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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 6 

A NEW METHOD FOR THE NONLINEAR 
APPROXIMATION OF SIGNALS 

Part II: The convergence problem 

JAROMIR STEPAN 

The second part deals with the convergence of the Damped Nonlinear Least Squares (DNLS) 
method which was derived in the first part of this paper. The pertinent algorithm is given and the 
effectivity of the proposed method is illustrated with the help of some examples. 

6. THE CONVERGENCE OF THE DNLS METHOD 

Two problems must be distinguished by the convergence analysis. The first problem 
is connected with existence of a convergent sequence by a given starting point, i.e. 
with the convergence domain. The convergence rate is the second problem. Let us 
emphasize that the character of control problems, e.g. the character of an adaptive 
control, shows the priority of the convergence rate. 

6.1. The convergence domain 

The optimization procedures presented in the preceding paragraphs must be 
completed with the proposition which gives a sufficient condition to ensure the 
existence of a convergent sequence {•!«}. The asterisk on the left indicates the coef­
ficients and functionals pertinent to the global minimum. 

Proposition 6.1. If 

(i) the set Lf a) defined by 

D'a) = {ae Qn\r]2{a) < >?2(«)} is compact for each a e Q^Q,-, c Qa), 

(ii) {Ja} is the DNLS sequence, 
then {•la} converges to the global minimum *a as j —> oo. 

Proof. By hypothesis (ii) Ja are stable, i.e. Ja e Qa for Vj 5: 0 and so the linear 
approximation according to relation (4.3) must exist in each iteration step. There­
fore the nonsingular matrices G{Ja) for Vj 5: 0 must always exist. The sequence 
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of linear errors J5 converges by hypothesis (ii) (cf. hypothesis (iii) in Definition 4.2) 
more rapid to the global minimum than the sequence of errors Jcp. 

By hypothesis (i) and the fact that by hypothesis (ii) 

J+1n2(Jn) < V (vj ^ o) 

{Ja} lies in a compact set. Let us assume that this compact set is L(°a) where °a 
is an initial vector of coefficients. Now by hypothesis (i) L(°a) is compact and {Ja} 
has then a subsequence which converges to a point in L(°a). Therefore {Ja} has 
at least one limit point in L(°a). We have proved in [9] (see Proposition 4.4) that 
there is exactly one limit point *a of {Ja} given by the linear case, i.e. for *t] = *5. 
Therefore {Ja) converges to *a. • 

Let us emphasize in connection with Proposition 6.1 that none of the procedures 
so far described in the literature is really reliable as a general purpose procedure 
for solving the signal approximation resp. the system identification (cf. [5], [12]). 
If an initial vector °a lies near the stability boundary then the DNLS sequence 
cannot exist. Here there is only one possibility — to use some gradient technique 
or a compromise-gradient technique, e.g. the Marquardt or Fletcher method, 
and so to get 1aeQa. The basic gradient technique is notoriously slow [11] and it 
may be to 103 times slower than the Gauss-Newton method [5]. In this case increas­
ing of the convergence domain results in decreasing the convergence rate. The point 
to be made here is that the DNLS method is rapid and so suited for control problems, 
but unstable with respect to convergence, whereas gradient techniques or com­
promise-gradient techniques, e. g. the Marquardt method, exhibit the opposite 
characteristics, good convergence and longer computation time. 

6.2. The convergence rate 

The convergence rate of the DNLS method is given by Proposition 4.3 for the 
cases which are sufficiently near to the ideal case (J+15 = J3). We can write for 
JHopt < 0-95 

(6.i) "- = r4* na - 'AO 2 • 

Two facts are important. From Propositions 4.3 and 6.1 it follows that only errors 
J<p2 are decisive for the assessment of the convergence rate. Secondly only the damp­
ing factors Jnopt < 0-95 can be used in relation (6.1) with respect to numerical errors 
and with respect to the fact that the linear error converges stepwise too. It follows 
from relation (4.28) for the condition 0 < }+1(p2 < 2J + 1(p2

P 

(6.2) \v3(
Jfiopt) + Jb2 - J+1S2(Jnopt)\ < 3 + 1<p2

P(Jfiopt > 0-95) < 2-5 . 10~3 V • 

The convergence analysis of the procedure from paragraph 5.1 is more complicated. 
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The convergence coefficient 

