
stage variables y, assign probabilities ps to these realizations and arrives thus at the 
following linear program of a special dual block angular structure 

s 
minimize cT3i + V j p j q j y , (13) 

J = I 

subject to Ax = b 
Txx + WlVl =hx 

T2x + W2y2 = h2 (1 4) 

Tsx + ... + Wsys =hs 

x > 0, y . > 0, s = 1 , . . . ,S . 

The size of the program (13), (14) can be very large; for instance, consider just 
random right hand sides h consisting of m2 independent random components with 
probability distributions approximated by alternative ones: it gives mi + 2m a con­
straints in (14). Usefulness of special numerical techniques is obvious; see [E-W]. 
An alternative equivalent formulation of (13), (14) 

s 
minimize c T x + V J p , q T y s (13) 

s = l 

subject to Ax = b 
Tsxs + Wsy, = hs (14') 

x - xs = 0 
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x > 0, xs > 0, ys > 0, s = l , . . . , S 

helps to build procedures based on relaxation of the nonanticipativity constraints 

x = xs, s = 1, .. ., S. (15) 

In the general T-stage stochastic program we think of a stochastic data process 

w = {w1, . . . ,w7 } 

whose realizations are data trajectories in (fi, E, P) and of a vector decision process 

x = {x\...,xT}, 

a measurable function of w. The whole sequence of decisions and observations can 
be, e.g., 

x\w\x2(x\w1),w2,...,wT-\ 

xT(x\x2,..., xT-\w\. . .,wT-\ = xT(x\w1, . . . ,uT-1) 

and wT that contributes to the overall observed costs. The decision process is nonan-
ticipative in that sense that decisions taken in any stage of the process do not depend 
on future realizations of random parameters or on future decisions. On the other 
hand, in the course of the decision process, the past information is exploited. The 
dependence of the decisions solely on the history can be expressed as follows: Denote 
Ej_i C E the (T-fleld generated by the observations {w1,. .. ,wt~1} of the part of 
the stochastic data process that precedes the stage t. The dependence of the fth 
stage decision x1 only on these past observations means that „ ' is E;_i-adaptable 
or, in other words, that xt is measurable with respect to Ht-1- In each of stages, 
the choice of a decision is limited by constraints that may depend on the previous 
decisions and observations. Assumption of nonanticipativity of these constraints in 
the sense that no additional constraint can enter later as a consequence of future 
observations corresponds to the assumption of relatively complete recourse for two 
stage models and assuming nonanticipativity of constraints means that no induced, 
hidden constraints can appear. 

Once more, two formulations can be used: 
Let Xt be given nonempty sets in Rn<, t = 1, . , .,T and denote 

Xt(w) ={xu = (x\...,xt) : / „ • (_" , <~)<0, i = l,...,mt, x " 6 X± x X2 x ... x Xt} 
(17) 

the set of the tth stage constraints, t = 2 , . . . ,T and by fo(x,w) the overall cost 
connected with the decision process (16). 

The T-stage stochastic program is to find 

x1€X1 such that / i .O-1) < 0, i =: l , . . . , m 1 

x* E*_i -measurable, I s 2 T 
(18) 

xu G Xt(w),t = 2, ...,T a.s. 

that minimizes E {/bO*1, E 2 (W) , . . . ,xT(w),w)} • 
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Allowing for extended real objective function f0 opens for instance the possibility 
to incorporate the constraints xf' E Xt(ui), t — 2 , . . . , T into the objective function 
and to study the influence of the nonanticipativity constraints, cf. [58], [132], or to 
include, at least theoretically, the prospective induced constraints. 

The second formulation is based on a recursive evaluation of the overall objective 
function, compare with (7), that spells out the nonanticipativity in an explicit way: 

minimize E {f0(x,w)} := / lof*1) + Ewi {^(x1 ,u>1)} (19) 

subject to x1 E Xi and /^ ' (x 1 ) < 0, i=l,...,nii, 

where for t — 2 , . . . , T, (pt-i^x1,. . . ,x'~1,ui1,.. . , O J / _ 1 ) is the optimal value of the 

stochastic program 

minimize /<o(x') + Ew. {^(x1,..., x ' . w 1 , . . . ,u*~1,u*)} (20) 

with respect to x ' £ Xt that fulfils 

/ « ( a j 1
I . . . , * ' - 1 , a ) * , w 1

> . . . ) w * - i ) < 0 > i = l,...,mt 

and ipT,a = 0. 

