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Statistical pattern recognition has developed into a self-contained mature discipline 
which represents one of two principal approaches to the solution of pattern recogni­
tion problems. The concept of pattern is to be looked upon in a rather broad sense 
since pattern recognition methods have been successfully applied to very diverse 
application domains. The final goal in statistical pattern recognition is classification, 
i.e. assignment of a pattern vector to one of a finite number of classes, where each 
class is characterized by a probability density function on the measured features. 
In statistical pattern recognition which is sometimes regarded also as a geometric 
approach, a pattern vector is viewed as a point in the multidimensional space defined 
by the features. Though the classification is the primary goal of pattern recognition 
there is a number of related problems requiring careful attention when solving 
problems from real life. Among these problems, a thorough consideration of which 
proves to be crucial for the overall performance of any pattern recognition system, 
the following problems belong: evaluation of the training set quality, feature selec­
tion and dimensionality reduction, estimation of classification error, iterative correc­
tions of individual phases of the solution according to the results of testing, and 
finally the problem of interconnecting feature selection with the classifier design 
as much as possible. An attempt to provide a complex solution of all these inter­
connected problems has resulted in the design of PREDITAS (Pattern REcognition 
and Diagnostic TAsk Solver) software package. It is a combination of both theoretic-
cally based and heuristic procedures, incorporating as much as possible requirements 
and suggestions of specialists from various application fields. Theoretical background 
of the employed methods and algorithms, together with their reasoning and some 
examples of applications is presented. 
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1. INTRODUCTION 

Pattern recognition, originated by Rosenblatt's pioneer work on perception, has 
extended a long time ago into other directions and developed into a self-contained 
discipline, though it utilizes many theoretical results from probability theory, mathe­
matical statistics and theory of decision functions. 

However, to identify pattern recognition with any of these earlier established 
disciplines would be a great misunderstanding, which unfortunately is not very 
unusual. This misunderstanding follows from the fact that pattern recognition is 
often considered only as a decision problem. Though the solution of this decision 
problem itself represents really the most essential part of the overall problem, the 
complex solution is far more complicated. 

There are many other partial but very important problems which are not treated 
sufficiently in the literature on pattern recognition, namely the quality of so called 
training set, optimal data representation in a lower-dimensional subspace, testing 
of the complete sequence of computer programs in practice, quality of decision 
making evaluation, and finally corrections of individual phases according to the 
results of testing. 

Before proceeding further, we should attempt to clarify what is actually understood 
by pattern recognition. First of all the notion of pattern itself needs to be specified. 
In their widest sense, patterns are the means by which we interpret the world. In 
our childhood we learnt to distinguish the visual patterns of persons and things, 

the aural patterns of speech and music, the tactile patterns of cold and warmth, 
patterns of the senses. Later on we were able to refine the details of our pattern 
recognition and to abstract our ssnsory discrimination to indirect patterns. While 
some patterns, like typed or handwritten characters, the electromagnetic signals 
of radar, ECG or EEG signals, have a physical manifestation, other patterns have 
only an abstract existence, e.g. patterns in social or economic data. 

Having clarified how the world pattern is to be interpreted, we can discuss the 
question: What is the pittern recognition process? When a human glances at a printed 
page and recognizes character after character, he is utilizing his past accumulated 
experience which has been somehow transformed into fixed decision rules. He is, 
generally unable to explain those rules, however, their existence is out of question. 
The mechanism of arriving at these rules is quite obvious. It has been necessary to 
expose him in the "learning phase" to samples of respective characters and to tell 
him which they were. In other words to provide him with so called labelled samples 
from which he developed a decision rule. 

We can see that there are two aspects to pattern recognition — developing a de­
cision rule and using it. The actual recognition occurs in the stage of using the rule. 

We have to be aware of the fact that the pattern recognition problem can be defined 
only if we state clearly what we wish to decide, by defining the pattern classes. 
A pattern recognition problem thus begins with class definitions, which should be 



given a thorough consideration since in certain applications the choice of class 
definition may greatly influence the overall performance of recognition system. 

With computers becoming widely used, the field of pattern recognition ceased 
to be the process specific exclusively to the human brain. However, there is an 
essential difference between the human's recognition and "mathematical" (statistical) 
pattern recognition by means of computers. Methods employed in mathematical 
pattern recognition are based on relatively simple concepts. As opposed to human's 
recognition, their possible success does not depend upon sophistication relative 
to the human, but upon the computer's ability to store and process large numbers 
of data in an exact manner and above all upon the computer's ability to work in high 
dimensions. This is an essential priority over the human's abilities since the humans 
can do very sophisticated things in three dimensions or less, but begin to falter when 
dealing with higher dimensions. 

In mathematical or computerized recognition we can speak about pattern re­
cognition techniques. They assign a physical object or an event to one of several 
prespecified categories. Thus, a pattern recognition system can be viewed as an 
automatic decision rule which transforms measurements on a pattern into class 
assignments. 

The patterns themselves, recognized by these techniques, could range from geologi­
cal sites or agricultural fields in a remotely sensed image from satellites to a speech 
waveform; the associated recognition or classification problems are to label an 
agricultural field as wheat or non-wheat or a geological site as containing or not 
containing certain ore deposits, and to identify the spoken word, respectively. 
Patterns are described by measurements made on the pattern or by features derived 
from these measurements. The physical interpretation of features varies with applica­
tions. While in speech recognition the so called linear predictive coefficients computed 
from the speech waveform are used as features, in medical diagnostic and recognition 
problems we often use directly a set of data on a patient as features, without any 
preliminary computation or transformation. 

The development of pattern recognition techniques together with growing avail­
ability of computers has lead to extending the application of pattern recognition 
to new domains. To mention just some of them, industrial inspection, document 
processing, remote sensing, personal identification belong to this category. A detailed 
account of many of these applications is given in [22]. 

There are essentially two basic approaches to pattern recognition. In a geometric 
or statistical approach, a pattern is represented in terms of M features or properties 
and viewed as a point in M-dimensional space. The first task is to select those features 
such that pattern vectors of different categories will not overlap in the feature space 
(this ideal cannot be generally reached, so a near optimum solution is sought). 
Given certain labelled sample patterns from each pattern class (training samples), 
the objective is to establish decision boundaries in the feature space which would 
separate as much as possible patterns belonging to different classes. Either the direct 



statistical approach can be adopted when the decision boundaries are determined 
by the statistical distributions of the patterns (known or estimated), or a "non-
statistical" approach is utilized. In the latter case, first the functional form of the 
decision boundary is specified (linear, piecewise linear, quadratic, polynomial, 
etc.) and afterward the best decision boundary of the specified functional form 
is found. 

The choice of features is crucial for the quality of pattern recognition. Participation 
of an expert from the corresponding application area in designing the primary set 
of features is absolutely essential since the choice of features is data dependent. 
Mathematical processing can help to remove the redundant information of the decision 
problem, but just by itself it obviously cannot supply any completely "new" 
information not supplied by the expert designing the original set of features. 

Beside the statistical approach to pattern recognition there is another approach 
being studied. In many recognition problems it is more appropriate to consider 
a pattern as being composed of simple subpatterns, which can again be built from 
yet simpler subpatterns, etc. The simplest subpatterns can be characterized by the 
interrelationships among those primitives. The need to define primitives and rules 
of constructing patterns from these primitives arises. Since an analogy is drawn 
between the structure of patterns and the syntax of a language, the whole approach 
has been named the syntactic pattern recognition. To make the analogy more 
explicit we can state that the patterns are viewed as sentences of a language, primitives 
are viewed as the alphabet of the language, and generating of sentences is governed 
by a grammar. The main advantage of the syntactic or structural approach is that, 
in addition to classification, it also provides a description how the given pattern 
is constructed from the primitives. 

However, the implementation of a syntactic approach is not without difficulties 
either. While neither the statistical approach is free of difficulties, it is better under­
stood and is based upon well established elements of statistical decision theory. 
This is perhaps the reason why most commercially used pattern recognition systems 
utilize decision-theoretic approaches. An interesting attempt to combine both the 
approaches has been made by Fu [23] who has introduced the notion of attributed 
grammars which unifies the syntactic and statistical pattern recognition. 

Now we shall describe the organization of the paper: 
After explaining the general structure of PREDITAS system resulting from the 

endeavour to meet the requirements and conditions imposed by practice, the common 
conventions are introduced. In Chapter 2 we give an outline of the elementary 
statistical decision theory and we show how the theory provides statistical model 
for pattern generating mechanisms and the corresponding optimal classification 
process. Optimality can be achieved only when the statistical distributions involved 
are known. We also present some ways of designing discriminant functions. Chapter 3 
is devoted to the theoretical background of feature selection and extraction methods 
as well as to the comparison of feature selection and extraction from the practical 



viewpoint. Basic properties of so called search algorithms are discussed too. Chapter 
4 deals with the principle of feature selection used in the PREDITAS system as well 
as with the employed search procedures. Chapter 5 addresses the important and 
difficult question of estimating the performance of pattern recognition. Chapter 6 
deals with sample-based classification rules which are from the perspective of sta­
tistical decision theory substitutes for unknown optimal rules. Finally the stepwise 
sample-based decision procedure for two class classification problem and the de­
termination of the optimal dimensionality used in PREDITAS system is treated 
in Chapter 7. A brief account of the software tools and the architecture of PREDITAS 
is presented in Chapter 8, together with a more detailed discussion of a completely 
solved problem from the field of medical diagnostics. The paper concludes with the 
list of solved problems accompanied by their brief characteristics. 

1.1 General characteristics of PREDITAS system 

Growing demands for solving a great variety of practical problems of a decision­
making character, which cannot be solved for some reason analytically, stimulated 
the development of a general purpose software package for their solution, which 
would aim to be as far as possible universal and problem free. A statistical pattern 
recognition approach to the solution of this class of problem has been adopted, 
in accordance with general practice. 

Since our principal application field has been medicine, where the well established 
term "diagnostic problem" [4], [43] is commonly used, we have incorporated this 
term into the name of the software package "PREDITAS" which stands for Pattern 
REcognition and Diagnostic TAsk Solver [5]. Though a general medical diagnostic 
problem can be formulated in terms of statistical pattern recognition, we use the 
term "diagnostic" explicitly in order to stress the formal analogy. 

There exists a broad spectrum of statistical pattern recognition methods that 
differ widely in their assumptions about data set structure, in their computational 
complexity, etc. Our goal has not been to develop a software package that would 
be based on completely new original methods, but rather to design a practicable 
system, incorporating certain new ideas into the already known theoretical results. 

Due to the impossibility of an exact mathematical formulation of each phase 
of the overall solution, our approach is a combination of both theoretically based 
and heuristic procedures. It is the result of a long experience in solving various 
pattern recognition problems in close cooperation with specialists in various applica­
tion fields [9], [45], whose valuable opinions and comments have been incorporated 
in the present version of the PREDITAS system. 

1.1.1 Requirements and constraints imposed by practice 

Frequent discussions with potential users of the software package have resulted 
in a number of constraints, imposed by the needs and requirements of practice. 



A system with ambitions to be useful for everyday practice should fulfill these re­
quirements, and should be designed with respect to the corresponding constraints. 
Without claiming completeness, let us state briefly at least the principal conditions 
[44] to be met: 

1) The resultant solution supplied to the user should be as simple as possible, 
computable quickly even on a very small personal computer, easily interpretable 
and finally, perhaps most importantly, it should leave some space for the user him­
self, allowing him to take the final decision and thus to participate in the solution. 

2) A reject option, equivalent to not taking a decision in the case where the 
probability of misclassifying a certain pattern would be higher then an apriori 
set limit, should be included in the system. It should also be possible to set these 
limits independently for both classes in terms of probabilities of misclassification, 
or in terms of admissible average risk if the latter is preferred. 

3) The sample size is usually too small for a given dimension of original data. 
It results in the necessity of feature extraction or selection. 

4) The dimension of original measurement can be rather high, in quite a few 
applications it was of the order of one hundred. A feature extraction or selection 
algorithm should be able to cope with this dimension. 

5) Components of original multidimensional measurement vectors cannot be 
supposed to be statistically independent. This fact must be respected by the feature 
selection algorithm. 

6) Experts from application fields prefer decision-making on the basis of mean­
ingful interpretable features to decision-making by means of some mathematical 
-abstractions. This issue is especially sensitive in most medical applications. Priority 
has therefore been given to feature selection instead of feature extraction, even if the 
latter can generally yield a slightly more discriminative set of features. Moreover, 
only feature selection enables one to exclude completely some of the original me­
asured variables and thus to cut the cost of data acquisition. 

7) The system should not only provide a list of features ordered according to 
their significance for classification (respecting of course complicated multidimensional 
statistical relations among them), but should help as well in choosing the optimum 
number of features for classification (the dimensionality of classifier). Since the 
answer to this partial but important problem cannot be always unique and theoreti­
cally justified, the user should be provided at least with some heuristic procedure 
allowing him to assess a few possible solutions offered by some system and to choose 
the most suitable one according to his own scale of preferences. 

8) The algorithmic and computational complexity of the system of programs 
should not prevent the finding of a solution within a reasonable time limit even 
for high dimensions. 

9) Finally, the two principal stages of the solution — feature selection and deriva-

10 



tion of the classification rule should be interconnected as much as possible and not 
solved independently, which is usually the case. This condition has not been raised 
by practice, but it follows from the experience of leading experts in the pattern 
recognition field (Kanal [32]). 

In connection with these conditions there is one point to be mentioned. In a multi-
class problem, optimum feature subsets for discrimination of two particular classes 
are generally not the same for different pairs of classes. For this reason only a di­
chotomic problem is considered in the PREDITAS system. In case of a multiclass 
problem a decision system having a hierarchical structure can be built. 

The philosophy and the corresponding architecture of the PREDITAS system have 
resulted from the endeavour to fulfill the above named conditions. These conditions 
have greatly influenced not only the algorithmic realization but also the underlying 
theory employed in PREDITAS, which will be described in the Chapter 2 through 7. 

1.1.2 General structure of PREDITAS system and block-diagram of solution 

As we have just mentioned above, in our opinion it is therefore desirable to adopt 
some basic principle unifying from a certain point of view all the main phases of the 
solution. This unifying principle should be incorporated properly into the solution 
of individual problems, respecting of course the differences among them. 

In order to illustrate more clearly what we mean by this unifying principle, it will 
be convenient to survey briefly the individual phases of the problem and their solution 
(see Fig. 1). 

In further discussion we shall follow the block diagram of the complex solution 
according to our conception (Fig. 1). 

The complex solution starts with the primary data collection. This phase is generally 
considered only as a purely technical problem and is left to the specialists in the 
particular application field. Since the quality of data is crucial for the possibility 
of successfull solution and the data should meet certain requirements of pattern 
recognition, in our opinion mathematicians and computer specialists should partici­
pate already in this phase of the problem. 

The phase of preliminary data processing includes the formation of so called 
training set. This set usually consists of a number of samples with known classification, 
where the samples or patterns are generally represented by M-dimensional vectors. 

Here a very important problem arises, namely how to evaluate the quality of the 
training set. 

This quality can be assessed from different points of view. The most important 
one among them is the concept of "representativeness" of the training set, because 
the derived decision rule will be used outside its definition domain, i.e. the training 
set. Such an extrapolation of the decision rule is possible only if the training set, as 
a finite size sample from the basic set, is representative with respect to the basic set. 
In the opposite case the satisfactory solution of the whole problem cannot be expected. 

11 



However, the problem of evaluating the representativeness of the training set has 
not yet been satisfactorily solved. 

Generally the quality of the training set should be tested according to a certain 
criterion and when not found satisfactory, it has to be improved before proceeding 
in the solution further. 

The following block denoted the "data analysis" includes a basic statistical analysis 
of data components and the evaluation of their significance. Already in this phase 
we can often get some very interesting results, which are useful for the particular 
application field. Now the two most essential phases of the diagnostic problem 
follow — feature selection and derivation of classification rule. Pattern recognition 
is usually identified with these two stages of the solution. Because of their importance 
we shall treat them in more detail in the next two sections. 