(6 3) JX = Jr< — ^ IpyPopt) 
K' ' V-2^ ' + V2(VoPr) 

can be derived with regard to the predicted error given by (5.5) for the condition 
R = J(p2. With a few manipulations we obtain for JZ = R\J(p2 in virtue of (5.4) and 
(5.5) 

(6 4) 'A - 0 + ^ ( 2 - _)) (1 + JZ) 
V ' ^ (1 +^'Z)2 - 2^'Z2(1 - ^ ) 2 ' 

The cases with JZ > 1 are important for the use of the DNLS method far from 
the global minimum. It follows from the relations 

(6.5) JX(JZ = 0, W/, Jnopt = 1 ) = 1 , 
JX(JZ -= 1, Vt/r. V„pr = (1 + «/')/2) = 1 • 

The region -iZ e (0, 1) is pertinent to the region Jnopte((\ + i//)/2, 1), i.e. to the 
region which is for ip > 0-4 near the global minimum. 

The following proposition will be useful. 

Proposition 6.2. If 

(i) {Ja} is the DNLS sequence, 
(ii) Jnopt e (0-293; 1) is given by relation (5.4), 
(iii) JZ > 1 and ^ e (-0-414; 1), 
then JX> 1. 

Proof. Let us start from the condition 

(6.6) I J l - 1 - ' W - W - W > 0 . 
v ; (i + Jzy - 2jz\\ - ^)2 

The important root of the denominator is given by the relation 1 —2(1 — Jf,iopt)
2 = 0 

and so the pertinent critical ratio is given by JZm = ^0-5/(1 — >J(0-5) - <//). Now 
we can derive from JX(JZ = 2, \j/ = 0) - 1 = 2 that JX > 1 for \p e (0-293, 1) and 
JZe(l, oo) resp. for \j/ e (-0-414; 0-293) and JZe(\, JZm). • 

The convergence rate can be analyzed using the convergence coefficient given 
by relation (6.3) 

J+1n2(Jij ) Jw2 

(6.7) y / ° p , j = 1 - (1 - 2(1 - Jnopt)
2) -5L ^ 

and we obtain for J+^2(Jnopt) = J+1tl2
P(Jiiopt) and Jjp2 •'A/-!*/2 > i 

(6.8) 1 _ M ^ ) < 2(1 - Xp()
2 . 
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We can conclude: the convergence rate for Jnopt < 0-5 is small, i.e. J+1rj2('iuopt)j
Jt]2 > 

> 0-5, and the cases with Jnopt < 0-3 can be used only for deriving the better initial 
vector Ja. So these cases create the transient region to the gradient-compromise 
techniques. 

7. THE ALGORITHM AND EXAMPLES 

In this section we shall sketch one simple alternative of the DNLS algorithm 
and in the second part we shall illustrate the use of this algorithm with help of 
examples and confront the DNLS method with other techniques. 

7.1. The algorithm of the DNLS method 

First let us formulate the procedure for experiments with the different damping 
factor Jfik (k = 1,2, ...,p). We shall use the notation the DNLS experiment, i.e. 
the procedure DNLSE. 

Algorithm 7.1. Procedure DNLSE 

It is assumed that (y, Jy), \Jy\2, JQ, J<p2, JS2, Ja, AJa and Jiik are given. 

1. Compute J+1a = Ja + J/ik AJa. 
2. Test the stability (Definition 4.1). 
3. IF'+1a<£f2athengoto5. 
4. Compute J + 1g(Jnk),

 J+xn2(JHk), v,(Jnk), v3(
Jfik) and go to 6. 

5. The vector J+1a(J/uk) is unstable. 
6. Stop. 

Now we can derive the main procedure corresponding to the DNLS method. 

Algorithm 7.2. 

It is assumed that several initial vectors °ta (I = 1, 2, ..., r) are given. 

1. Set the first initial vector \a, j = 0. 
2. Compute °Q. If °Q < 0 then go to 16. Setj = j + 1. 
3. Compute (J'v0), Jv(k)), (V' ' , Jy), ( V 0 , y) for i,k — 0,1, ..., n, and solve the system 

of linear equations according to (3.6) and (3.7). 
4. Compute (y, Jy), \Jy\\2, JQ, J<p2, Jb2, A Ja, and if V 2 < e i th e n go to 17. 
5. Test the DNLS sequence, compute Jn, and if j > 3 and Jn < 1 then go to 16. 
6. Call DNLSE (l). If v3(l) < 0 then use (5.11), go to 15. 
7. Call DNLSE (05). 
8. If J+1a(l) $ Qa and J+1a{0-5) $ Qa then go to 16. 
9. If J+1a(l) $ Qa and J'+1a(0-5) e Qa then call DNLSE (0-6). If ''+1a(0-6) e Qa and 

v3(0-5) < 0 then Jnopt = 0-6, else Jfiopt = 0-5, go to 15. 
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10. If v3(l) > ° and v3(0-5) > 0 then compute Jfiopt according to (5.4) for J\i2 = 1 
and Vi = ° ' 5 ' 8° to 14. 