The latter formulation resembles the backward recursion common in stochastic 
dynamic programming problems. In these models, the goal is to provide a sequence 
of decision rules that can be used in particular stages of the decision process and 
in any state of the system, that allow the decision maker to pass from observations 
to decisions in an optimal way, e.g., for minimal total expected costs. To get the 
decision rules, one applies the principle of optimality that in turn requires evaluation 
of the optimal values in all stages in dependence on multidimensional parameters, 
e.g., on x1,... ,xl~x ,LJ1 ,... ,u>i~1 in (20). Dimensionality puts serious limitations 
even on discrete stochastic dynamic programming problems or stochastic control 
problems with discrete time and finite number of states. Moreover, for application 
of the backward induction, special structure of the problem (e.g., separability) is 
essential. 

On the contrary, the main interest in the multistage stochastic programming prob­
lems lies in the first-stage decisions. Even if it is possible to characterize the decision 
rules [63], it is not necessary to design a full backward recursion as in dynamic pro­
gramming and, due to large dimensionality of the stochastic programming problems, 
such procedure will be hardly tractable. For a qualified discussion of the relation­
ship between the stochastic control problems with discrete time and the multistage 
stochastic programs see, e.g., [34],[89],[130], [135], [146], [156]. An important issue 
for the both classes of stochastic dynamic decision models is the proper choice of the 
horizon. In the context of stochastic programming, there are attempts to decrease 
the contribution of costs for recourse activities in distant stages by discounting (see, 
e.g., [7]), to decrease the number of stages by aggregation or by exploitation of a 
special structure of the solved problem and there are suggestions how to treat the 
effects of replacement of an infinite horizon problem by a finite horizon one [60], [72]. 



Multistage Stochastic Programs: The State-of-the-Art and Selected Bibliography 159 

For results concerning the equivalence of the two formulations of multistage stoch­
astic programs with recourse for the decision space i °° see, e.g., [132]-[134], Opti-
mality conditions and duality results can be in principle obtained from the standard 
results for nonlinear programs of the type (1),(2) that corresponds to the formula­
tion (19). Naturally, optimality conditions and dual problems obtained in this way 
involve only the expectation functionals. To get pointwise conditions and dual prob­
lems expressed with respect to all u £ fi one can choose a suitable decision space of 
measurable functions in the formulation (18) and exploit methods of abstract opti­
mization. Convex problems allow for application of conjugate duality results; special 
care has been devoted to the impact of nonanticipativity constraints and to the cor­
responding dual variables or Lagrange multipliers that can be interpreted as prices 
for nonanticipativity (see [34], [R9], [45], [52], [54]) and to the "singular" multipliers 
attached to the induced constraints [133], For an extension of results on optimality 
conditions to the nonconvex problems of the type (18) treated in LP space see the 
recent paper [59]. 

A crucial problem for multistage stochastic programs is modeling the information 
structure; see [155] for a variant of model (1), (2) that corresponds to situations when 
the observation process reveals only a partial information. 

A popular form of the multistage stochastic Jinear program (MSLP) with recourse 
reads 

minimize cjx1 + E_. {^(a:1 ,- .1)} (21) 

subject to constraints 

subject to constraints Aix1 = &i 
h < x1 < 1*1, 

where the functions p . _ i , i ** 2 , . . .,T, are defined recursively as 

^_i(.-<-Sw«-1) = inf[c,(w'-1)T>-« + Eu.{v'.(-it
1^)}] (22) 

subject to B. fw ' - 1 ) x1'1 + M*1'1) xt = bt{ut~l) 

lt<x'<ut, 

and tpT = 0. 
For the sake of simplicity, we denote here by _><_1 the random vector that gen­