Feature extraction or selection generally denotes the process of finding the most 
important characteristics from given data vectors which are optimal with respect 

Data analys i: 

Feature extraction 

Derivation of the 

classification rule 

Quality of Classification 

Use in practice 

Primary data 

processing 

Objective classification 

and selected data collection 

Tгai nì ng 

phase 

Working 

phase 

Fig. 1. Block diagram of 
diagnostic problem solution. 
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to a certain criterion. Formally it means an optimal mapping of the pattern space 
into feature space; the dimensionality of the latter should be lower. Feature extrac­
tion methods find a subset of features which are functions of the original ones, 
while feature selection methods find a subset of the original components [7]. 

This problem is usually solved quite independently from the derivation of the 
decision (classification) rule, though both these phases should be closely connected, 
as Kanal [32] states in his survey paper. The main reason is that the classification 
significance of the feature can be evaluated only by the differences of classification 
errors obtained in the cases when the particular feature was or was not used for 
discrimination. 

The third of the main problems consists in determination of a decision rule [6], 
[7], supposing that the set of the features characterizing the elements is given. 
Solution of both these problems, determination of the decision rule and feature 
reduction should be based on a common unifying principle. In other words, the 
decision rule should be in accordance with the criterion used for feature selection. 
In the opposite case the selected features may not be optimal for the decision rule. 

Finally the complete solution continues by testing in practical applications and 
if necessary again by returning to the original phase. 

As it is not possible to solve all the three main phases as one problem, it seems 
to be useful to incorporate the feedback into the algorithm of solution and to solve 
the whole problem by an iterative way. 

The use of the measure of discriminative power [42] is the unifying principle 
we mentioned a while ago. It can be used even in the phase of testing the quality 
of the training set, where the convergence of this measure serves as the criterion 
of quality and reliability. The best subset of features maximizing the measure of 
discriminative power is selected in the phase of feature selection and this measure 
is used for the derivation of classification rule as well. 

Thus in our conception the whole solution represents an iterative process with 
a number of feedback loops and with some underlying unifying principle, which 
in our case is the measure of discriminative power. By the global approach [43] 
to diagnostic problem solution we understand just this iterative process with an 
unifying principle. Generally any other suitable unifying principle may be used, 
but its incorporation into the overall solution is essential. 

1.2 Notational conventions 

1.2.1 Common conventions » 

(3.2) . . . Eq. (2) in Chap. 3. 

= . . . means "is equal to by definition" 
iff . . . if and only if 
=> . . . implies 

13 



e . . . is in 
c . . . inclusion 
V . . . for all 
a | b ... a conditioned on given b 
ajb . . . a divided by b 

a\ a\ , . . . . , binomial coefficients 
bj b\ (a - b)\ 
c 

U Qt ... means "union of sets Qt, ..., £2C" 
i = l 

log a . . . natural logarithm of a 

1.2.2 Notation for observation vectors 

x . . . scalar 
xt . . . subscribed scalar 
x . . . column vector (if x is m-dimensional, x = (xlt ..., xm)r 

Xi . . . subscribed vector 
A, D . . . matrices 
xT, AT . . . x, A transpose 
A~ * . . . inverse matrix 
tr (A) . . . trace of the matrix A 
| Aj . . . determinant of the matrix A 
R . . . one-dimensional Euclidean space 
lRm . . . m-dimensional Euclidean space 
Q . . . m-dimensional feature space; x e Q. Usually Q = Um. 
X, Y, F . . . sets, elements of which are scalar or, sometimes scalars 
0 . . . the empty set 
a>i . . . tth class (or category) 
§g(x) dx . . . multivariate and multiple integration is performed over the entire 

Q space 

1.2.3 Notation for decision rules 

The difference in writing between a random vector and its realization is omitted. 

p(x) . . . probability density function of random vector x 
Pi(x) . . . probability density function of x given that it is from class coi. Also 

called z'th conditional probability density 
P, . . . a priori probability of class coi 
P(cc>i j x) . . . probability that a pattern with observation x belongs to class <x>i. 

Using previous definitions, 

P(tBi|x) = „^W . 

i 
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£{•] . . . mathematical expectation 
E,{*} . . . mathematical expectation with respect to class cot 

/i ; . . . mean vector of x in class co( 

£, . . . covariance matrix of x in class coi 
c . . . number of classes 
d(x) . . . decision (or classification or discrimination) rule assigns x to class d(x) 
d(x) = dt . . . decision rule d assigns x to class co{ 

d(x) = d0 . . . decision rule d rejects to classify x 
Qt . . . decision rule d induces c + 1 sets {Q0, QL, ..., Qc}, where x e Qt 

iff d(x) = dt 

2 . . . collection of all decision rules 
Ltj . • • loss or cost incurred when the decision is d(x) = dv and the true 

class is coj, i = 0, ..., c,j = 1, ..., c 
(0, 1, Xr) . . . (0, 1, Xr) loss function means that Lu = 0, Lu = 1, i + j , Loi = Xr, 

i,j = 1, ..., c 
r,(x) . . . conditional risk or expected loss of making decision d(x) = dt 

R(d) .. . average risk associated with the decision rule d 
E(d) .. . error rate or overall probability of error or probability of mis-

classification 
Rr(d) . . • reject rate or reject probability 
r*(d) ... minimum conditional risk 
R*(d) .. . minimum average risk 

1.2.4 Notation for sample-based decision rules 

%ij • • • j'th vector sample from class coi 
T ; . . . /th training set; collection of Nt independent vector in Q identically 

distributed 
N,. . . . number of training samples from class cot; size of training set J"; 

T(N) . • • collection of c training sets; T(]V) = {Tu ..., Tc} 
c 

N . . . N = YJ Nt", total number of vectors from all c classes; size of training 
;= I 

set T(N) 

d(x) . . . sample-based decision rule; 
Q{ ... the decision rule d(x) induces c + \ sets {Qx, Q2, ..., Qc}, where 

XG Qt iff d(x) = dt 

E(d) . . . actual error rate (error rate of the sample-based decision rule t) 
E(d) . • . apparent error rate of rule d 
R(d) ... actual average risk of rule d 
R(c!) • • • apparent average risk of rule d 
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1.2.5 Notation for dimensionality reduction 

Observation space Space for a finite number of observations x l s ..., xM 

or measurement space: 
(M-dimensional) 
Feature space: Space with points y = (yt, ...,ym)T, where >,• is the /th 
(m-dimensional) feature obtained as a function of the observations 
m = M xt, ..., xM 

l(y) Measure of discriminant power (MDP) of the vector y. 
/ : Um -> U. 

Decision space: Set of real numbers indexing the classes which can be 
(one-dimensional) decided. 

2. STATISTICAL PATTERN CLASSIFICATION 

In this chapter there are presented only those theoretical facts from the area 
of statistical pattern classification, which are relevant to the conception of PRE-
DITAS system. 

2.1 Basic elements of statistical classification 

The basic idea of statistical pattern classification can be summarized as follows: 
Suppose that several classes (or categories co1, co2, •• •, OJC

 a r e mixed in a large 
population. Denote the mixing proportions (a priori class probabilities) by Pls P2,... 

c 

...,PC, where each P,- ̂  0 and £ P, = 1. Individuals (objects, patterns) can be 
i = i 

examined with respect to each of m-characteristics or features, xt, ..., xm, quantitative 
or qualitative. An individual selected at random from the mixed population may be 
regarded as a random vector (/, x) in which i indexes the individual's class and x 
denotes the m-dimensional feature vector or classification vector. To classify 
(or allocate or identify) an individual is to guess his class, given the observed x. 
Probability structure is specified by a priori class probability P,- and by multivariate 
class — conditional probability density function P((x) = p(x) J eo,) for i = 1, 2, ..., c 
and x e Q where Q denotes the space of all such x — so called feature space; Q <= W". 

c 

The unconditional density of x is given by p(x) = £ P,p,(x) and it is assumed that 
p(x) is nonzero over the entire space Q. l=i 

In the sequel we use the notation "pattern x" for the individual (pattern, object) 
described by the feature vector x. Further the difference in writing between a random 
vectcr and its realization is omitted. 

Th* problem of classifying a new pattern x can now be formulated as a statictical 
decisim problem (testing of hypothesis) by defining a decision rule (or classification 
rule o discrimination rule) d(x) where d(x) — J,- means that the hypothesis "x 
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is from class co" is accepted (cf. e.g. Anderson [1], Chow [10]). In other words 
the decision rule d(x) is a function of x that tells us which decision to make for 
every possible pattern x. So we have c possible decisions. When very ambiguous 
situations arise as to the decision to be made, it may be advantageous to allow the 
classification systemTo withhold or reject the decision and to mark the pattern for 
a later special processing. We designate the reject option by writing d(x) = d0. 
In such a case we have c + 1 decisions in a c class problem. Since the number of 
possible decisions is finite a decision rule d may be defined as an ordered partition 
[Q0, Qt, ..., Qc) of the feature space Q. The rule d assigns a pattern x to class coj 
(i.e. d(x) = dj) if and only if the observed xe Qj, j = I, ..., c (and the classification 
is correct if and only if the true class of the pattern x is coj) and rejects a pattern x 
(i.e. d(x) = d0) if and only if x e Q0. The collection of all decision rules is denoted 
by5>. 

The boundaries separating the sets Qt and Qj, i, j = 0, ..., c, i 4= j are called the 
decision boundaries. In regular cases these boundaries may be determined by form­
ing c + 1 functions D0(x), ..., Dc(x), D;(x): Q ~> U (i.e. Dt(x) is a mapping from 
the feature space Q c W" to the real numbers) called decision or discriminant 
functions, which are chosen in such way that for all x e Qt holds 

D;(x)> Dj(x), j = 0, ..., c, i+j. 

Then the equation of the decision boundary separating the set £?, from the set Qj is 

D,(x) - Dj(x) = 0 . 

Classification of a pattern x is performed as follows: 

assign x to the class CO; iff 

Di(x)> Dj(x), j = \,...,c, i+j; 

reject x iff 

D0(x)> Dj(x), j = l,...,c. 

Consider now the problem of classifying an arbitrary pattern x of unknown class. 
Assume that densities pt(x), i = 1.2, ...,c are known along with a priori prob­
abilities P;, i = 1, 2, ..., c. 

First, associated with a decision d(x) — d} is an observation-conditional 
non-error rate; the conditional probability of correct classification, given an ob­
servation x e Qj, is the class a posteriori probability P(cOj I x) which can be computed 
by the Bayes rule 

P(coj | x) = PiPi(x)lp(x). (1) 

The observation-conditional error rate or the conditional probability of classifica­
tion error or misclassification is then 

ej(x) = 1 - P(cOj | x ) . (2) 
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Second, the class-conditional non-error rate given C0i or the probability of correct 
classification of a pattern x from class cot is 

GH = P{x e Qt | class = cot} = jQi pt(x) dx , (3) 
and 

Gu = p\x G Qi I c l a s s = °>j} = Jn, Pj(x) d x • J * * ( 4 ) 

is the class-conditional error rate given coj (i #- j) i.e. the probability of incorrect 
classification of a pattern x from class coj to class ft)£. 

The class-conditional reject rate given coj i.e. the probability that the pattern x 
from class coj is rejected to be classified is 

G0J = P{x e Q0 | class = coj] = jQo pj(x) dx . (5) 

Third, the (unconditional) non-error rate or the overall probability of correct 
classification is 

C(d) = t Pfiu , (6) 
i = l 

the (unconditional) error rate or the overall probability of error or probability 
of misclassification is 

E(d) = t iPjGij, j + i, W 
1 = 1 7 = 1 

the acceptance rate or the overall acceptance probability is 

A(d) = t tPjGij, 
' = 1 7 = 1 

and the reject rate or reject probability is 

Rr(d) = £ P;G0; . (8) 
i= 1 

The above defined probabilities are related by the following equations: 

C + E = A 
(9) 

A + Rr = 1 . 

The error rate and the reject rate are commonly used to describe the performance 
level of pattern classification system. An error occurs when a pattern from one 
class is identified as that of a different class. A reject occurs when the classification 
system withholds its classification and the pattern is to be handled in a special way. 

Furthermore, let L;j(x) be a measure of the loss or penalty incurred when the 
decision d(x) = dt is made and the true pattern class is in fact C0j, i = 0, ...,c, 
j = i, ..., c. The costs Lu are bounded functions such that for j = 1, ..., c and all 
x e Q, 

0 <: LJJ(X) = L0-(x) <: 1 , for / = 0, . . . , c . 
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The classification of a pattern x from class ojj to class a>i entails a loss Li7-(x) with 
probability P(ojj | X). Consequently, the expected loss — called the observation-
conditional risk (or conditional risk) — of making decision d(x) — dt is 

ri(x) = f L i , ( x ) P ( a ; , | x ) . (10) 
J = I 

The average risk associated with the decision d partitioning the feature space into 
regions Q0, Q1, ..., Qc is then 

R(d) = f L0J.PJG0J + t t LtjPjGtj . (11) 
J = l i=lj=l 

Relation between conditional risk and average risk is presented in the sequel. 

Several designs for a classification rule can be compared according to their error 
rate (7) or (if the losses are known) according to their average risk (11). 

2.2 Bayes decision rule for minimum risk 

The goal of the statistical decision theory is to propose the decision rule d in such 
a way that the average loss per decision is as small as possible. In other words, 
the most desirable is the rule that minimizes over the domain <3 of all rules the 
average risk (11). That is, regard R as a function of domain 3>, and define 

R* = inf R(d) * (12) 

then d* is the minimum-risk decision rule if R(d*) = R*. The minimum-risk rules 
can always be constructed by minimizing conditional risk (10) for every x: 

Such decision rule d* defined as 

d*(x) = d, if ri(x)^rj(x), i , / = 0, 1, ...,c (13) 

is called the Bayes decision rule. 

The Bayes rule (13) partitions the feature space into c acceptance regions (called 
the Bayes acceptance regions): 

Q* = {xe Q: r /x ) = min rt(x)} , j = 1, ..., c (14) 
i = 0,...,c 

and one reject region Q0 (called the Bayes reject region): 

•3* = {x e Q: r0(x) = min rt(x)} . (15) 
i = 0 , . . . ,c 

The overall acceptance region Q* is the union of Q*, Q*, ..., Q* and it holds 
Q* u Q* = Q. 

From (13) we can see that the Bayes rule has the minimum conditional risk 

r*(x) = min r((x) (16) 
; = o , i , . . . ,c 
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and the minimum average risk — also called the Bayes risk 

R* = ]Q r*(x) p(x) dx = 
c c c 

= I LOJPJ W Py(x) d x + I I L/ypy W P/(x) d x . 
y = i / = i y = i 

where Q\ and i20, i = 1, ..., c are defined by (1.4) and (15), respectively. 

Suppose now the case of zero loss function for correct classification, a unit loss 

for the classification error and a constant loss Xr for rejection, i.e. 

Lu. = 0 , Lij=l, L0j = Xr, i,j=\,...,c, t + j . (18) 

We call Xr the rejection threshold. Then the conditional risk rt(x) of (10) becomes 

r0(x) = txrP{coj\x) = Xr (19) 
y = i 

r/(x) = t P(a>j | x) = 1 - P(cOi | x ) , i = 1, ..., c . (20) 
y = i 
j*i 

Therefore the conditional risk reduces to the conditional probability of classification 
error c,(x) defined in (2). With respect to 

e*(x) = min et(x) = 1 — max P(cOi | x) (21) 
/ = l , . . . , c / — 1 , . . . , C 

ci*(x) = dt if t?*(x) = et(x) < Xr (22) 

= d0 if Xr < e*(x) , 

or in terms of a posteriori probabilities: 

<i*(x) = dt P(wi | x) = max P(coj \ x) = I - Xr (23a) 
y = i , . . . , c 

= dQ if 1 — Xr> max P(coj \ x) . (23b) 
y = i , . . . , c 

Clearly, for c classes, 0 ^ 1 — max P(coj \x) — (c — l)/c with the equality in the 
y 

case when all the classes have equal a posteriori probabilities. So, for the rejection 
option to be activated we must have 0 = Xr — (c — l)/c. 