11. If vx(i) <C ° then call DNLSE (06). If v3(0-6) i> 0 resp. v3(0-6) < 0 compute 
Jfiopt using (5-4) resp. (5.7) and (5.4) for J>2 = J a,id J\ix = 0-6, go to 14. 

12. If Vl(l) > 0 then call DNLSE (0-7). If J+lg(0-7) < 0 then call DNLSE (0-6), 
compute JHoPt using (5.11), go to 15. 

13. If J+1Q(0-1) > 0 then compute Jfiopt using (5.11), go to 15. 
14. Compute 3+1a = J

a + J/jopt A Ja. Call DNLSE (3nop). If J + hjz(Jiuopt) -
- J + 112p{JHopt) > s2 then Jfiopt = J\iopt - 0 1 . 

15. Compute J + 1a = Ja + J\xopt A
 Ja, set j = j + 1 and go to 3. 

16. Set the next initial vector °,a, j = 0, go to 2. 
17. Stop. 

Let us discuss the details of Algorithm 7.2. Suitable values of ^i (i = 1,2) are given 
by et = 10"7, e2 = 0-04 V -

The test of the DNLS sequence is only a sufficient condition of the convergence. 
Therefore we can admit that it is not fulfilled in the first three iteration steps and so 
to include the cases which are near to the DNLS sequences. 

The key problem of all modifications of the Newton resp. Gauss-Newton method 
is deriving a suitable initial vector °a. Here we must distinguish two situations. 
If the signal approximation is solved from the given transfer function (2.1) (with 
M(s) = 1) then we can start from the first (n + 1) coefficients of the polynomial 
N(s) (cf. the example in [9]) and the first two points in Algorithm 7.2 can be left out. 

The other situation arises in identification problems where we expect useful 
applications of the DNLS method. The original transfer function (2+) is unknown 
and so we must start from a curve of the function y(t). Deriving a suitable initial 
vector °a is therefore a complicated problem and different ways can be used to solve 
it. In this paper we shall consider only one possibility which is closely connected 
with the DNLS method. Apparently the simplest way, how to get a "good" initial 
vector °a and simultaneously the acceptable convergence rate, consists in deriving 
°ae <t>x = {Ja: JQ > 0), i.e. the initial vector °a which satisfies the condition 

(7-1) \\0y\\2<(y,°y)<\\y\\2 . 

The explanation follows from the discussion connected with relations (5.9), (5.11), 
(6+) and (6.8). 

This way has two advantages: 

(i) The needed functionals can be simply computed for different vectors °ta(l = 
= l , 2 , . . . , r ) . 

(ii) The region <PX is sufficiently large and so the simple experimentation (e.g. with 
monitoring) with respect to relations (4.11), (4.18) and (7.1) can be used. 
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7.2. Examples 

To illustrate the effectivity of the DNLS method by the use of the optimal damping 
factor the system from the paper [9] 

S: F(s) = 1/(1 + 17s + 87-24s2 + 190-84s3 + 193-04s4 + 87-84s5 + 14-4s6) 

was used. The response of the closed control loop to the unit step given by 

K F(s) K 
&Ы*)} = ад s(] + KF(s)) s{K + N(s)) 

was approximated with Fw(s) = KJ(sNc(s)) for ~ = 3. Here K is a given gain co­
efficient (K = 3). Let us assume the situation by the identification. In this case we 
know only the function y(t). First we must find the suitable starting function °y(t) 
and the pertinent transfer function °Fw(s). 

Let us test suitability of the starting function °Fw(s) = 3/(3-5 + 17s + 35s2 + 50s3) 
with the help ofrelation (4.11), i.e. °Q = 7-36. 10"2, resp. (7.1), i.e. |J0~|j2 = 2-8556 < 
< (y,°y) = 2-929 < ||j>||2 = 4-5925. The test is positive and so Algorithm 7.2 
can be used. Table 1 contains important parameters computed with a double precision 
PL 1 program based upon Algorithm 7.2. 