erates the coefficients bt, ct and matrices At, Bt in the decision problem of the 
<th stage, t s 2 , . . . ,T (compare with the scheme (16) or with (20)), we assume a 
Markovian structure of the constraints and of the objective and we suppose that the 
corresponding expectations E are well defined. The bounds lt, ut Vi are nonrandom 
and for the first stage, known values of all elements of bi, ci , Ai are assumed. The 
assumption of fixed recourse means that At are known nonstochastic matrices for all 
t. The main decision variable is x1 that corresponds to the first stage. If the random 
parameters are stage independent, characteristic properties such as convexity of the 
resulting deterministic program can be obtained from the results for two-stage prob­
lems with fixed recourse, see, e.g., [113], [149], [150]; Olsen [118]-[121] allows for 
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dependence of the random right hand sides. It is clear how to formulate the MSLP 
of the form (18) and when to expect (at least intuitively) the equivalence between 
the two different formulations that arc used to model the same decision problem; 
once more, general statements on equivalence between these two formulations are 
not trivial, e. g. [128], [129], [134], The results on equivalence hold true, for instance, 
for MSLP with finite discrete distribution P of all coefficients At, Bt, lit, Ct, Vi in 
which case (18) reduces into a large linear program of a special structure similar 
to (13), (14) that is convenient for decomposition purposes. This observation opens 
possibilities of an algorithmic solution. 

3. NUMERICAL TECHNIQUES 

Various numerical techniques have been developed for multistage stochastic pro­
grams with recourse and with a given discrete multidimensional probability distri­
bution of the random parameters whose atoms, say w.,, s = 1,.. .,5, are called 
scenarios. The origin of this discrete distribution can be very diverse; it can be 
obtained as an approximation of a true continuous distribution, based on a sample 
information, or related to scenarios provided by an expert. Similarly as for two-stage 
problems, the specific assumption of discrete distribution allows for transformation 
of multistage stochastic linear programs into large scale linear programs that can be, 
in principle, solved by general purpose algorithms adjusted to the special structure of 
the solved problem; see, e.g., [70]. However, the size of the resulting linear program 
can be prohibitively large; it grows exponentially with the number of scenarios taken 
into account and with the number of stages so that the direct approaches based on 
standard linear programming software are of limited use. There are various ideas 
how to reach a manageable size of the problem: to wave the stochastic character of 
the data and to replace the random parameters by some fixed "base" values, e.g., 
by expectations [16]; to wave the possibility of adapting the decisions according to 
the past information [81]; to use an appropriate labeling for to avoid ambiguity in 
definition of data and of variables, cf. [11], [64], [92]; to aggregate some of periods 
into one stage, e. g., [4], [50], [91], [108], [167]; to aggregate scenarios [137], [138], [154] 
or both scenarios and periods "[7]; to select "important" scenarios using statistical 
techniques [30] or expert's opinion; to decompose the problem into manageable ones 
and to use parallel procedures. Regardless of the chosen solution technique the 
desired optimal solution depends on the used scenarios and on their probabilities 
and its performance under other "out of sample" scenarios should be a subject of 
postoptimality, stability or simulation studies. 

In primal decomposition methods, the subproblems are related to individual 
stages. The original computer code by Birge [9] extends the L-shaped method 
[R14] to three stage problems with random right-hand sides. Its generalization 
by Gassmann [64], known under name MSLiP, concentrates to increase of efficiency 
of the performance and allows for random elements in the matrix of the system of 
constraints and for more than three stages. To save labor in implementation devel­
opment, performance evaluation and comparisons of existing and future software for 
multistage stochastic programs, a standard input format [11] has been suggested. 
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The standard form of the T-stage stochastic linear program with fixed recourse 
and with a finite number of scenarios (compare (13), (14) or (21), (22)) is 