The decision rule (23) partitions the feature space into c acceptance regions 
Qi(Xr), i = 1, ..., c: 

Q.(Xr) = {XEQ: P(cOi | x) = max P(coj | x) = 1 - Xr} , 
y = i , . . . , c 

and one reject region Q0(Xr): 

Q0(Xr) = [x e Q: I — Xr > max P(coj | x)} . 
y = i , . . . , c 

The reject rate R* is given by 

** = W ) K x ) d x > (24) 
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and the error rate is 

E* = iio^r)e*(x)p(x)6x. (25) 

The probabilities R* and E* are functions of Xr only, so we may write R* = 
= R*(Xr), E* = E*(Ar). The Bayes risk (17) expressed in terms of these probabilities 
is 

R* = R*(Xr) = J^ ( , r ) e*(x) p(x) dx + Jfl0(lp) Xr p(x) dx (26) 

= E*(Xr) + XrR:(Xr), 
where c 

QA(xr) = u QiK) • 
i= i 

The optimal property of the Bayes rule may be formulated, using (26), as follows: 
for a given pattern classification problem (in other words, for a given underlying 
distribution) among all the rules with error rate equal to E*(Xr) there exists no rule 
with reject rate less than R*(Xr). Equivalently, to R*(Xr), there exists no rule with 
error rate less than E*(Xr). In other words, the Bayes decision rule is optimal in the 
sense that for given error rate it minimizes the reject rate. 

It follows from equation (21) —(23) that the reject option is activated whenever 
the conditional error probability exceeds the rejection threshold Xr. The option to 
reject is introduced to safeguard against excessive misclassification. However the 
tradeoff between the errors and rejects is seldom one to one. Whenever the reject 
option is exercised, some would be correct classifications are also converted into 
rejects. Analysis of the error-reject tradeoff is an important result of Chow [11]. 

The rejection threshold is an upper bound of both the error rate E*(Xr) and the 
Bayes risk R*(Xr) (see, e.g. Devijver and Kittler [14]). 

2.3 Bayes decision rule for minimum error rate 

Suppose that Lti = 0, Li} = 1 and LQJ = Xr, i, j = 1, 2, ..., c, i + j and assume 
that the loss Xr exceeds the largest possible conditional probability of classification 
error, (c — i)jc. Then it follows from (23b) that the reject option is never activated 
and the Bayes rule constantly makes decision according to the minimal conditional 
probability of error. We therefore have 

d*(x) = dt if P(coi | x) = max P(cc,j | x) . (27) 
j=l,...,c 

Decision rule (27) partitions the feature space Q into c acceptance regions Q{ 

Qt = {xeQ: PiPi(x) > PjPj(x)} , i,j=\,...,c, i+j. (28) 

The conditional Bayes risk is 

e*(x) = 1 - max P(coj \ x) (29) 

21 



and the average Bayes risk is 

E* = Jfl e*(x) p(x) dx = t jQi Pj Pj(x) dx , j * i . (30) 

It is noted from (29) that the corresponding discriminant function implemented 
by a Bayes decision rule is essentially 

Di(x) = PiPi(x), i=i,...,c (31) 

or equivalently 

Di(x) = log[PiPi(x)'], 

because for x e co,-, D,-(x) > D/(x) for all i,j = 1 , . . . , c, i 4= / (cf. Nilson [40]). 
The equation 

D,.(x) - Dj(x) = 0 
or 

log5iW = 0 

defines the decision boundary separating the acceptance region (2, from the accept­
ance region Qj, i,j = 1, .... c, i =f= j . 

2.4 Two-class classification 

The general two class classification problem — also called the dichotomy is to test 
a pattern x with the decision function D(x): Q -* it. The value of this decision func­
tion is used to select class co; which the pattern x must likely belongs to or to reject 
its classification: 

D(x) = a. => d(x) = d1 

D(x) > a2 => d(x) = d2 

ax < D(x) < a2 => d(x) = d0 . 

The thresholds al5 a2 are chosen to minimize a classification criterion of optimality. 
Each criterion determines a decision function. 

2.4.1 Bayes decision rule 

It can be readily verified, that the Bayes rule (13) for two-class problem becomes 

P(co2 I x) 

- -. 'f 5 m S C2 (32) 
P(a>2 I x ) 

= «f0 if c 2 <^4^< C l ) 
P{co2 I x) 
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where 

c L12 Ui a n d c Lpj L22 (33) 
T — T T — т 
-4)1 ---11 -•'21 --'01 

if Lj7 < L;/ for 1 = 0, 1, 2,j = 1, 2. 
Alternatively, the decision rule (32) can be expressed in terms of likelihood ratio 

PiM//>2(x): 

d*(x) = dx if * ^ f c £ c s (34) 
P2(x) Pi 

= d2 if EM^C2 
Pa(~) Pi 

= ci0 otherwise . 

It is easy to verify that boundaries in (34) are related to the class-conditional error 
rate given in (4) by the following expressions: 

^ C < l ~ °21 P2 - - °21 

-°i G i2 -Pi 1 - C12 

It follows from (34) that in the case of Bayes decision rule (34) the decision function 
is 

D(-)-a^ . 
M x ) 

The equation D(x) = C1P2fPl defines the decision boundary separating the accept­
ance region Qt = (x e Q: pt(x)jp2(x) ^ C1P2jP1} from the reject region Q0 = 
= {xeQ: C2P2jP1 < p1(x)jp2(x) < C1P2/P1}. The decision boundary separat­
ing the acceptance region Q2 from QQ is defined in a similar way. 

For the two class case the condition for rejection, namely (23b), can never be 
satisfied when Xr > \\ hence the reject rate is always zero if the rejection threshold 
exceeds \. For two classes and 0 <. XT <. \ the condition for rejection (23b) is equi­
valent to 

- < Pt Pl(x) < \-K (35) 

1 -Xr P2 p2(x) X, 

and therefore the decision rule (23) becomes in terms of likelihood ratio 

d*(x) = dx if E&tElLzJz (36) 
p2(x) Pi Xr 

= d7 if EM < p> i 
p2(x) P , 1 

d0 otherwise . 
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2.4.2 Decision rule with predetermined probability of error 

In many practical situations it is advantageous and useful to predetermine the 
value et for the conditional probability of misclassification associated with the de­
cision d(x) = dh i = 1, 2. This restriction can be determined by the actual pos­
sibilities, e.g. of economical or technical type, which are at our disposal to settle 
the consequences of misclassifications. 

We accept the pattern x for classification and identify it as from the ith class 
whenever its maximum of the a posteriori probabilities is equal or greater then 
1 — et. Likewise we reject the pattern x whenewer its maximum of the a posteriori 
probabilities is less than 1 — et. It means that the decision rule with predetermined 
conditional probabilities of errors is: 

d(x) = dt if P(cOi | x) = max P(coj | x) ^ 1 - et (37) 
7 = 1,2 

= d0 if P(a>i | x) = max P(coj I x) < 1 — et. 
7 = 1,2 

From (37) it follows that P(coj | x) < e(- must hold for acceptation the decision 
d(x) = dt, i,j = t, 2,7 + i. Therefore 

d(x) = dt if ) 1\ ! ^ (38a) 
P(co2 | x) ex 

= d2 if _ ( ^ _ ) ^ _ _ _ _ (38b) 
P(co2 | x) 1. - e2 

= d0 if _ ^ 2 _ < P i ^ < l _ - ^ 

1 - e2 P(co2 I x) ej 

and the reject option will be activated if the following inequalities hold 

e2 t 1 _ ^2 
2 - < 1 < - . - - -

Thus 0 _ et < I, i = 1, 2, and ex + e2 < 1 holds. The acceptance regions _t(ei) 
and Q2(e2) depend now on the values ex and e2 respectively: 

Qx(ei) — {x e £>: max P(toy | x) = P(col | x) ^ 1 — ej 
(39) 

^2^2) = {x s £?: max P(coy J x) = P(a>2 | x) _ 1 — e2) 
7 = 1,2 

and the reject region depends on both values ex and e2: 

/ \ i ~ ei P(cQi I x) 1 — ei) ,.ns 
o0(«lf e2) = x e a: -—?- < D ' ' < H • (40) 

[ 1 - e2 P(to2 I x) e! J 
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The error rate and the reject rate 
2 

E(eu e2) - 1 - _T f0i(-l) p,(x) dx (41) 
> = i 

Rr(el5 e2) = Jfio(ei(e2) p(x) dx (42) 

respectively, are now functions of both el and e2. 
If e^ are related to the loss functions by 

of "~ Ln . - . 
* , • - - _ _ — , i,j = 1,2, j 4= i 

Loi — L/j + Lij — L0j 
then 

L12 — L22 _ 1 — ex A L ± and ^ 0 2 - ^ 2 2 

L01 — LX1 ex L21 L01 1 — e2 

Therefore from (38) and (32) it follows that the decision rule (38) with predetermined 
conditional probabilities of error is also minimum risk rule. 

If el = e2 = Xr) then the rule (38) coincides with the Bayes rule (36). 

2.4.3 Bayes Gaussian rule 

As an illustrative example, suppose that pt(x), i = 1, 2 is a multivariate Gaussian 
(normal) density function with mean vector ]it and covariance matrix £ ; ; that is, 

Pi(x) = (27U)-'"/2 \Xi\-V2 exp [ - i ( x - H ^ - r ^ x - |i,)] , i = 1, 2 . 

Then the Bayes rule (36) can be reformulated in the following way: 

d*(x) = dx if D(x) = T! 

= d2 if D(x) < T2 

= d0 if T2 < D(x) < T, , 
where 

D(X) = log EM = _ | [(X _ ^ T L l - l ( x _ ^ _ (x _ ^ T _ - l ( x _ ^Yj ( 4 3 ) 

^a(x) 

Tx = log ^ £_J I Z J E and T2 = log - ! - |52J - A - . (44) 
P . | S . | A, P . | S . | 1 - A, 

The equation of the decision boundary separating the acceptance region Ql = 
= {XEQ: D(X) ^ T j from the reject region -Q0 = {x e (2: T2 < D(x) < TJ is 

D(x)=Tx. (45) 

It is clear that the equation of the decision boundary separating the acceptance 
region Q2 = {xe Q: D(x) — T2) from region Q0 is 

D(x) = T2 . (46) 

The equations (45) and (46) are quadratic in x. 
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If Ej as £ 2 = £ , the equation (45) reduces to 

xT S - 1 ^ - |i2) = Knx + H2)
T E-.fdl, - Ha) + log £ - - — ' , (47) 

PI ^r 

and the equation (46) reduces in a similar way too. 

The decision boundary D(x) = Tt, i = 1, 2, is now linear i.e. a hyperplane J^t 

in m-dimensional feature space. The hyperplanes Jf x and Jf 2 are parallel. 

Let 

w = S-^n- - (i2) and w, = [ - i ( n . + u.2)
Tw + TJ (48) 

for ( s - 1 , 2 then the equation of hyperplane Jft is 

xTw + w(. = 0 , i = 1, 2 . 

In the important case when there are no rejects, the equation of the discriminant 
hyperplane Jf is obtained by taking Xr = \ in (47). The hyperplane ffl is sometimes 
referred to as the Anderson discriminant hyperplane [1], specifically 

x " ^ 1 ^ - n2) = iOi. + p ia^L-^ l i , - »i2) + l o g ^ . (49) 
Pi 

If a priori probabilities are equal (Pt = P2), the optimal regions Qx and Q2 are 
complementary half-spaces. In this case the error rate of Bayes rule is (1 — (j}(\A))y 

where </> denotes the standard univariate normal distribution function and A is the 
positive root of A2 = (u^ — fi2)

T ---_ 1(f*i ~" M2)> which is the so called Mahalanobis 
distance measure [1]. 

2.5 Linear discriminant functions 

The classification rules discussed in Sections 2.2 and 2.3 relied heavily on the 
assumed knowledge of the underlying statistical distributions. In some simple cases 
we were able to obtain the explicit form of the Bayes rule as it was shown in Section 
2.4. 

A radically different approach is based on the assumption that the functional 
form of the decision boundary is selected a priori. In other words, the analytical 
expression of the decision boundary is given except for the values of the set of 
parameters. 

For example, for a given functional form D(x): Q -*• U and the problem of c 
classes, one possibility is to have c + 1 discriminant function D;(x): Q -> U; i = 
= 0, I, ..., c. Classification of a pattern x is performed by forming these c dis­
criminant functions and assigning x to the class associated with the largest dis­
criminant function. 

The selection of a suitable functional form for a discriminant function is a problem 
of crucial importance. 
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Let us consider the family of linear discriminant functions of the form ([1], [34]) 
m 

IXX) = X WiXi + W0 — x T w + W0 • (50) 
i = l 

The m-dimensional vector w = (wl9 ..., wm)T is called the weight vector and w0 

is the threshold weight. 

We introduce the necessary notation. Let \it denote the class-conditional mean 
vector of x and 

H = t PiVi with u , = E,{x} :; !i-.-- (51) 
j = i 

denote the mean vector of the mixture distribution. For c classes, let SB designate 
the between class covariance (or scatter) matrix 

SB = £ Pfa - p) (nt -\i)r = t PiPj(fii - ft) (Hi - ]ijf • (52) 
i = i j g j 

For the problem of c classes, SB has rank at most equal to (c — 1). So, in the two-class 
case, SB has rank one, unless the two classes have identical mean vectors. Let E ; 

be the conditional covariance matrix 

E < - . E l { ( x - : | i l ) ( x - j i l )
T } , i = l,...,c i53) 

and Sw be the average class-conditional covariance matrix, frequently called the 
within class scatter matrix, 

Sw = tP£i- (54) 
i = l 

IfEj = E2 = ... = Lc = E, thenSw - 2 . 
In what follows we will restrict ourselves to the two-class classification problem. 

2.5.1 Linear classification without rejection 

The decision rule corresponding to the discriminant function D(x) of (50) is: 

assign x to class ca, iff Dfx) > 0 
; ; : (55) 

assign x to class co2 iff D(x) < 0 . 

If D(x) = 0, x can be assigned to either of the classes. The decision boundary is 
defined by the equation D(x) = 0. As D(x) is linear in x the decision boundary is 
a hyperplane in m-dimensional space. 

The quality of classification according to (55) depends on the vector w and the 
weight w0. In this section we shall present the least-mean-squared-error (cf. e.g. 
Wee [49]) and Fisher criteria (cf. Fisher [20]) for the determination of w and w0;. 

(i) The least-mean-squared-error (MSE) criterion of optimality of a linear 
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discriminant function D(x) is taken to be 

J(w,w0) = iP iE,.{(D(x)-<5 (.)2} 
i = l 

where Si is the desired value of D(x) if cot is true, i = 1,2. J(w, w0) is a measure of 
the mean-square-distance between D(x) and Sh i = 1, 2. The closer J(w, w0) is to 
zero, the better D(x) is in the MSE sense. With the following arbitrary choice 

E{D(x) | x e w j = 1 and E{D(x) \xeco2] = - 1 

and with Sw non-singular, the following values can be determined (see e.g. [14]) 

2PXP2 Sy'Qt. - ji2) 
w- = 1 + t r ( S ^ S B ) 

The minimum of J(w, w0) is then 

r/ * *\ 4 P ! P 2 

The equation of the decision boundary xTw* + w* = 0 in terms of the parameters 
of the underlying distributions is after the analytical modifications 

x т c - i V ( l - i - fe) - H T V0-i - I-2) - ?x

 p

2 [1 + PxP2 t r ( V S « ) ] • 

Remark. If the classes have equal apriori probabilities (P1 = P2) and the class-
conditional probability density functions have identical covariance matrices (X^ = 
= L 2 = £), then the equation of the linear decision boundary in (56) coincide with 
the equation of the Bayes optimal Anderson discriminant plane (49), because (56) 
and (49) both reduce to 

( x - n f E - 1 ^ . - n 2 ) = 0 . (57) 

If we further assume that the classes are normally distributed, then MSE criterion 
yields the Bayes-optimal decision boundary. Consequently, the error rate can be 
calculated as in Section 2.3.4. In more general cases at the best we will be able to 
derive an upper-bound on the error rate EMSE associated with the discriminant 
function in (56): 

E < j(w*> w?) =- 4 p i p 2 m 
M S E - 1 - J ( w * , w * ) ( l - 4 P 1 P 2 ) + t r (S^ 1 S B ) ' V ^ 

Therefore a small mean-squared error J(w*, w0) or a large tr (S^Sg) is synonymous 
with a small expected error rate (see e.g. [14]). 
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(ii) In classical discriminant analysis which finds its origin in the classical paper 
by R. A. Fisher [19], the optimal vector w is the one for which the Fisher discriminant 
ratio ([20], [14]) 

F(w) = ^ , - ••• (59) 
w SjyW 

with SB and non-singular S^ as in (52) and (54), respectively, reaches maximum. 
The maximum of the right-hand side of (59) with respect to w occurs, when w is 
given by 

w* = S^O-i - fe) . (60) 
Then 

E(w*) = max E(w) = PJtfa - n2)T S^(Hi " l»a) = tr ( S # S , ) . (61) 
w*0 

Remark. The vector w* of (60) corresponds identically to the weight vector of 
the MSE linear discriminant function in (56). 