Table 1. 

./' 
Ju 

^opt v 
Jő2 

v ЛJaъ(\) 
Jn v,(l) 

; " в 

1 

2 

3 

4 

5 

6 

0-6 
9-8. Í 0 ~ ' 

0-5 
5-8. 10~' 

0-69 
3-7. 1 0 " ' 

0-92 

1-5 . 10" 2 

0-97 

3-1 . 10" 5 

0-95 
8-0. 10" 8 

6-1 
1-59 

2-1 

7-9 

4-0 
4-1 

1-318 
2-8 

1-418 
1-421 

1-418 
1-418 

10" ' 

10" ' 

1 0 " ' 

10" 2 

1 0 " ' 

10~2 

10~2 

10" 2 

10" 2 

10" 2 

10" 2 

1-0 

1-2 

13-2 

14-9 

33-9 

-62 -9 

241 
- 8-8. 10" ' 

90 
5-2. 10" ' 

- 6 1 

- 2-9. I 0 " 3 

5-3. Ю " 1 

- 1-4. 10~ б 

- 7-2. 10~ 2 

- 2-2. 1 0 " 9 

div. 
div. 

0-46 
0-47 

0-41 
0-4 

0-92 

0-9 

0-97 

0-95 

0-95 

0-93 

Let us confront the DNLS method with other techniques. First let us compare 
in Table 2 the DNLS method given by Algorithm 7.2 (col. 1), the main representative 
of line search techniques — the Hartley method [11] given by relation (5+3) (col. 2), 
the combination of the first two methods given by relation (5.15) (col. 3) and two 
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Table 2. 

j 
Jtiopt 

J+í<P2(JK0pt) 
Vя 

J+1<P2(JMн) 
J + 1<P2(JмD) 

J + 1<P2(І) • / + V(0-95) 

1 0-6 div. div. div. div. 
5-8. 1 0 " ' 

2 0-5 0-46 0-47 div. div. 
3-7. 10~ ! 3-7. Ю " 1 

3-7. І O " 1 

3 0-69 0-39 0-38 
1-5 . 10~ 2 1-1 . Ю " 1 1-2. Ю " 1 

8-7. 10~ ! 5-6. 1 0 " ' 

4 0-92 0-77 0-81 
3-1 . 10~ 5 1-3 . 1 0 " 3 1-8. 10~3 1-4. 10" ' 7-5 . ! 0 ~ 2 

5 0-97 0-94 0-91 
8-0. 1 0 " 8 5-9. 10~ 6 8-3 . 10~ 6 2-2. 10~ 3 8-6. 10~ 4 

alternatives of the Gauss-Newton method with ]fi = 1 resp. Jn = 0-95 for Vj ^ 0 
(col. 4 resp. 5). The coefficient vector 2a in col. 1, resp. 3a in col. 3, was used as the 
initial vectors in the subsequent columns. The values J\xH and J\xD in Table 1 serve 
only for comparison in a single step and not for the computation of {Ja}. Both 
tables are sufficiently instructive. 

TaЫe 3. 

'л^) 
V2 

lð2 

x n г 

Л Xaъ(\) 

1 4 + 1 7 í + 2 Í 2 + 2 í 3 0-58 1-9 -1 -48 
0-29 2-19 1-35 

2 4 + 17.У+ 4, Ъбs2 + 2s3 0-57 1-8 -8-56 
0-33 2-13 0-23 

3 4 + 1 7 í + 18-7i2 + 2.s3 0-55 1-1 - 1 3 1 
0-88 1-98 0-015 

4 4 + Пs+ 5 7 - 9 Í 2 + 2.v3 0-63 0-29 158 
0-87 1-16 — 

5 3-75 + 15-8í+ 70-6J 2 + I6653 4-8. 10" 8 1-418. 10" 2 1-4. Ю~ 2 

3-7. 1 0 " 9 1-418 . 1 0 " 2 
— 

Table 3 contains examples of different initial vectors for the example in Table 1 
which cannot be solved by the DNLS method. It shows the given values Jq>2, JS2 

and above all the critical damping factor J\ik which is given by the relation Jat + 
+ Jjxk A