K3 K3 KT 

minimize cjx0 + VJ pk2cjxk2 + VJ pk3cjxks + . . . + VJ pkrcTxkT 

k2 = l k3=K2+l kT=KT-,+l 

(23) 
subject to constraints 

Ai^o = b0 

Bk2x0 + A2xk2 =bk2, k2=l,...,K2 

Bk3xa(k3) + A3xk3 = 6 _ 3 , k3= K2+1,...,K3 

BkTxa(kT) + ATxkT =bkT, kT=KT-1+l,...,KT 

(24) 

lt <xkt <ut, kt = Kt-i+ !,..., Kt, t = l,...,T 

and it necessarily depends on the used scenarios, i.e., on finitely many sequences 
of possible realizations (Bkt ,bkt), t = 2,.. ., T of the random right hand sides and 
random transition matrices in the constraints for the stage t and on the path prob­
abilities pkt of subsequences of these realizations pkl>0 Vfc<, ___!„,-___,__+1 Pk, = l> ' = 
2 , . . . ,T that identify the discrete distribution P. The probabilities ps of individ­
ual scenarios __>_ are equal to the path probabilities pkr, kT = KT-I + 1 , . . . , KT 

and they can be obtained by multiplication of the (conditional) arc probabilities 
of the corresponding realizations. In program (23),(24), xkl = x0 denotes the 
first-stage decision variable and a(kt) denotes the immediate ancestor of kt, so that 
a(fc2) = fc'i, k2 = 1,. .., K2- Induced constraints are not included in in the system 
(24) but they can be treated in course of numerical procedure. 

The input information that leads to (23), (24) can be represented in the form of 
so called scenario tree or event tree. Each path through the tree from its root to one 
of its leaves corresponds to one scenario, i.e., to a particular sequence of realizations. 
The nodes where the branching occurs correspond to stages and they are indexed 
by kt. In our notation, the root is indexed by fci = 0, there are Kt — A'._i nodes 
indexed by kt = A._i + 1,... ,Kt for the stage t (with K\ = 0); particularly, the 
KT — KT-I leaves indexed by kT correspond to scenarios. For each node of the 
scenario tree, an entire set of decision variables is introduced in program (23), (24); 
for instance, the vector of the first-stage decision variables x0 corresponds to the 
root and subvectors xkt of the .th stage decision variables are assigned to the nodes 
kt, respectively. 

A natural idea is to decompose the large linear program to many relatively small 
problems corresponding to individual scenarios. For instance, the problem corre­
sponding to scenario w, = {(_8__,

j, 6__-_), J = 2 , . . . , T } in (24), if such scenario 
exists, is the following linear program: 

Minimize cj x0 + CJXK2 + cJxKl + • • • + C^XRT (25) 
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subject to constraints A\Xa — "0 
BK.2xa + A2xK2 = bKl 

BK3KK2 + A3xK3 = bK3 

BKTXKT + ATxKr = bKT 

(26) 

It < xKl <•"( , t = l , . . . , T 

The x0-part of the optimal solution of (25), (26) gives the first-stage solution that 
is optimal for the used scenario t<*ASfowleve h this solution need not be cither op­
timal or feasible for other scenarios. Decisions made conditional on knowledge of a 
scenario, i.e., based on an assumed realization of ui, do not evidently fulfil require­
ments of the considered decision model such as to get scenario independent optimal 
First-stage solution. Therefore, in designing algorithms based on decomposition with 
respect to individual scenarios one must take care for nonanticipativity constraints: 
At any stage t of the decision process, the final decision x1 can be based only on the 
previous decisions and on the already observed segment of data represented in (24) 
by one subsequence { ( B ^ , bkj), j= 1, . . . , t — 1}. In other words, decisions accepted 
at the stage t that are based on the same history must be equal. In the introduced 
form (23), (24) requirement of nonanticipativity has been included directly into the 
constraints. 