The maximalization of the Fisher discriminant ratio does not involve the threshold 
weight w0. It is shown in [14] that there exists a threshold weight w* such that 
D(x) = xTw* + w* is Bayes optimal. 

The determination of the linear discriminant function by using MSE and Fisher 
criterion does not involve very constraining assumptions regarding the underlying 
distributions. It is implicitly assumed that these distributions have first and second 
order moments. For w* to be different from null vector we should have \it #= \i2. 
If Hi = n2 and H.l = E2 then no decision regarding classification can be made 
because always D(x) = 0. If the two-class distributions exhibit both separability 
of the means and the covariances and we wish to employ a (suboptimal) linear 
classifier then a minimum MSE approach is applied. 

2.5.2 Linear classification with reject option 

The allocation of a pattern to one class from two classes with possibility of reject 
option can be done by using linear discriminant function as follows: 

assign the pattern x to class co1 (co2) 

if xTw ^ — wt (xTw —̂ — w2) ; (62) 

reject the pattern x to classify 

if — wt < xTw < — w2 . 

The problem is a proper choice of a vector w and two threshold weights wx and w2. 
In the case of two multivariate normal distributions with mean vectors jil5 \i2, equal 
covariance matrices Ej = L2 = £ and (0, 1, Ar) loss function the choice for w and 
wt, i = 1, 2 as in (48) leads to the Bayes optimal rule. 
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2.6 Linear transformation and Bayes classification 

As mentioned above the most meaningful performance criteria for a classification 
are the average risk (11) (if the losses are known) or the error and reject rates (7) 
and (8), respectively. We can construct the Bayes optimal decision rule (13), however 
if the dimension of feature space is greater than one, then the Bayes risk or error 
rate are difficult to compute without additional class structure assumptions (e.g. 
normal distributions with equal covariance matrices). 

In this connection the problem of the classification of any pattern x may be trans­
formed from m-dimensional space Rm to one-dimensional space R. All pattern 
vectors are projected on the line with the direction w, i.e. the number 

y = xTw (63) 

is related to each vector x. The transformed space we denote by <$J c R. The trans­
formed observations y for class &>,- are then distributed with the density pt(y, w), 
i = \,...,c; the common transformed density is p(y, w). The Bayes risk (17) for 
the transformed data (63) may then be denoted by 

R*(") = iLojPjLwPj(y>")dy + t iLiJPjj^)Pj(y,^)dy, (64) 
: : ; • • •?• . ! •< .1 j = l J = l i = l 

where the transformed Bayes decision regions are given by 

O0(w) = {y e ®: r0(y) = min rt(y)} (65) 
i = 0,...,c 

Qi(vr) = {y e W: rt(y) = min r /y)} , i = 1, . . . , c (66) 
j' = 0 , . . . , c 

with the conditional risk for transformed data 

n(y) = tLupjPj(y>*)lp(y>w) > i = o,...,c (67) 
J = I 

The Bayes optimal dicision rule is then defined as follows: 

Assign a pattern x to class cof (i.e. d(x) = dt) 

if y = xTw G Qi(w), i = I, ..., c ; (68) 

reject a pattern x (i.e. d(x) = d0) 

if y = xTwe £20(w) , 

where Q0(yv) and £?*(w), i = 1, ..., c are as in (65) and (66), respectively. 
It is clear that R* ^ R*(w). 
In two-class case for (0, 1, Xr) loss function, the decision rule (68) becomes 

d(x) = dx if piPi(y>")>!-A ( 6 9 ) 

. . P2p2(y, w) K 

= d2 if glgife^^-JL. 
P2p2(y, w) 1 - K 

= d0 otherwise 
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Theoretical results related to finding vector w which minimizes R(w) for two 
multivariate normal classes with equal a priori class-probabilities and (0, 1) loss 
function were initially presented by Guseman and Walker [27]. The associated 
computation procedure was presented by Guseman and Walker [28]. Results for 
the general case of c m-dimensional normal classes with arbitrary a priori class-
probabilities and (0, 1) loss function appeared in Guseman, Peters, and Walker [29]. 

The decision procedure used in PREDITAS system is based on the decision rule 
(69), where the transforming vector w maximizes the Fisher discriminant ratio (59). 

3. FEATURE SELECTION AND EXTRACTION PROBLEM 

This chapter is devoted to the theoretical background of feature selection and 
extraction methods, as well as to the comparison of feature selection and extraction 
from the practical viewpoint. Finally, basic properties of so called search algorithms 
are discussed from the general point of view and some definitions concerning the 
effectivity of individual features in relation to the selected subsets are presented. 

3.1 Problem formulation and basic approaches to its solution 

One of the fundamental problems in statistical pattern recognition is to determine 
which features should be employed for the best classification result. The need to 
retain only a small number of "good" features arise due to computational reasons, 
cost considerations. 

Two general strategies have been used for dimensionality reduction: 
(i) Feature selection: Chose the "best" subset of size m from the given set of M 

features, 
(ii) Feature extraction: Apply a transformation to the pattern vector and select 

the m "best" features in the transformed space. The each new feature is a combina­
tion of all the M features. 

The pioneering work in the area of feature selection and extraction is associated 
with the names of Sebastyen [46], Lewis [36] and Marill and Green [38]. 

The goal of feature selection and extraction is to determine the features which are 
important for the discrimination between classes. 

The main objective of feature selection methods is to accomplish dimensionality 
reduction by reducing the number of required measurements. This can be achieved 
by eliminating those measurements which are redundant or do not contain enough 
relevant information. Thus the problem of feature selection in the measurement 
space lies in selecting the best subset X of m features. 

X — {xt: i = 1, 2, ..., m, xt e Y} 

from the set Y, 

Y={yj:j=l,2,...,M} 
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of M possible features representing the pattern, clearly m < M. By the best subset 
we understand the combination of m features which optimizes a criterion function 
J(*) over all possible subsets E of m features. Let sets X and E of features be repre­
sented by vectors x of f respectively, whose components are the elements of X and E. 
Then the problem of feature selection becomes one of finding vector x satisfying 

J(x) = maxJ(f) . 
f 

In contrast, feature extraction is considered as a process of mapping original 
features into more effective features. Therefore feature extraction consists of extract­
ing m features, each of which is a combination of all M initial features, m ^ M. The 
feature extraction can be viewed as the transformation B 

B = (blt ...,bm), 1 = m S M 

which maps pattern vector y from the M-dimensional feature space into m-dimen-
sional space, i.e. 

x = B(y) with x ; = bi(yu ...,yM), 1 = i = m 

(in general B(y) is any vector function of y). The mapping B(y) could be obtained 
by optimizing a criterion function J(*). More specifically, B(y) is determined among 
all admissible transformations {B(y)} as one that satisfies 

J{B(y)} = max J{B(y)} . 
B 

These mapping techniques can be either linear or nonlinear (cf. Biswas et al. [2]). 

Remark. The class of linear mappings includes the feature selection since the 
selection of any m features can be accomplished by selecting the appropriate m x M 
matrix B, consisting only of O's and l's. 

From the theoretical viewpoint, an ideal criterion of feature set effectivity in a given 
space is the classification error. However, this criterion function cannot be used in 
practical applications because of its computational complexity and, therefore, 
in the literature there are proposed various concepts of class separability on which 
alternative feature selection and extraction criteria are based. 

Decell and Guseman [13] have developed an extensive bibliography of feature 
selection procedures prior to 1978. Devijver and Kittler [14] provide perhaps the 
only comprehensive exposition of such measures through early 1982. 

Criteria for effectivity of feature set may be divided in two basic categories: 

(i) Criteria based on the notion of interclass distance. 
(ii) Criteria based on probabilistic distance measures, on the measures of prob­

abilistic dependence and on the information measures. 

Criteria of the first group are based on the simplest concept of the class separability: 
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the greater is the distance between patterns of two classes, the better is the separability 
of the two classes. 

A main drawback of the criteria of the first group lies in the fact that they are not 
directly related to the probability of misclassification. "Good" are such features 
which give the maximum of the interclass distance. These criteria can be formulated 
using only the parameters p, u-,-,2,-, S^, SB and $w + SB defined in (2.51), (2.53), 
(2.54) and (2.52), respectively, when restricting ourselves to a certain class of distances. 
A detailed information about the probabilistic distribution of the classes is not 
used in defining the interclass distance and thus the interclass separability measures 
are attractive from the computational point of view. As opposed to the first group, 
these criteria have a direct relationship to the probability of misclassification. How­
ever, when solving real problems from practice, the required complete information 
about the probabilistic structure is rarely known. Moreover, these measures are by 
far less attractive from the computational point of view, than those based on the 
interclass distance. 

More details about these measures can be found in Devijver and Kittler [14] 
and their references on these measures. 

3.2 Comparison of extraction and selection principle from practical viewpoint 

Both the approaches to the dimensionality reduction — feature selection and 
a more general feature extraction have their justification. When deciding between 
them, one has to be aware of their respective priorities and drawbacks so as to be 
able to choose the right approach from the point of view of ultimate goals and 
requirements, concerning the diagnostic task to be solved. 

Let us state briefly the priorities and drawbacks of both the approaches from 
a practical viewpoint. 

Feature selection 

i) Priorities: 
1) Selected features do not loose their original physical interpretation. They have 

an exactly defined meaning which is in many application fields an essential 
fact. 

2) Data which are not selected among the diagnostically significant features 
need not be measured or collected at all during the application phase. This 
fact may result in a considerable saving of time and costs in the phase of data 
collection where the ratio of unavoidable tedious human work is very often 
a restrictive "bottle-neck" factor. 

ii) Drawbacks : 

1) Preservation of the physical interpretability is unfortunately paid by im­
possibility to achieve generally the optimum in the framework of selected 
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criterion of feature significance as compared to general feature extraction 
(optimally extracted subset of m transformed features will have generally abetter 
discriminative ability than the best subset of m original data components). 

Feature extraction 

i) P r io r i t i e s : 

1) Discriminatory power achievable with optimally transformed is generally 
higher than in the case of restricting ourselves only to selection without any 
transformation. 

ii) Drawbacks : 

1) Since new features are the functions of all the original data components (e.g. 
their linear combination), they lack a straightforward and clear physical 
meaning. They may be looked upon as a certain abstraction and cannot be 
practically reasonably interpreted. 

2) None of M original data components can be saved in the application phase. 
Quite contrary, all of them must be measured and collected since the resultant 
m-dimensional feature vector is derived only from the complete original 
M-dimensional data vector by applying a suitable transformation. 

From the outlined priorities and drawbacks of both the approaches we can see 
that their properties are to a certain extent rather contradictory. 

Feature selection methods will be more suitable in cases when the potential user 
puts emphasis on preserving the interpretability of original data and prefers decision­
making on the basis of meaningful features. Furthermore, they will be suitable 
when one of the goals is to reduce tediousness and costs of data collecting by finding 
the data components which can be completely excluded from further collecting 
process. Most problems of medical differential diagnostics belong to this class of 
tasks. 

On the other hand there exist applications where the requirements are quite 
opposite. The emphasis is laid on optimum reduction of the problem dimensionality 
and neither any transformation of features nor the necessity of measuring all the 
original data components represent any problem at all. A typical example of such 
a diagnostic task is the VCG (vectorcardiogram) classification where the primary 
data vector is represented by a time series (sampled VCG signal), having several 
hundred members. Since the physical interpretation of respective sampled points 
of the VCG curve is discussable anyhow and, moreover, since the signal is recorded 
automatically and thus the possibility to reduce the number of measured components 
plays obviously a less important role, feature extraction methods are preferable 
in this case. 

Since most diagnostic and pattern recognition problems we have encountered 
have belonged to the first discussed class of problems, the feature selection approach 
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has been given priority in the PREDITAS system. However, a feature extraction 
method based on Karhunen-Loeve expansion [48] is also considered. It is used 
in respective cases, when justified by the specific character of a solved task, to perform 
a primary reduction of dimensionality before processing data sets by the PREDITAS 
system. 

3.3 Feature selection 

The feature selection problem itself consists of two different problems: 
(i) to order single features or sets of features according to their discriminating 

power; 
(ii) to determine an optimal number of features (i.e. the optimal dimensionality). 

Since the second problem is closely connected with the overall classifier per­
formance, we shall postpone its discussion to the respective part of this paper, where 
other related problems like the reliability of classification, optimal number of steps 
in the stepwise decision rule, etc. will be discussed. 

The first particular problem can be viewed as an optimization problem requiring 
a criterion function / ( • ) and a so called search procedure. 

Let 
Y= {yy.j = 1,2,. . . ,M} 

be the set of M possible features representing the pattern, M>m. As mentioned in 
Section 3.1, the best subset X of m features 

X = {xt: i = 1, 2, ..., m, xt e Y} 

is the combination of m features which maximizes a criterion function J(*) with 
respect to any other possible combination F = {/,: i = 1, 2, ..., m,fte Y} of m 
features taken from Y. 

We will call the individual significance S0(yi) of the feature yh i = 1,2, ..., M 
the value of the criterion function J(') if only the ith feature is used. 

Let us order features yte Yso that 

J(y\) = J(yi) = ---J(ym)^---^J(yM) 

A low value of J(yt) implies a low discriminative power and thus the simplest method 
of selecting the best feature set seems to be to select the m individually best features 
in Y, i.e. the "best" set X of cardinality m would be defined as 

X = {yt: Vi = m] 

However, it is well known that the set of m individually best features is not necess­
arily the best set of size m even for the case of independent features. Since it is highly 
unlikely that the features will be independent in practice, some more sophisticated 
methods of selecting the best feature subset must be employed. 

Unfortunately, the only way to ensure that really the best subset of m features 
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from a set of M features is chosen is to explore all I J combinations (cf. Cover and 

Van Campenhout [12]). It is apparent that direct exhaustive searching will not be 
possible and that in practical situations computationally feasible procedures will 
have to be employed. 

In most search procedures the resultant feature set is constructed either by includ­
ing to or excluding from the current feature subset. More precisely; feature subset 
to be evaluated at the /cth stage of a search algorithm is constructed by adding to 
or substracting from the appropriate feature subset, obtained at the (k — l)th stage 
of the algorithm a certain number of features until the required feature set of cardi­
nality m is obtained. 

The search procedures start either from an empty set where the resultant set is 
consecutively built up by adding respective features, or from the complete set of 
measurements Y where the resultant set is gradually built up by successive exclud­
ing of superfluous features. The former approach is known as the "bottom up" 
search is latter while referred to as the "top-down" search. Equivalent terms that may 
be found in the literature too and which are used in the PREDITAS system are 
"forward" or "including" for the "bottom up", and "backward" or "excluding" 
for the "top down" searching respectively. 

Let Fk be a set of k features from the set of M available features Y, i.e. 

Fk = {Ui = 1,2,...,k,fteY} 

Further denote by Fk the set of (M — k) features obtained by removing k features 
fu ...,fk from the complete set Y, i.e. 

Fk = {yi:yieY,l = i = M, yt * / , , V/} 

Let J(') be a chosen criterion function (measure of class separability). Then 
in the "bottom up" approach the best feature set Xk at the /cth stage of an algorithm 
satisfies 

J(Xk) = max J(Fk), 
{Fk} 

where {Fk} is the set of all the candidate sets of k features and it is as a rule determined 
at the (k — l)th step of the search procedure. The initial feature set is an empty set, i.e. 