 Jai = 0 for A Jcii < 0, Jat -*• 0 and i = 0,1, 2, 3. If we use in example 
No. 3 the damping factor V > l/xk = 0015 then we obtain 2a <£ Qa with respect 
to the coefficient 2a3 < 0. 
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The results in the given tables show that we must distinguish at least three groups 
of problems. If the initial vector °ae <P0 = {Ja: Jcp < J5, J5 = *8), i.e. the initial 
vector is near the global minimum, then all known methods are practically equi­
valent {Jnopt,

 JnD, Jn,i for j > 3 in Table 1). The cases in col. 4 resp. 5 in Table 2 
complete this conclusion and simultaneously illustrate the discussion connected 
with relation (6.1). Let us verify relation (6.1) using the results from Table 1 

б rл 
A = — - = 1-37 . 10~7 « n (1 " V) 2 = 3-8 . 10~7 . 

V j = 2 

Let us add that a lot different convergence theorems, which can be found in the litera­
ture, are connected with the region <P0. 

The second group of problems is given by the cases in which the sufficiently good 
linear etalon (cf. Definition 4.2) exists. The example in Table 1 and 2 belongs to this 
group. Here the Gauss-Newton method is divergent (j = 1, 2 in Table 2). The Hartley 
method (col. 2) and the Hartley-DNLS combination (col. 3) give better results and are 
practically equivalent. The first method needs for the solution two experiments — 
the second only one experiment. The DNLS method is better than these two methods 
(col. 1 in Table 2 andj = 3 for v.(l) > 0 in Table 1). Here let us remark that the main 
contribution of the DNLS method lies not only in these numerical results but above 
all in the derived theory which allows to demarcate the regions of the effective use 
for different techniques. 

The third group is connected with problems which must start from a misleading 
linear etalon (compare *<52 = 1-418 . 10~2 with 132 in Table 3). Here the methods 
with a broader convergence domain, i.e. the gradient resp. compromise-gradient 
techniques and the quasi-Newton methods [3], must be used. But all these methods 
have the lower convergence rate (cf. the discussion in paragraph 6.1) resp. are less 
robust (cf. Fletcher [2], pp. 95). The reader can test how lengthy is the solution 
of the considered example starting from initial vector No. 1 in Table 3 using the 
compromise-gradient techniques, e.g. with the Marquardt method. 

Let us emphasize in this connection that the theory of the DNLS method together 
with the apparatus of the control theory open mostly simpler and faster ways for 
solving such cases. The simplest way is to find another better initial vector (points 
1, 2, 16 in Algorithm 7.2). Further we can extend the DNLS method and compute 
in each experiment parameters J+1d and J + lcp to find a better linear etalon and so 
a better initial vector (see 182 in Table 3). Let us show one of these possibilities which 
starts from Proposition 6.1. The initial vector No. 1 in Table 3 is very near to the 
control stability boundary. Let us try to find a new initial vector which is nearer 
to the middle of the stability region. From the stability conditions it follows that 
only A Jai > 0 (;' = 0, 1, 2, 3) can be accepted. We compute in the considered 
example A la = [—1-5, —3-7, +2-36, — l-48]Tand so only A 1a2 = 2-36 can be used 
to get new initial vector No. 2 in Table 3. The further initial vectors, i.e. No. 3 and 4, 
were derived with the same procedure and then Algorithm 7.2 was used. The result 
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No. 5 fulfilling the condition Jcp2 < sx was computed in ten steps. This procedure 
must be tested with a decrease in Jd and an increase in the factor Jn to find the starting 
point for using Algorithm 7.2. We can conclude: It is apparently more attractive 
to derive some classification of initial vectors based on the functional properties 
of the considered class of functions as to search for a method with a necessary slow 
convergence starting from an arbitrary initial vector. 

8. THE CASE WITH TRANSFER FUNCTION (2.2) 

The gradient of substitute transfer function (2.2) 

(8-1) 

grad F(s, b, a) = ^ — {s N(s), s2 N(s), ..., sm N(s), -Ms), -sM(s),..., -s"M(s)} 
N (s) 

shows that the substitute signal Jy(t, b, a) is linear in coefficients bk(k = 1,2,..., in). 
Therefore the influence of these coefficients can be simply included in the relations 
derived in the preceding sections. We shall use the same notation if possible. First 
the new vector of coefficients must be introduced 

(8.2) c = [a0, au .., an, bx, ..., bm]T . 

The pertinent gradient vector is 

(8.3) Jg't,c)=[-Jv^(t,Jc),Jv^(t,Jc),... 