For decomposition methods with respect to scenarios nonanticipativity constraints 
can be included in the form of a large system of simple binding linear equations that 
spell out explicitly the corresponding requirements (compare (15)) 

x\us) = z'K) (27) 

for those s, j that have the same data up to t. 
For a given scenario uis we denote by x(uis) = xT'(uis) the vector of all decision 

variables x'(uis), t = 1, . . . ,T in the individual scenario problem such as (25), (26), 
ps the path probability of uis, c(uis) the vector of coefficients in the objective function 
and X(uis) the corresponding set of feasible decisions described by linear constraints 
that are fixed by the assumed values of scenario u>s. The multistage stochastic linear 
program based on scenarios u>s, s = 1 , . . . ,S, can be now written as 

s 
minimize ^^psc(uis)

Tx(uis) (28) 

5 = 1 

subject to x(uis) e X(uis),s= [,..., S (29) 

and x = Ux (30) 

where x contains carefully grouped decision vectors x(uis) Vs and U is the 0 — 1 
matrix: of coefficients of the nonanticipativity constraints of the form (27). For 
instance, nonanticipativity of the first-stage decisions, i.e., the condition xl(ui\) = 
i ' ( u 2 ) = . . . = x^(uis) can be expressed in the form (30) with U equal to the 
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following block permutation matrix 

/ 0 I ... 0 \ 

0 0 . . . J 
\ I 0 . . . 0 ) 

In standard formulations of decomposition algorithms, the nonanticipativity con­
straints (30) correspond to the Master problem. Similarly as for two-stage problems, 
Lagrangian dual decomposition methods improve efficiency of scenario decomposi­
tion methods, cf. [34]. For instance, augmented Lagrangian method proposed in 
[106] relaxes the nonanticipativity constraints by adding a quadratic penalty term 
r||ai — Ux\\2 to the common Lagrangian function and uses suitable diagonal ap­
proximation of the penalty term to recover separability of the resulting objective 
function. These ideas can be generalized to multistage stochastic programs with 
linear constraints and convex quadratic or convex separable objective function; cf. 
[5], [94], [116], [140]. 

The progressive hedging algorithm designed by Rockafellar and Wets [137], [154] is 
another decomposition type procedure based on augmented Lagrangian method, this 
time with a projection matrix at the place of U. It aims at progressive construction of 
compromising aggregate solutions that sufficiently approximate the optimal solution 
of the original stochastic program. It is not limited to linear problems; for its 
applications and extensions see, e.g., [80], [109] - [111], [127] or [147]. 

Further recent algorithmic advances concentrate to exploitation of the structure of 
the problem such as separability of the recourse matrices [95] or a network form of the 
constraints [108], [112],[114], to parallel computations, e.g., [12],[28],[29],[83],[141], 
[153], [167] and to possible reduction of the number of scenarios; cf. the EVPI model 
reduction suggested in [33], [34] and included, e.g., into the system MIDAS [35]-[38], 
or importance sampling techniques [30], [84]. 

All numerical techniques for solving multistage stochastic programs are demand­
ing as to the input data (including scenarios) and to the programming efforts. Their 
final performance depends on the structure of the solved problem and on the men­
tioned input. In this context, generation of scenarios (discrete approximation of the 
underlying probability distribution) is a very important task. In real-life application-
s, it has been solved from case to case and both parametric and nonparametric statis­
tical methods have been applied to historical data. An approach to generation of one-
dimensional scenarios was described in detail in [167] and other subsequent papers. 
Generation of vector valued scenarios is more complicated even if the dimension can 
be reduced by means of principal components method, factor analysis and regression 
analysis or by sampling, see, e. g., [20], [21] - [23], [30], [35], [36], [87], [104], [105], [108]. 
If a multistage stochastic program is to be applied repeatedly as a part of a decision 
support system, additional routines for data processing, scenario generation, simula­
tion and evaluation of results and of their robustness should be developed along the 
whole path from theory to implementation and complemented by estimates of error 
bounds and by suitable postoptimization techniques. For results concerning error 
bounds for multistage stochastic programs see, e.g., [46], [148], postoptimization is 
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treated in [43], stability results are presented in [56]. One of very important open 
problems is a proper design of the information structure, namely, of the interstage 
dependence that cannot be overlooked and that complicates scenario generation and 
using sampling methods in general. 

At this point, interdisciplinary nature of research in multistage stochastic pro­
gramming becomes evident. It is characterized not only by the trade-off between 
advanced modeling, available data and algorithmic procedures but also by a strong 
interplay between optimization, statistics, numerical methods and computer science. 
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