X0 = E0 P 0 

and the final feature set X is given as 

X = Xm . 

In the "top down" approach the initial feature set X0 is given as 

X0 = F0 = Y. 

Successively reduced feature sets Xk, k = 1, 2, ..., M — m are constructed so that 

j(Xk) = max j(Fk), 
{Fk} 
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where {Fk} is the set of all the candidate combinations of features, Fk. The final feature 
set X is defined as 

X — XM-m . 

Narendra and Fukunaga [39] show that if the feature separability criterion used 
satisfies the monotonicity property then the branch and bound search strategy 

guarantees the optimal feature subset without explicitly evaluating all possible 
feature subsets. It is basically a top down search procedure but with a backtracking 
facility which allows all the possible combinations of m features to be examinated. 
If the feature selection criterion functions are monotone then for nested sets of features 
X{, i = 1,2, ...,k, i.e. 

X\ => X2 =>...:=> Xk , 

the criterion functions, J(X(), satisfy 

By a straightforward application of this property, many combinations of features 
can be rejected from the set of candidate feature sets. 

4. FEATURE SELECTION AND SEARCH METHODS IN PREDITAS 
SYSTEM 

This chapter deals with the principle of feature selection used in the PREDITAS 
system, as well as with the employed search procedures. Their formalized description 
is presented and respective search procedures are compared both from the theoretical 
and practical point of view. 

4.1 Principle and methods of feature selection employed in PREDITAS system 

The feature selection procedure employed in the PREDITAS system is based 
on the criterion function called the measure of discriminative power (MDP), which 
is the measure of class separability belonging to the first group of measures discussed 
in Section 3.1. The MDP is defined for the m-dimensional pattern vector y = 
= (yi,...,ym)T(m = M)by 

A ( y ) - t r ( S ^ l S B ) , (1) 

where S^ and SB denote the average within class scatter matrix and the between 
class scatter matrix, respectively, defined by (2.54) and (2.52) for c = 2. This feature 
selection criterion is equal to the maximum value of Fisher's discriminant ratio 
(2.59). The advantage of the criterion (1) is a computational simplicity since it is 
formulated using only the parameters \it, H,t. The main drawback is the fact that 
\\t = \i2 is the necessary and sufficient condition for 1 = 0 and that does not take 
into consideration the difference of class covariance matrix (see Duda and Hart 
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[16]). The covariance matrices £; have only the normalizing role. Several attempts 
have been made to extend the Fisher criterion (Malina [37]). 

Before describing the search procedures used in the P R E D I T A S system, let us 
briefly introduce some basic concepts of search procedures and then the definitions 
of individual features significance in the process of searching the best resultant 
subset. 

As stated in the previous chapter, feature selection is usually realized by means 
of search procedures. These search procedures may be either including or excluding 
and their basic forms are called "straight methods". The search for feature selection 
is independent of the criterion function (as opposed to feature extraction). 

Straight including and excluding methods can be shown to be only step optimal, 
therefore, various heuristic procedures aimed at closer approaching the optimal set 
are utilized. Two such methods, which we have called "floating methods" as opposed 
to "straight methods", have been designed and implemented in the PREDITAS 
system. 

Before describing the corresponding algorithms formally, the following definitions 
have to be introduced: 

Let Xk = {x;: 1 <; i £ k, xt e Y] be the set of k features from the set Y = {yt: 1 ^ 

= i ^ M} of M available features. Denote X(Xk) = X(xk), where x^ = (x l9 ..., xfe)
T. 

The significance Sk-^Xj) of the feature Xj,j = 1, 2, ..., kin the set Xk is defined by 

Sk_1(xj) = X(Xk)-X(Xk-xj). (2) 

The significance Sk+1(fj) of the feature fj from the set Y — Xk 

Y-Xk = {ft:i = 1 , 2 , . . . , M - fc,/«e:f,/,*X|VZ} 

with respect to the set Xk is defined by i •.<• 

Sk+i(fj) = KXk+fj)-Kxk)- (3) 

Remark. For k = 1 the term feature significance in the set coincides with the 
term of individual significance defined in Section 3.3. 

We shall say that the feature Xj from the set Xk is 
(a) the most significant (best) feature 
(b) the least significant (worst) feature in the set Xk if 

(a) S*-ifo) - max S^fa) => X(Xk - Xj) = min X(Xk - xt) (4a) 

(b) Sk^t(xj) = min S^fa) => X(Xk - Xj) = max X(Xk - xt) , (4b) 
1 g / ^ k i^'^k 

respectively. 
We shall say that the feature fj from the set 

Y-Xk = {/,:,-= 1,2, . . . ,M - ' * , / , € r . / j + x-VJ} ^ 

(a): the most significant (best) feature 
(b): the least significant (worst) feature 

38 



with respect to the set Xk if 

(a) Sk+1(fj)= max Sk+1(f) => X(Xk + f}) = max k(Xk + / . ) (5a) 
l g i ^ M - k l^ igM-fe 

(b) Sk+1(fj)= min Sk+1(fi)=>X(Xk+fJ)= min 2(X, + / ) , (5b) 
l g i ^ M - k 15igM-fe 

respectively. 

4.2 Algorithms of searching procedures in PRED1TAS system 

As stated before, there are two basic types of searching procedures in the 
PREDITAS system, namely straight and floating methods. In each type there are 
two algorithms — including (or forward) and excluding (or backward) named 
according to the basic direction of search. We shall describe first both the direct 
methods and afterwards the floating methods. 

4.2.1 Straight methods 

(i) Sequential Including (Forward) Selection (SIS) 
The SIS method is a search procedure where one feature at a time is added to the 
current feature set. At each stage the feature to be included in the feature set is 
selected from among the remaining available features so that the new set of features 
gives the maximum value of MDP. 

Let us suppose k features have already been selected to form the feature set Xk~ 
If the feature fj from the set Y — Xk is the best feature with respect to the set Xk 

(i.e. (5a) is satisfied), then the new feature set Xk+1 is given as 

^fc+i = ^fe + fj 

The algorithm is initialized by setting X0 == 0. 
The main disadvantage of the SIS method lies in the fact that once a feature is 

included in the feature set, the method provides no possibility for discarding it in 
later stages from the selected feature set though this could yield a higher value 
of MDP. (It is apparent that e.g. already the best pair of features does not necessarily 
contain the individually best feature selected in the first step of the algorithm). 

(ii) Sequential Excluding (Backward) Selection (SES) 
The SES method is a search procedure where one feature at a time is excluded from 
the current feature set. At each stage the feature to be excluded from the feature set 
is selected so that the new reduced set of features gives the maximum possible value 
of MDP (its decrease is minimized). 

Let us suppose that at the kth stage of the algorithm k features have already 
been excluded from X0 = Yto form the feature set Xk. If the feature Xj is the worst 
feature in the set Xk (i.e. (4b) is satisfied), then the reduced feature set Xk+ y is given as 

Xk+1 — Xk — Xj 

The algorithm is initialized by setting X0 == Y 
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The main disadvantage of the SES method is analogous to that of the SIS method — 
once a feature is excluded from the feature set, the method provides no possibility 
for including it in later stages to the selected feature set though this could yield a higher 
value of MDP. 

4.2.2 Floating methods 

As stated earlier, two more sophisticated heuristic procedures aimed at over­
coming the drawbacks of the straight methods have been designed for the PREDITAS 
system. They have been named "floating methods" since the resulting dimensionality 
in respective stages of the algorithm is not changing monotonously but is really 
"floating" up and down. 

Though both these methods switch between including and excluding the features, 
we recognize two different algorithms according to the dominant direction of se­
arching. 

(i) Sequential Including (Forward) Floating Selection (SIFS) 
Suppose that we are at an arbitrary node at level k. That means that for all preceding 
nodes at levels i = 1, 2, ..., k — 1, we have value Xt — X(Xt), where Xt is the set 
of i features. The current feature set after k features have been selected in Xk = 
= {xu ..., xk] and Xk = X(Xk). 

The algorithm realizing the SIFS method can be then described as follows: 

Step 1: (Including). Using straight SIS method include feature xk+1 from the set 
of available features, Y - Xk, to Xk, to form feature set Xk+1 (i.e. the most 
significant feature xk+1 with respect to set Xk has been included in Xk). 
Therefore 

Xk +1 = Xk + xk+1 

Step 2: (Conditional excluding). Find the least significant feature in the set Xk+1-
If xk+l is the least significant feature in the set Xk+1, i.e. 

Xk = X(Xk+1 -xk+1)^X(Xk+1 -xj), for Vj=l,...,k, 

then set k := k + 1 and return to Step 1. 
If xr, 1 ^ r ^ k is the least significant feature in the set Xk+1, i.e. 

*"(--*+1 ~~ Xr) > ^ k •> 

then exclude xr from Xk+1 to form a new feature set X'k i.e. 

Xk = Xk +1 — xr . 

Now if k = 2, set Xk : = X'k, Xk : = Xk and return to Step 1 else go to Step 3. 

Step 3: Find the least significant feature xs in set X'k. If 

K-i = ^(xk — xs) > xk_1, 
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then exclude xs from X'k to form a new set X'k_1, i.e. 

Xk _ ! = Xfc — Xs . 

Set k : = k - 1. Now if fe = 2 then set Xk : = X'k,Xk:= X'k and return to Step 1 
else repeat Step 3. 

The algorithm is initialized by setting k = 0 and XQ = 0 and the SIS method is 
used until feature set of cardinality 2 has been obtained. Then the algorithm continues 
with Step 1. 

(ii) Sequential excluding (backward) floating selection (SEFS) 
Suppose that we are at an arbitrary node at level k. It means that for all the preced­

ing nodes at levels i = 0, 1, ..., k — 1 we have value AM_£ = X(Xt), where X{ is 
the set obtained by removing i atributes from the complete set of features X0 = Y. 
The current feature set after k features x1} ...,xk have been discarded is Xk and 

A-M-k = -H-Nfc)« 

The algorithm realizing SEFS method can be then described as follows: 

Step 1: (Excluding). Using straight SES method exclude from the set Xk feature 
xk+1 to form reduced set Xk+1 (i.e. we exclude from the set Xk the least 
significant feature in the set Xk). Therefore 

Xk+1 ~ xt — xk+i • 

Step 2: (Conditional including). Find among the excluded features the most sig­
nificant feature with respect to set Xk+1. If xk+1 is the most significant 
feature with respect to Xk+1, i.e. 

AM_k = X(Xk+1 + xk+1) _: X(Xk+1 + xj) for \fj = l,...,k, 

then set k := k + 1 and return to Step 1. 
If xr, 1 ^ r = k is the most significant feature with respect to set Xk+1, i.e. 

^M-k — ^(Xk+l + Xr) > A-M-k •> 

then include xr to set Xk+1 to form the new feature set X'k, i.e. 

%k — ^fc+1 + Xr • 

Now if k = 2, then set Xk := X'k, XU-k \- XM-k a n d return to Step 1 else 

go to Step 3. 

Step 3: Find among the excluded features the most significant feature x. with respect 

to set X'k. 

If 

AM-(ft+l) — ^\Ak + Xs) > ^Af-(fc+l) » 

then include xs to set Xk to form the new set X'k+1, i-e-

%k + 1 ~ Xk + Xs . 
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Set k := k + 1. Now if k = 2 then set xfc := x£, AM_fc ; = ^ _ k and return 
to Step 1 else repeat Step 3. 

The algorithm is initialized by setting k = 0, X0 = Yand the SES method is used 
until 2 least significant features are excluded. Then the algorithm continues with 
Step 1. 

4.3 Comparison and discussion of described search methods 

The comparison of all four in Section 4.2 employed methods together is rather 
difficult. The differences between straight methods and floating ones lie mainly in 
computational and other practical aspects. On the other hand, the difference between 
forward and backward methods is in some respect quite fundamental, though the 
computational point of view plays its role, too. We shall, therefore, discuss and 
compare first the straight methods alone, then the floating methods and finally 
the straight methods with floating ones. 

4.3.1 Comparison of straight methods 

When deciding which of the two straight methods should be preferred in a particular 
task, one must be aware of their differences both from the theoretical and practical 
point of view. 

The SIS method has the drawback inherent in all the "forward" sequential selec­
tion methods. The decision about including a particular feature at the first few steps 
of the algorithm is made on the basis of S^ and SB matrices of a low order k(k = 
= 1, 2, . . . ) . From it follows that only low order statistical dependencies of original 
pattern components are taken into consideration. This drawback does not concern 
the "backward" sequential relation methods to which the SES method belongs. 
The decision on excluding a particular feature is made taking into consideration 
the statistical dependencies of original pattern components in full dimensionality. 

More explicitly, the best features with respect to the set Xk in the SIS method are 
at earlier steps of the selection algorithm determined on the basis of the set Xk of 
low cardinality. Quite contrary, the worst features in the set Xk for the SES method 
are at earlier steps of the algorithm determined on the basis of the set Xk of high 
cardinality. 

The just stated facts seem to prefer uniquely the SES method. However, the 
problem is somewhat more complicated. In practice we are restricted to training sets 
of limited size, which is often not adequate to the problem dimensionality. In this 
case obviously the training set is not sufficiently representative with respect to the 
basic data set. The corresponding S^ and SB matrices of full dimensionality m are, 
therefore, not sufficiently representative either not mentioning numerical problems 
involved. From it follows a hidden drawback of the SES method, namely that though 
in comparison with the SIS method it takes better into consideration complex 
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mutual relations, these relations are not always determined quite reliably. On the 
other hand, though the SIS method utilizes at the beginning only less complex 
mutual relations, they are, however, determined more reliably even for training sets 
of a moderate size. 

From the computational point of view there are some basic differences, too, since 
the numerical propertirs of the SIS and SES methods are different. Since the SES 
method starts at full dimension m, where inversion of the matrix Sw is computed, 
it may happen that due to dependencies of data components this matrix is singular, 
generally it means numerical instability. Thus its inversion cannot be computed and 
the process of feature selecting is terminated uncompleted with the warning that one 
of the features should be eliminated before proceeding further (this elimination is not 
made automatically on purpose since any of the list of dependent features can be 
eliminated and the reasons for selecting one depend on the user's scale of pre­
ferences). 

On the other hand, the SIS method in such a case rejects a feature, the adding of 
which would lead to singularity, and the selection process will continue until its 
completion. Thus from purely numerical reasons, to begin with the SIS method is 
preferable in those cases when singularities in matrices can be expected. The SIS 
method ends in this case in a maximum dimensionality for which are matrices regular 
and then the backward SES method can be utilized. 

4.3.2 Comparison of floating methods 

The differences between the SIFS (including) and SEFS (excluding) methods are 
basically the same as those between the straight methods. However, the arguments 
in favour or against are not so strong in this case, since due to the "floating" principle 
both methods have the chance to correct decisions made wrongly in previous steps. 
In practice both the methods give quite often, though not always, the identical 
results. 

Nevertheless, the numerical considerations discussed in the previous paragraph 
hold even in this case. When very little is known about the data set and some de­
pendent components and thus the singularity of matrices is to be expected, the 
SEFS method should not be used prior to finding the maximum dimensionality 
for matrices regularity. 

4.3.3 Comparison of straight and floating methods 

The main difference between these two types of methods follows from the purpose 
with which have been the floating methods designed. They remove the fundamental 
drawback of straight methods — the total impossibility to make any desirable cor­
rections in later stages of the algorithm. Though always not absolutely optimal, they 
approach the optimum subset of any dimension much closer than the only step-
optimal straight methods. 
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However, as usually this advantage is at the expanse of priorities of straight 
methods. The floating methods need far more computer time so their use should be 
justified by special circumstances and only for the case of reliable representative 
training sets (there is no point in improving the selection criterion by a margin 
on the basis of complicated computations made on the basis of quite unreliable data). 

As far as the form of final results is concerned, there is an important difference. 
The straight methods give a clear ordering of features significance (either in increasing 
or decreasing order). The form of results in floating methods is quite different. Since 
the optimal "compositions" of subsets of cardinalities differing by one (e.g. Xk, Xk+1) 
may easily differ by more than one feature, it is here in principle impossible to order 
features according to their significance. The result is in the form of a binary table 
denoting the presence or absence of respective features in optimal subsets of successive 
dimensions. 