..., -Jv(-"\t, Jc), Jw{1>(t, Ja), ..., Jw{m\t, Ja)]T , 
where 

nj^\t, jc)} = f^( u(S), 
JN2(s) 

2{W% Ja)} = J - U(S) . 
JN(s) 

Now fundamental relation (3.6) can be written in the form 
j * 00 

(8.4) J + Xc = Jc + JnG~\Jc) g(t, Jc) [y(t) - Jy(t, Jc)] d. = Jc + JII A Jc , 
J o 

where the matrix G(Jc) = Jo° g(t, Jc) gT(\ Jc) At must be nonsingular and 

A Jc = [A Ja0, A Jax, ...,A Jan, A
 Jbx, ...,A Jbm]T . 

The gradient vector gL(t, Jc) pertinent to the linear part of the DNLS method takes 
the form 

(8.5) gL(t, Jc) = [V0)((, Jc), Jv^(t, Jc), ..., W\t, Jc), lw(l)(t, sa), ... 

% Ja)f . 
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From relations (8.3) and (8.5) it follows 

(8.6) gL(t,Jc)+ -g(t,Jc). 

We see better the new situation from the functions pertinent to relations (4.1) and 
(4.2) 

(8.7) Jy(t, Jc, J + {c, V) = Jy(U jc) - Jn A Jy(t, Jc, Ja) + A Jy(t, Ja, Jb) = 
n m 

= Jy(t, Jc) - Jn X A Jat
 Jv(i)(t, Jc) + ^ A Jh Jw(k)(t, Ja) , 

;=o fc=i 

(8.8) Jz[t, Jc, J+lt, •'» = Jy(t, Jc) + Jn A Jy(t, Jc, Ja) + A Jy(t, Ja, Jb) = 
h m 

= Jy(t, Jc) + Jn £ A Jat
Jvli\t, Jc) + YJ^

Jbk
 Jw(k)(t, Ja). 

i = 0 k=\ 

The component pertinent to the vector Jb = \_Jbu
 Jb2, ..., JbmY is linear and has 

consequently the positive sign in both relations and so Jn = 1 is used. The new 
function 

(8.9) Jy{t, Jc) = Jy(t, Jc) + A Jy(t, Ja, Jb) 

can be introduced and then relations (8.7) and (8.8) can be written in the form of 
relations (4.1) and (4.2) 

(8.10) Jy(i, Jc, J+ xc, Jfi) = JyKi, Jc) - Jn A Jy(i, Jc, Ja) , 

(8.11) Jz(t, Jc, J+lt, Jn) = Jy{t, Jc) + Jn A Jy(t, Jc, Ja) , 

where 
it m 

J Jais
i JM(s) u(s) y A Jbks

k
 i+, „ , s , . 

#urt JA) = î o l : 11 h L = JLMMsJ 
1 K' n JN\s) JN(s) JN(s) 

Therefore all relations derived in this paper resp. in the paper [9] hold for the 
case with substitute transfer function (2.2). 

9. CONCLUSION 

Let us summarize the main results. The DNLS method is based on deriving 
the optimal damping factor (Proposition 5.1, relations (5.9), (5.11), (5.15), Algorithm 
7.2) with the help of the linear etalon Jz(t) (relations (3.7), (4.2), Propositions 4.1 
to 4.3). The sequence {Ja} is governed in the iteration endsteps only by the linear 
case and the global minimum is linear (cf. Proposition 4.4 in [9]). So we can speak 
about the quasi-linear method. This quasi-linearity is the fundamental difference 
to all other modifications of the Newton resp. Gauss-Newton method. Thus the 
DNLS method is suited for the solution of all control problems and further for the 
solution of problems by which the linear etalon can be found. From this fact it 
follows that the linear control theory can be used in subsequent problems (e.g. 
for an optimization). 
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The convergence of the DNLS sequence (Definition 4.2) was proved in Proposition 
6.1 and the convergence rate was discussed in paragraph 6.2 (cf. Proposition 6.2). 
The importance of the DNLS method lies not only in better numerical results (Table 
1, 2 and 3) but above all in the pertinent theory which opens the way for the further 
research on the field of the control theory, e.g. for the comparison of the EE and OE 
identification methods, the explanation of the failure of the EE methods for a small 
number of measured data, deriving the robust identification procedure, etc. [10]. 

(Received July 20, 1984.) 
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