To summarize, we can state that at first the straight methods should be used 
to get a clear ordering of features significance and only afterwards the floating 
methods should be used when justified by special requirements and circumstances. 

5. SOME PRACTICAL IMPLICATIONS 

The design of the classifier in statistical pattern recognition generally depends 
on what kind of information is available about the class-conditional densities. 

If the information about these densities is complete, then the Bayes decision theory 
may be used. 

If it is assumed that the form of the class-conditional densities is known but some 
of the parameters of the densities are unknown then we have a parametric decision 
problem. In that case we replace the unknown parameters in the density functions 
by their estimated values. 

If the form of the densities is not known then we operate in nonparametric mode. 
In that case we must either estimate the density function or use some nonparametric 
decision rule (e.g. fc-nearest neighbor rule, see e.g. Devijver and Kittler [14]. 

Estimation of the expected performance of a classifier is an important, yet difficult 
problem. 

In practice, the class-conditional densities, in some case also the a priori class 
probabilities, are seldom specified and only a finite number of learning or training 
samples is available, either labeled (supervised learning) or unlabeled (unsupervised 
learning). The label on each training pattern represents the class to which that 
pattern belongs. Unsupervised learning refers to situations, where is it difficult or 
expensive to label the training samples. This is a difficult problem and, in practice, 
often has to rely on techniques of cluster analysis [15] to identitfy natural grouping 
(classes) present in data. The results of cluster analysis are useful for forming hypo­
theses about the data, classifying new data, testing for the homogeneity of the data, 
and for compressing the data. 
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Pattern recognition research has considered various questions concerning the 
relationship between the limited size of training set, the number of features and the 
estimation of performance criteria. The designer must decide whether this sample 
size is adequate or not, and also decide how many samples should be used to design 
the classifier and how many should be used to test it. 

In practice it is difficult to express or measure the loss incurred when the pattern 
is misclassified. In such cases the criterion of performance of the decision rule is 
the simple error rate rather than the average risk. It is very difficult to obtain an 
analytic expression of the error rate for a particular classification problem unless, 
of course, the class-conditional densities are Gaussian with common covariance 
matrices (see Section 2.4.3). 

Various methods have been proposed to estimate the error rate. They depend 
on how the available samples are divided into training and test sets. 

(i) Resubstitution method: In this method, the classifier is tested on the data set 
which has been used to design the classifier. But in this "testing on the training data" 
this method is optimistically biased: a sample based classification rule usually appears 
to be more successful with the data from which it was designed than in classifying 
independent observations [21]. 

(ii) Holdout method: In this method the available samples are randomly parti­
tioned into two groups. One of these groups is used to design the classifier and the 
other one is used to test it. This provides an independent test set, but drastically 
reduces the size of the learning set. This method gives a pessimistically biased per­
formance. 

(iii) Leave-One-Out method: This method [35] is designed to alleviate these 
difficulties. It avoids drastically dividing the available sample set into the design 
set and the testing set. In this method each sample is used both for design and testing 
although not at the same time. The classification rule is designed using (N — 1) 
samples and then tested on the remaining sample, where N is the total number of 
available samples. This is repeated N times with different design sets of size (N — 1). 
Thus the procedure utilizes all available samples more efficiently. 

By using these last two methods simultaneously we can obtain upper and lower 
bounds of the true performance of the classifier. 

(iv) Bootstrap method: More recently, Efron [17], [18] proposed a resampling 
method, in which the artificial samples are generated from the existing samples, and 
the optimistic bias between the resubstitution error and the classifier error when 
tested on independent samples is eatimated from them. 

Toussaint [47] catalogs these and other testing methods and gives an overview 
of some of the early associated work. More recent work is surveyed in Hand [30]. 

Fukunaga and Hayes investigated the effect of sample size on a family of functions, 
and found a manageable expression for the errors of classifiers [24], and applied 
these errors expression to the various methods of error estimation [25]. 

The current interest in paterrn recognition is to expand the domain of applications 
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of this methodology. This has resulted in more careful attention to practical issues 
such as reliable estimates of error rate, computational complexity, robustness of 
classifier, implementation of decision algorithms into hardware and utilizing contex­
tual or expert information in the decision rules. These are difficult problems and we 
do not yet know all the answers. 

6. SAMPLE-BASED PATTERN RECOGNITION 

In the sequel, we shall suppose that information about the classes cot is available 
only in the form of the training sample sets Tt generated from classes co,-, i = 1,..., c. 
We shall assume that ith training set 

Tt = {xijeQ:j= 1,2, . . . , N J , i = l,...,c (1) 

is a collection of Nt- independent pattern vectors xi;- in Q, identically distributed; 
Ni is the number of the pattern vectors in the set Tt called the size of the training set 
Tt. The c training sets we shall collectively denote by F(]V) = {F l 5 ..., Fc}. The size 

c 

of the training set F(JV) is N = £N,-. 
i = l 

The search for informative features and the design of an effective classifier, the 
essential steps in pattern recognition system design, will be now considered from the 
view of this kind of available information. 

6.1 Sample-based classification procedures derived from density estimators 

As stated earlier in Chapter 5, the a priori class probabilities and class-conditional 
densities are seldom specified. Then probability of error cannot be evaluated for 
an arbitrary classification rule; nor can the optimal rule be calculated. But labeled 
samples usually are available to determine estimators of class probabilities and class-
conditional densities, and therefore construct decision rule based on this samples. 

The decision rule based on the training samples we shall call sample-based decision 
rule and denote by cl. 

Classification rules are always sample-based in practice. But from the perspective 
of statistical decision theory, sample-based rules are substitutes for unknown optimal 
rules. 

Three issues concerned with sample-based classification rules are principal ones [26]. 
1. How to construct from the sample a "reasonable" rule to classify any future 

pattern x from a mixed population? 
2. How good is "reasonable" rule relatively to the unknown optimal rule? 
3. How good is "reasonable" rule in absolute sense? What is the estimate of its 

error rate? 
The same sample data which determine a decision rule are often used to estimate 

its non-error rate, i.e. probability of correct classification. But in this "testing on the 
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training data" intuitive estimation methods are optimistically biased: a sample-
based decision rule usually appears to be more successful with data from which it was 
designed than in classifying independent observations. 

Ideally one would like to construct a less biased estimator which also has small 
variance, is robust when normality fails, and can be computed easily (e.g. Devijver 
and Kittler [14] reviewed estimators with these multiple criteria in mild). 

6.1.1 Sample-based minimum error rate classification procedure 

First, we shall consider the sample-based counterpart of the decision rule minimiz­
ing error rate or maximizing non-error rate defined in Section 2.3. 

Most non-error rate estimators descend from one or the other of two concepts: 
(i) plug-in methods substitute estimated parameters into theoretical expression 

for non-error rate; 
(ii) counting a correct classifications of labeled samples and dividing by sample size 

gives sample non-error (success) proportion; 
(iii) posterior probability estimators combine aspects of both approaches. 

(i) A general plug-in estimator of the error rate 
A general plug-in estimator of the error rate, is formed by substituting the sample-
based estimates Pt and pt of a priori probability Pt and class-conditional density 
Pi, i = 1, . . . , c into appropriate expression (2.7). 

The plug-in estimator P of the error rate function E in (2.7) is 

m = iinjPiPi(^)dx, t+j 
/ - I 

for each rule deQ). 
Making an analogy with the criterion for optimality, it seems reasonable to use 

a classification rule which minimizes P. The argument which proves that the rule d* 
defined by (2.27) is optimal, shows also that P is minimized by the density plug-in 
rule d whose partition sets are 

n{ = {xeQ: Pipi(x) = max PJPJ(X)} , i = 1, . . . , c . 
j = l , . . . , c 

That is, 
wffi(d) = P(d) = 1 - J max Pjpj(x) dx . (2) 
de@ j=l,...,c 

Therefore, the plug-in decision rule d which is Bayes optimal with respect to the 
estimated distributions is given by 

d(x) = d( if xeQi, i = l,...,c (3) 

Remark. If normal densities pt(x) = p(x, \ih L) i = 1, 2 with common covariance 
matrices are parametrically estimated by pt(x) = p(x, u.(

A,£A) with mean vector 
estimates u.A and covariance matrix estimate LA and Pt = \, then region &x is the 
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half-space 

Qx = {x e Q: I3(x) < 0} , (4) 
and - _. A ,s 

Q2 = Q - Qlt (5) 
Where D(x) = ((# - ^) T ) Z*~i(x - i(|».f + tf)) . 

Thus the plug-in rule d defined by (3) with Qx and Q2 specified by (4) and (5), re­
spectively, is closely related to Anderson linear discriminative hyperplane (2.49) 
with estimated parameters \i£, \i2 and LA . 

The statistic E(d) given by (2) may be called the apparent error rate [26]. The 
apparent error rate is an estimator of E(d*), the error rate of unknown optimal 
rule d* or of E(d), the true error rate of the sample-based rule d so called actual 
error rate. It is clear that the error rate of the optimal rule is not greater than the actual 
error rate: 

E(d*) = E* = inf E(d) S E(d). 
de3) 

But the error rate of optimum rule d* often is greater than the expected value of the 
apparent error rate. A tendency of the apparent error rate toward optimistic bias 
arises from the simple fact that the expectation of the maximum several random 
variables exceeds the maximum of their expectations. Glick [26] stated that if the 
density estimators /),-, satisfy the inequality E{Pipi(x)} ^ Pt pt(x) for i = l,...,c 
and almost all xeQ then £{E(d)} ^ E* ^ E(<2). He derived that a sample-based 
density plug-in rule B, is asymptotically optimal, subject to mild conditions on the 
density estimators; and also the apparent error rate E(d) converges to optimal error 
rate E*. 

(ii) Counting: the sample success proportion. 
More intuitive than the plug-in method is the counting estimator or sample success 
proportion. 

Let denote ht the indicator function of the optimal partition region 

Q* = {xeQ:PiPi(x)^PjPj(x), j=l,...,c}, i=\,...,c 

1 if Pt Pi(x) = max Pj pj(x) 
[0 otherwise J=1 c 

Yhi(x) = 1 for all xeQ. 
i = i 

Decision rule d* has class-conditional probability of correct classification, given 
ith class, which can be represented as 

Gu - k * PiW dx = J ht(x) Pi(x) dx = Ei{hi(x)} . (6) 

A sample mean X ^ ' ^ ' i ) / ^ ' *s unbiased and, as sample size Nt -* oo, converges 
J 

to the theoretical Ef{A,(x)}. 
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Hence, it follows from (2.30) and (6) that for equal a priori probabilities Pt = 1/c, 
i = 1, ..., c the non-error rate of the optimal decision rule can be represented as 

c* = - I E.M*)} - 1 - E* 
C i=l 

and for sample size Nt = Njc, the mean 

e(d*) = \ANi H*») (7) 
N i = i y = i 

is proportion of sample observations classified correctly by decision rule d*. It is 
clear, that C(d*) in (7) is unbiased and converging to the optimal rate C*. 

If densities ph i = i, ..., c are estimated by pt and optimal decision rule d* is 
estimated by d derived from the density estimators, then the corresponding indicators 
are 

if Pt pi(x) = max Pj pj(x) , i = 1, ..., c i.м={; 
C 

j i(x) = 1 for all xєQ 

^0 otherwise J l,""e 

i = l 

The non-error rate estimator called sample non-error rate becomes 

flffl-hi I.«<(*<;). (*) 
N i = i j = i 

which is proportion of sample observations classified correctly by decision rule d. 
If the density estimators pt, i = X, ..., c were determined from data, say x)7-, 

which were independent of the x l 7 explicit in the expression for C(d), then Ej{£j(X|j)} 
would be the sample-based decision's zth class conditional non-error rate and sample 
success proportion C(^) would be an unbiased estimator of C(^), the true non-error 
rate of sample-based decision d. 

But in "testing on the training data" the sample success proportion is usually 
biased even more optimistically then the plug-in estimator. See studies cited in dis­
cussion of the plug-in method, e.g. [35]. 

(hi) Posterior probability estimators 
Let optimal decision's posterior probability of correct classification, given observa­
tion x, be denoted by 

max pj(x) 

*(-) = ^JT^- (9) 

i = l 

for equal a priori probabilities. 
Then the non-error rate of the optimal decision rule defined by (2.27) can be 
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represented as 

C* = - f max {^(x),..., Pc(x)} dx = 
c 

= - J h(x) {Pl(x) + ... + Pc(x)} dx = -1 t Et{h(x)} . 
C C i=l 

Corresponding sample mean X^(xjy)/Ni is unbiased and (by the strong law of large 
j 

numbers) converges to E^h(x)} with probability one as sample numbers N,- —> oo. 
Hence 

Ni=i;=i 

is unbiased and converges to C* = C(d*) under either of the following sampling 
schemes: 

— observations xtj, i = l , ..., c, j = l,2,...,Ni are sampled separately from 
the c classes with equal sample sizes N( = N/c; or 

— observations are sampled from the mixture of classes, fixing only the total size 
N = £N ; (in this sampling Nt would be binomial random variables and a priori 

i 

probabilities Pt need not be known since they are implicitly estimated by pro­
portions NtJN, i = 1, ..., c). 

If densities Pi are not specified, but estimated by some Pi (parametric or non-
parametric) then the posterior probability (9) must be estimated by a corresponding 
/?. The posterior probability estimator of non-error rate becomes 

C(S) = I t I %,v) • (10) 
N i = 1 j = 1 

This expression, unlike C(d*), is not unbiased for C* even if, first, each pt(x) is 
unbiased for Pi(x) at all points x; and, second, the density estimates are determined 
from sample data, say x-v-, which are independent of the xtj explicit in the expression 
for C(d). 

The estimator C(d) differs from C(^), where independence implies unbiasedness. 
Moreover, parametric normal density estimation is not pointwise unbiased; and 
"testing on the training data" violates the independence condition. So C(d), conside­
red as an estimator for the optimal rate C*, in practice can have quite complicated 
bias. 

6.1.2 Sample-based minimum risk classification procedure 

Let us now concentrate our attention to the sample-based counterpart of the 
decision (2.13) in Section 2.2. 
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(i) A general plug-in estimators of the average risk, the error rate and the reject 
rate 
A general plug-in estimators of the average risk, the error rate and the reject rate, 
are formed by substituting the sample-based estimates Pt and pt of a priori probability 
Pt and a class conditional density pt, respectively, i = 1, ..., c into appropriate 
expressions. 

The plug-in estimator R of the average risk R in (2.11), E of the error rate E in 
(2.7) and Rr of the reject rate Rr in (2.8) have, respectively, values 

R(d) = i L0jPj Jflo Pj(x) dx+i i LtjPj j n i Pj(x) dx 
j = i i = i y = i 

£(d) = iPjSaiPj(x)dx, ; - M , 
i = i 

Ud) = ipJinopJ(x)dxt 

for each rule de<2>. 
Similarly as in the preceding section making an analogy with the criterion for 

optimality (2.12), we use a classification rule which minimizes R\ The average risk R 
is minimized by the density plug-in rule B, whose partition sets are 

Qt = {xe Q: rt(x) = min fi
j(x)} , i = 0, ..., c 

j = 0 c 

where 

rt(x) = iLtjPjPj(x)lP(x) (11) 
J = I 

and 

p(x) = ipipi(x). 
1 = 1 

Therefore 
B(x) = dt if x G Qt, i = 0, ..., c . (12) 

That is 

inf k(d) = k\S) = i L0jPj fc Pj(x) dx + t t hjPj h Pj(*) • (13) 
de@ j=l i = 1 J = 1 

The statistic P(cl) defined in (13) we may call the apparent average risk. P(cl) 
is the estimator either of the average risk R(d*) of the unknown optimal decision 
rule d* defined in (2.17) or of R(c5), so called the actual average risk, i.e. the value 
of the average risk function R at d = 5. 

It is clear that the average risk of the minimum risk decision rule is not greater 
than the average risk of the sample-based rule B defined by (12) 

R(d*) = R* = inf R(d) = R(S) . 
deW 
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But the average risk of the optimal rule d* often is greater than the expected value 
of the apparent average risk. 

(ii) Counting: the sample success proportion. 
Let hi denote the indicator function of the optimal partition regions 

Q* = {xe Q: rt(x) = min {r0(x), ..., rc(x)}} , i = 0, ..., c 

h ,vi _ I1 if ri(x) = min rAx) 
i{ } ~ \0 otherwise J=0'~'c 

c 

£/ifx) = 1 for all xeQ. 
i = 0 

Then the decision rule d* defined in (2.13) has the average risk 

R* ~ t LOJPJ J K(x) Pj(x) dx + i i L.JPJ f ht(x) Pj(x) dx 
j = i i = i j = i 

= t L0iPt E,{/.0(x)} +i i LuPj Ej{ht(x)} ; 
j = i i = i j = i 

the error, reject and non-error rates are, respectively: 

E* = t P J */--) Mx) d * = t -°i Ei{^(x)} , j * i , 
i = l i = l 

*? " t *! J *oto PiW dM = t -*! E^0«} , 
i = l i = l 

C* = t Pi J AiW Pi(x) dx = t Pt E.Mx)} . 
i = l i = l 

Corresponding sample means ~]^o(xij)l^i a nd Y,ni(xij)l^i respectively, are unbiased 
J J 

and converge to E£{/i0(x)} and Et{ht(x)}, i = X, ..., c, respectively, with probability 
one as sample size N£ -> oo. 

Hence, for equal prior probabilities, Pt = 1/c and for sample sizes Nt = N/c 
the mean 

c(d*)-^Ti ihfaj) 
N i= i i= i 

= proportion of sample observations classified correctly by the rule d* 

is unbiased and converging to optimal non-error rate C(d*). Similarly, then mean 

*(<*•) = I i i K{*„) 
N i = i j=i 

= proportion of sample observations rejected to classify by the 
rule d*. 

If densities pt are estimated by pi and a priori probabilities Pt by Pt, i = 1, ..., c 
and the optimal decision rule d* is estimated by d derived from the density and 
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a priori probability estimates, then the corresponding indicators are 

[ l r\(x) = min rj(x) , i = 0, ..., c 
nt(x) = if ' - 0 - -

[0 otherwise, 

where ^.(x), i = 0, . . . , c is as in (11). 

Hence, for P{ = NtJN, i = 1, ..., c the non-error rate estimator called sample 
non-error rate or sample success proportion becomes 

m = 1 1 z H*,J) (14) 
N i = i j = i 

= proportion of sample observations classified correctly by rule cl. 

The reject rate estimators called sample reject rate becomes 

m =41 z MM (15) 
N i = i / « i 

= proportion of sample observations rejected to be classified by the 
rule cl. 

It is easy to verify that if the density estimates p{ were determined from data x y , 
which were independent of the xip j = 1, ..., Nt, i = 1, ..., c explicit in the expres­
sion for Rr(<2) and C(cl), sample reject rate Rr(3) would be an unbiased estimator 
of Rr(5), the actual reject rate, and sample-error rate C(<2) would be an unbiased 
estimator of C(S), the actual non-error rate. 

6.1.3 Sample-based transformed classification procedure 

Let us now derive the sample-based counterpart of the decision rule defined by 
(2.69) in Section 2.6. 

The derivation starts from determination of the estimator w A of the discriminative 
direction w based on the training sets Tt defined by (l). The a priori probability P£, 
is either known or can be estimated from the training set Tt by Pl = Nf/N, i = 1,... 
..., c. Now all m-dimensional elements of the training set 7*(JV) are projected on the 
line with the direction wA. The transformed training set we denote by Y(JV) = 
= {Yl5..., Yc}, where 

Yi = {yijEY:yij = xlw\j= 1, 2, ...,Nt] , i = l , . . . , c ; Y S H . 

On the basis of elements of the transformed training set Yf, the density pt(y, wA) 
of the transformed observation y is estimated by pt(y, wA) and the estimator of the 

c 

common transformed density p(y, wA) is p(y, wA) = £P\- pt(y, wA). 
i = l 

The sample-based decision rule <3W derived from density estimators based on the 
transformed training sets Yt may be definite as follows: 

53 



Assign the pattern x to the class coh i.e. 

cljx) = dt if y = xTwA e Qt(w
A), -i = 1, ..., c ; (16a) 

reject the pattern to classify, i.e. 

c?w(x) = ci0 if y = xTwA e £ 0 (wA ) , (16b) 
where 

&.(wA) = {y G Y: *.(y) = min Pj(y)} , i = 0, . . . , c 
j = 0,...,c 

and 

ri(y) = tL I , .Py^wA)/Xy,wA) 
J = I 

is the estimator of the conditional risk for the transformed data y = xTwA. 
By using estimators presented in the preceding sections, the resulting apparent 

non-error rate and the resulting apparent reject rate are, respectively 

W = S ^ k M ^ w A ) d ; ; , ^ = ^(wA) (17) 
i = l 

K(L) = tpt fe P& wA) dy , 60 = £0(w
A). (18) 

i = l 

Let nji denotes the number of observations from the ith training set Tt correctly 
(i = j) or incorrectly (i 4= j) classified using decision rule Bw defined in (16) and noi 

the number of observations from T( rejected to be classified by clw. Let Pt be estimated 
by Pt = Ni/N. Then the resulting sample non-error rate, resulting sample error rate 
and resulting sample reject rate are, respectively 

c{K) -i%%-±zi»u. (w) 
i=i N Nt N i=i 

E{K) = I ^ = ̂  X"J,• J*' (20) 
i=l N Ni N i=l 

and 

RJІЛ = ^ 
І=I N Nř N І=I 

Ч^) = t^~ = ~ Іnot. (21) 

6.2 Sample-based feature evaluation criteria 

In Chapter 3 we have been only mentioned two basic categories of feature evalua­
tion criteria functions and therefore here we do not intend to develop an exhaustive 
discussion about that how some of the concepts and methods encountered in preced­
ing section in analysis of error estimation can be used to estimate these feature 
evaluation criterion functions (see e.g. Devijver and Kittler [14]). 

The criteria of the first categories are based on the notion of interclass distance 
and can be formulated using only the parameters \i, u.£, E,, $w, SB defined in (2.51), 
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(2.53), (2.54) and (2.52), respectively. In practical applications of these criteria, 
the unknown parameters would replace by their estimates based on the training 
set (1). 

A number of probabilistic distance criteria can be analytically simplified in the 
case when the classes are normally distributed [14]. In this case these criteria may be 
expressed in closed forms involving the mean vectors and covariance matrices of 
the class-conditional, multivariate normal distributions. Therefore, substitution of 
sample mean vectors and sample covariance matrices provides apparent estimates 
of these distance criteria. The nonparametric case be handled with very much same 
tools that we used to estimate the error probability in Section 6.1. 

7. OPTIMIZATION OF FEATURE SELECTION AND CLASSIFIER 
DESIGN IN PREDITAS SYSTEM 

7.1 Sample-based K-stepwise linear classification procedure used in PREDITAS 
system 

The idea on which the sample-based classification procedure of the PREDITAS 
system is based, may be express in the following way. 

Suppose we have the training set T = {Tif T2] of size N, where 

Tt = {xtjeQ:j = l,2,...,Nt}, f —1,2, I N . = N. (1) 
; = i 

Assume a priori probabilities Pt is known or have been estimated by Pt = NtJN 
and the density pt(x) is unknown, i = 1, 2. Further assume that et, 0 < et < \ is 
predetermined value for the observation-conditional error rate (2.2), i.e. 

1 - P(a)t | x) < et, i = 1,2. 

The derivation of the sample-based classification procedure starts from determina­
tion of the estimator wA of discriminative direction w. This estimator is computed 
by substitution of parameter estimates for the unknown parameters in (2.60), namely 

^ S ^ V -n 2
A ) , (2) w 

where 

and 

s:=zp^i P) 
j = i 

l Ni 

ti = 77 I XU (4) 
N; £=1 

-V = ^-7 I (-*/ - ftA) (x(7 - Hf )T * - 1, 2 . (5) 
Nt - 1 f-i 

Now all m-dimensional elements of the training set T = {Tt, T2] are projected 
on the line with the direction wA given by (2). The transformed training set we denote 
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r A . T-KJ q ^ 

b y Y = { Y l 5 Y 2 } , where ' / 

Yi = {yiJeY:yiJ = xlw* ,j= 1 , 2 , . . . , N J , i = 1, 2 ; Y £ K . 

On the basis of elements of the transformed training set Yt, the density pt(y, wA) 
2 

is estimated by pt(y, wA) and the estimator of p(y, wA) is p(y, wA) = J] P^i Pt(y* wA)-
i = l 

The sample-based decision rule dw derived from density estimators based on the 
training sets transformed using the estimator wA given by (2) of the vector w may be 
defined as follows: 

Assign the pattern x to the class a>h i.e. 

dw(x) = dt if y = x T w A e ^ ( w A ) ; i - 1,2 ; (6a) 

reject the pattern to classify, i.e. 

dw(x) = d0 if y = xTwA e G0(w
A) , (6b) 

where 

with 

and 

í21(w
A) = { 3 ; eY:2(y ,w A )>c 1 } (7a) 

Q2(w
A) = {yeY:í(y,yv*)<c2} (7b) 

«o(wA) = {yeY:c2<: í(y, wA) = c j (7c) 

!(>>, wA ) A P\ p,(y, wA)/P2 p2(>>, wA) (8) 

C = 1-^, c2 = - ^ ~ . (9) 
e, 1 - e2 

The decision rule (6) is the transformed decision rule with predetermined probabilities 
considered in Section 2.4.2. 

All the observations from the training set T we classify by using the rule dw defined 
in (6) and determine the non-error rate, error rate and reject rate estimators, re­
spectively, by using the same training set T. Let nJt denote the number of observa­
tions from the ith training set Tt correctly (i = /) or incorrectly (i =# j) classified 
using the decision rule dw and noi the number of observations from Tt rejected to be 
classified by the rule dw. Then from (6.19) to (6.21) it follows that the resulting sample 
non-error rate, resulting sample error rate and resulting sample reject rate are, 
respectively 

i= l N, 

i=l N{ 

«=i Nt 
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or, if Pi is estimated by Pt = NjN, i = 1,2 

c^-Z^^-i.Z"... (io) 
i=l N N; N i=l 

^ » ) = Z ^ ^ = ^ Z » J I . J*i (ii) 
i=i N Nt N i=i 

and 

* & ) = z £' j"? = ~ i "o,. (12) 
i=i N Nt N i = i 

Now, we discard from the training set T(1) = T all the samples that have been 
classified using the decision rule d.^ = 3W. Let T(2) = {Ti2), T(

2
2)} denote the set 

of remaining observations. T{2) and T2
2) are subsets of the set T(1) of sizes N{2), N2

2), 
2 

£ ^ 2 ) = N(2). Note that N(1) = N - N(2) is the number of observations from the 
i = l 2 

set T classified by c ^ j N ^ = Ni^ + N2
1} = S ( » i . + »-.-)• 

» = i 

We derive the decision rule cl{2) on the basis of the training set T(2): 

dt if y2 = x т w 2 є Qľ(w л ) 
2 У 

#w

2)(x) = <Jci2 if y 2 = x T w í 6 f l 2 ( w í ) (13) 
d0 if y2 = xTw2

A e í20(w2
A) , 

where 
a i K ) = {yeY:2(j; ,w2

A)> c j 

^ 2(w 2) = {j;eV:?(j/,w2
A) < c2} 

-Vw2
A) = {y e Y: c2 = 2(y, w2

A) = c j 

and ?(y, w2 ) is the value of \(y, wA) given in (8) for wA = w2 ; ct and c2 are as in (9). 
Now we classify the samples from the set T(2) by using the decision rule cl{2) defined 
in (13). Let n{2) be the number of observations from T{2) correctly (i = j) or in­
correctly (i 4= j) classified by the rule d{2) and n0

2) is the number of samples from 
T{2) rejected to be classified. Then the non-error rate, error rate and reject rate 
estimators are, respectively, 

2
 N{2) (2) 

2 /v (2) n ( 2 ) 

-W) = I — Pi^fk,. (15) 
v ' i-i N N|2) v 7 

2 iU ( 2 ) « ( 2 ) 

W) = z ^ ^ - (16) 

The problem of classification the new pattern x is then solved by using the decision 
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rule dw defined as 

fdi if yieQi(*i) or yl e f20(w
A) A y2eQ1(w2) 

dw(x) = ld2 if yt e Q2(wf) or yl e Q0(w?) A y2 e Q2(w2) (17) 
[d0 if j2eiQ0(w2

A), 

where yt = xTwf. 

The corresponding non-error rate and reject rate estimators are, respectively, 
2 \r(k) 2 (k) 

W - Z T Z ^ , (is) 
t=i N t=i N)k) 

where ntf = nn,i = 1,2, 
\ / (2 ) 2 (2) 

If the relation 

Rr(dw) < Rr(d
(
w

l)) , (20) 

is satisfied, then we choice the decision rule dw defined in (17) to solve the problem 
of classifying the new pattern to one of two classes. 

The sample-based classification rule in the PREDITAS system is constructed 
by using a sequence of K sample-based decision rules {d(k)}£=i, where each d(k) 

is based on its own training set T(k) = {T[k), T(k)] of size N(k) = N^ + N(
2
k). 

The description of the steps in our procedure for the design of the kth sample-based 
classification rule, k = 1, 2, ..., K is as follows. 

Step 1: Compute the vector wA(k) e Um by (2), where /iA and L,A are sample mean 
vector and sample covariance matrix, namely 

"' = W ;?. *" 

Step 2: Project all observations from the training set 7"(A0 on the line with direction 
wA(k) according to 

yf = x]7.wA(k), i = 1, 2, ; = 1, 2, ..., N|k) . 

Denote the transformed training set by Y(k). 

Step 3: Obtain the estimate pt(y, wA(k)) of the transformed conditional density 
function pt(y, wA(k)), i = 1, 2 by histogram technique 

/3^,wA(k)) = £ **«-#-> 
/=! N. 

where <l>ih(y) is the indicator function for the hth interval of a partition of 
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the range of y into intervals Iu ..., IH (i.e. <Ph(y) = 1 if y elh and <Ph(y) = 0 
otherwise, h = 1, 2, ..., H); nt(h) is the number of transformed observations 
from training set Y(fc) that are in the interval Ih. 

Step 4: Determine the points w(k) and wf\ w[k) < w2
fc), w^ e fft, i = 1, 2 on the line 

with the direction wA(fc) in the following way: 
for all y e Y(fc) A y < w[k) it holds 

l(y, wA(fc)) > Cl (21) 

or 
for all y e Y(k) A y < w[k) it holds 

1(y, wA(fe)) < c2 (22) 

and 
for all y e Y(fc) A J; > w(

2
fc) it holds (21) 

or 
for all y e Y(fc) A y £ w2

fc) it holds (22), 

where /(y, wA(fe)) is defined by (8) for wA = wA(fe) and the constants cx and c2 

are determined by (9). 

Step 5: Classify the samples from T(fe) using the following rule d(k): 
Assign x to the class a(,fc), if y(k) = xTwA(fc) belongs to 
Raim = {yeY:y<w[k)}; 

assign x to the class a(
2
fc), if j ; ( f e ) = xTwA(fc) belongs to Ua2w = {y eY: y > 

> w2
fc)}, where 

(fc) _ Ut if (21) holds , 
\CD2 if (22) holds' l~x>* 

reject to classify x if y(k) = xTw A(fc) belongs to 

K0vo = {ycV:w[k) <y<w(k)}. 

Step 6: Discard from T(k) all the samples that have been classified using the decision 
rule d(k). Denote by T(k+X) the set of remaining samples. 

Step 7: Repeat the procedure for the training subset T(k+l). 

The abave described process of generating the sequence of the decision rules 
starts from the training set T and continues until all the elements of the original 
training set T are classified or any of the terminating conditions are fulfilled. 

The problem of classifying a new pattern x is solved by using the above defined 
sequence of the respective decision rules as follows. 

Assign x to the class a|7) 

if /fc)eIRao(k) A y(j)eMai(» (23a) 

for all k, 1 < k < j < K , i = 1, 2 
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Reject to classify x if y(fc> e Uao<.k) \ ' 

for all 1 S k g K . 

The non-error and reject rate estimators of the decision rule (23) are, respectively 

according to (18) and (19) 
K /V(fe) 2 n ( f e ) 

C-Y — YPt^z (24) 
A N A 'N(fe) v ; 

and 
\ r W 2 (K) 

*-TT,V*' (25) 

where n(
;
fe) is the number of samples from training set 7"(.fe) classified correctly by the 

rule 5Jf) and nffi is the number of samples from T\K) rejected to be classified. 

7.2 Determination of optimal dimensionality 

In practical applications when information about the classes coh i = 1, 2, is avail­
able only in the form of training sets (1), the feature selection criterion (4.1) for m-
dimensional vector x should be replace by its estimates based on the training set T 
which it will be called sample-based measure of discriminative power 

XJx) = tr (SjT *S£) , m^M, (26) 

where 

and 
PiP2(Иi -ßî)(ßî ~И2 лYГ 

s^ = X Pp? 

with ft? and Ef

A determined by (4) and (5), respectively. 
Let us assume that the problem of feature selection has been already solved. 

It means that by means of a search procedure and the sample-based MDP (26) we 
have found for any dimensionality an optimal (or near optimal to be more exact) 
subset of features. 

However, yet another difficult problem remains to be solved — that of determining 
an optimal dimensionality of the decision problem, it means an optimal number 
of features. 

The difficulty of this problem results from several facts. First of all, even the concept 
of optimal dimensionality itself needs to be clarified since the optimality can be 
assessed from different viewpoints, like the probability of error or the reliability 
of given classification rule. 

Another reason is that the feature selection criterion has no direct relationship 
to the probability of classification error. Only the relationship between MDP and 
dimensionality is monotonous. This could seem to be sufficient for choosing the 
right dimensionality however, another problem arises here. 
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Since feature selection is carried out on the training set, the size of which is limited, 
and the performance of the classifier should be optimized with respect to samples 
outside the training set, in practice even the above mentioned monotonicity is not 
fulfilled. 

It has been proved both in practice and by theoretical results [21, 24] that for 
a given finite size training set an optimal dimensionality (optimal number of features) 
exists and that any further increase of the number of features deteriorates the overall 
performance on independent patterns, though the value of criterion function on the 
training set increases. 

All these facts result in impossibility to find an exact and analytically justified 
procedure by means of which we could arrive to the optimal dimensionality. 

However, a heuristic procedure can be utilized to get the required results. Let us 
assume that for a set of m features, xx, ..., xm, ordered according to their significance 
S(1)(XJ), defined by (4.2) for k = 1, resulting from the search selection algorithm, 
the following relations hold: 

m 

kxlM = £ Sw(xt) = k2lM , (27) 
i = l 

where 1M is the estimate of the MDP for the whole set of features, kx, k2 are constants 
from the interval (0, 1>. 

Determination of values kx, k2 will be discussed after a while, for the moment 
being let us assign e.g. the values kx = 0-3 and k2 = 0-95, in order to provide an 
interpretation of the formula (27). Then denoting mx the minimum number of 
features satisfying the first inequality and m2 the maximum number of features 
satisfying the second inequality, we can state that the relation (27) is satisfied for any 
m e (mx, m2>, where mx can be interpreted as a minimum possible dimensionality 
and m2 as a maximum needed dimensionality. 

In other words, increasing the dimensionality above m2 can increase the sample-
based MDP by not more than (1 — k2) . 100% (i.e. in our case by not more than 5%). 
On the other hand decreasing the dimensionality below mx would result in the de­
crease of MDP by more than (1 — kx) . 100% (i.e. in our case by more than 70%) 
compared with the value 1M for the original dimensionality M. 

All the dimensionalities m e (mx, m2y are then to be investigated with respect 
to the performance of the corresponding decision rules and the one optimizing the 
performance on independent testing set is regarded as the optimal dimensionality. 

Now the problem of determining the values of kt, i = 1, 2 remains to be discussed. 
It would be undoubtedly very convenient to be able to introduce some fixed values 
for kh i = 1, 2 analogously e.g. to the levels of significance a = 0-05 etc. 

Unfortunately, such an analogy cannot be made in this case. Determination of 
"reasonable" upper and lower limits for the sample-based MDP and from it following 
bounds for dimensionalities to be investigated is strongly dependent on data, more 
specifically on the form of the sample-based MDP as a function of dimensionality. 
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Furthermore, the absolute value of the sample-based MDP for the full dimen­
sionality, equal XM, plays an important role, too. If we have a problem where the 
original set of features carries a highly informative content from the viewpoint 
of discrimination, we can obviously afford to loose more from the value of XM, 
i.e. the value of k2 can be chosen lower than in the case of a problem where the 
features carry far less useful information and thus XM is lower than in the former 
case. In the latter case we cannot afford to loose much of XM and thus the value 
of k2 closer to TO would be more appropriate. 

At the bottom end of the investigated dimensionalities range analogous considera­
tions can be made. 

The best "practical" way of selecting the optimal dimensionality is to make the 
decisions on the basis of graphical form of the sample-based MDP as a function 
of dimensionality. If this curve from certain dimensionality upwards inhibits a typical 
"plateau", the value of m2 can be set equal to the dimensionality corresponding 
to the beginning of the plateau. At the bottom end we should look for a sudden 
beginning of a steep decline of the curve with deceasing dimensionality and to set 
the value of mt equal to the dimensionality corresponding to the beginning of the 
steep decline. 

The final phase of the process of determining the optimal dimensionality is to test 
the performance of all the decision rules corresponding to dimensionalities m e 
e (jnu m2y on independent testing set of patterns and to choose as the optimal 
dimensionality that one, for which the corresponding decision rule yields the minimum 
classification error. 

Though the described procedure represents a combination of analysis of numerical 
results and heuristic approach, it has proved to be quite efficient and satisfactory 
in practice. 

8. ARCHITECTURE AND USAGE OF PREDITAS SOFTWARE 

The PREDITAS system consists of four problem independent programs used 
in succession, where the results of one program are utilized in the following ones: 

(i) DATANAL 

is a program which performs a basic statistical analysis of the input data set. The 
values found for each feature and separately for each class and the whole set are: 
minimum and maximum values, range, average value and standard deviation, 
distribution histograms for non binary features and for binary features x ; probabi­
lities P(coi | Xj = 1 ) i = 1, 2, j = 1, ..., m and P(xj = 1) which are estimated by 
the rates 

p(mi\Xj-i)- +
Nt' + , r=3 (i) 

Ntj + rN+
2j N2

 V ' 
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P(co2 I xj = 0) = *&l 
' NTj + rN2j 

P(xj = 1) = N»+NV 

where m is dimensionality of the pattern vector x, Ny, i = 1, 2 are numbers of "true" 
values of jth feature in class cot and N£~- are numbers of "false" values of jth feature 
in classes cot. Nt are numbers of elements in classes cot and it holds evidently N; = 
= Ny + N:j. Both estimations of probabilities are computed under assumption 
that a priori probabilities of classes are equal. The last computed value for each 
feature is its significance, considered independently on other features and evaluated 
by a number from 0 to 1: 

Sj = i f t ; \pai(xj) - pj[xj)\ dxj = i | \pjxj) - pjxj)\ (2) 
k=l 

where p^^Xj), i = 1,2 is probability density in class cot and pWi(
xj) *ts estimate 

by histogram for non binary features. For binary features the estimate 

PU*j) - ^ (3) 

is used. 
The values of the feature ranges are used for elimination of those features the 

value of which is constant in the whole training set. Estimates P(cot | Xj = 1) and 
P(co2 | Xj = 0) will be used for finding of such binary features, which alone can be 
considered as sufficient for classification because some of their two possible values, 1 
or 0, occurs only in one of the classes. The value of at least one of both probable 
estimates will be in that case equal to 1 or 0. 

(ii) MEDIP 

is a program for the significance analysis of the features, using the measure of dis­
criminative power (MDP) for its evaluation with the option of choosing from four 
selection methods. A detailed description of MDP criterion and four selection 
methods can be found in Section 4.1 together with comparison of their priorities 
and drawbacks. Briefly recalling, we can state that the straight methods either include 
or exclude at each step just one feature, which is the most or the least significant 
at this step, for the including and excluding method respectively. These methods are 
only step optimal since they do not have any possibility to go back and make cor­
rections. 

More sophisticated "floating" methods enable to return back and search even 
among already included or excluded features in the case of including or excluding 
method respectively. This results in possibility to correct the composition of subsets 
found in previous sets so as to approach closely the optimum subset. However, these 
methods are obviously more time-consuming and it is only fair to state that in most 
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practical problems, we have solved till now, only a little difference in significance 
analysis has been found. It does not mean at all that these methods should be ne­
glected, they should be given priorities only in those cases where there usage is jus­
tified by the improved performance of the classifier. 

As a result of the significance analysis we get a table describing the course of succes­
sive feature including or excluding, containing the values of MDP for the selected 
feature subsets, relative decrement to the maximum value of MDP in % and finally 
the significance of a given feature both in the subset and independently on other 
features. A graphical form of the significance analysis is available too. Another 
option enables to print out beside the table of significance analysis also the eigen­
vectors for all the steps of the selection process. 

(iii) SEDIF 

is a program for the stepwise decision rule construction using the most significant 
features selected according to the order of significance which was computed by 
MEDIP program. The decision rule construction is described in Section 7.1 as 
Step 1 — 6. For simplifying the program procedure, the decision rule a^ (described 
in the Step 5) is divided to two rules cl(m) and cl(m+l), where m + 1 _ 2k, in the 
following way: 

wA(m) = W A ( A ) J w(m) _ w(k) ^ 

W A ( - , + 1 ) = _ W A ( k ) s w (m+l) = _w(k) (4b) 

If during the decision rule construction only one threshold value w[' is determined, 
the equation (4b) is not applied. The rule specified in Step 5 is consequently modified 
as follows: 

Assign X to the class a(m) if y(m) = x
T

w
A ( m ) 

belongs to Ra(m, = {yeY: y(m) > w(
0
m)} . 

The results of this program are: 
— histogram technique based estimate of ith class density projected on the line with 

optimal discriminative direction, 
— estimate of error probability for each step, 
— list of classified elements in each step. 

Summary table specifies at each step the following characteristics: 
— name of the assigned class (to which the elements are classified), 
— estimate of error probability, 
— updated estimate of a priori probability, 
— error probability summarized over all previous steps, 
— remaining part of the training set, 
— risk index. 
All these characteristics are specified both for each class separately and for the whole 
set. 
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(iv) CLASSIF 

is a program for application of the stepwise decision rule produced by program 
SEDIF. This program exists in several variants both for main frame and personal 
computers and is adapted for classifying individual elements as well as the whole 
set e.g. in the case of testing decision rule using independent testing set. As a result 
of this program we get the decision about the class of classified element, the estimate 
of error probability for the element being classified its projection into the frequency 
histogram and the option to demonstrate the influence of any feature. The decision 
can be rejected if the probability of error is greater then the permitted value or if 
a feature value is out of the feature range. 

9. EXAMPLE OF COMPLETE SOLUTION OF DIAGNOSTIC 
PROBLEM 

One of the practical problems, which has been solved using the PREDITAS 
software package was the differential diagnosis of cholecystoalithiasis. Prior to 
a patient's operation it is very desirable to recognize the simple form of the disease 
from the form with complicating changes on the gull-duct which, if not removed 
during intervention, sooner or later enforce the reoperation. In the second case 
the intervention is especially in the small hospitals passed to more experienced 
surgeon and an instrumental preoperational examination of gull-duct is counted with. 
From the medical point of view this problem has been described in Keclik1 and thus 
only methodical aspects are discussed here. 

The problem is to classify patients before the operation into one of two classes: 
col — a complicated form of disease and co2 — a simple one. Each patient is characte­
rized by 28 symptoms (= features), most of them are of the binary type (values 0 or 1) 
and the remaining of the real type. After the data analysis using DAT ANAL program, 
in several cases a group of binary features can be joined into one feature with ordinary 
type value. By means of natural numbers different quality levels of a new feature are 
designed, for example feature No. 3 in Table 1 describing different types of attack. 
The values and qualities cannot be joined arbitrarily but only in such a way that with 
the increased feature value the probability of one class increases too. 

Among the features there was one (jaundice without attack) which was positive 
only at 4-9% of patients, but all of them belong into class co1 (= complicated form). 
Such a feature, if it is positive, can be considered as sufficient for the classification. 
Since for any element having this property the classification problem actually does 
not exist, none such have been included into the training set. 

1 M. Keclik, S. Blaha and A. Huslarova: Attempted preoperative differential diagnosis of 
simple and complicated cholecystolithiasis by means of a computer (in Czech). Cs. gastroentero-
log'te a vyziva 40 (1986), 5, 214-224. 
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Table 1. Symptoms for recognition of complicated and simple forms of cholecystolithiasisg 
The order is from the most significant symptom to the least significant one. 

Order Feature 

1 Max. width of gull-duct (in mm) 

2 Max. caught ALP (in the multiples of normal value) 

3 Course of attacks (0 = without fever and shakes, 
1 = sometimes fever, 
2 = always fever, 
3 = sometimes fever, and shake, 
4 = always fever and sometimes shake, 
5 = always fever and shake) 

4 Stones (0, 1 , 2= undisplayed, suspection, displayed) 

5 Pankreatitis (0, 1 , 2= never, once, repeatedly) 

6 Jaundice after attact without fever (0, 1 ,2= never, once, repeatedly) 

7 Cholangitis (0, 1 , 2= never, once, repeatedly) 

8 Tangible drops (0, 1 = no, yes) 

9 Number of attacks (1 — 6, 6 = six and more) 

10 Age in the time of agreement (with operation) 

11 Itching (0, 1 = no, yes) 

12 Jaundice after attack with fever (0,1,2, 3 = never, once, moretimes, always) 

13 Gull-bladder filling (0, 1 = no, yes) 

14 Duration of obstructions (in years) 

15 Sex (0, 1 = woman, man) 

16 Jaundice lasted more than 14 days (0, 1 = no, yes) 

It is necessary to pay attention to unascertained values, because for subsequent 
data processing the missing values are not allowed. The feature "maximum width 
of gull-duct in mm" can be measured on x-ray image. But the gull-duct is not always 
displayed and so this feature value may remain unknown. The training set had to be 
split into two parts with displayed and undisplayed gull-duct, respectively. The 
classification problem should be, therefore, solved separately for both parts. How­
ever, as the part with undisplayed gull-duct consisted only of 49 patients total, 
the problem has not been solved for this group. 

After these arrangements the training set contains 108 pattern vectors of class 
col and 311 elements of class co2. Dimensionality of the problem is 16, 5 components 
are of the real type and 6 ones of the ordinary type. The list of features is in Table 1. 
(Features are ordered according to their significance.) Apriory probability of the 
class co1 — "complicated form" for the population has been estimated by the value 
P1 = 0-20, so P2 = 0-80. It has been requested the value 025 as permitted misclassi-
fication probability for the class col — "complicated form" and the value 0T0 for 
the class co2 — "simple form". 
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As a result of data processing by DAT ANAL program the basic statistical charac­
teristics have been obtained, however, they provide no direct possibility for classifica­
tion. Some from those characteristics are in Table 2. 

Table 2. Basic statistical characteristics. 

Feature Relat. freq. Complicated Simp] te 
cl. 1 cl. 2 average st. dev. average st. dev. 

Age 53-80 12-07 46-7 12-31 

Duration of obstr. 8-91 8-94 6-07 7-26 

Number of attacks 5-35 1-32 4-80 1-73 

Max. ALP 1-16 1-02 0-67 0-31 

Max. width of g.-d. 10-71 4-16 6-57 2-17 

Sex 30-0 50-8 0-31 0-46 o-зo 0-46 

Course of attacks 0-79 1-22 0-42 0-66 

Pankreatitis 0-34 0-63 0-15 0-45 

Cholangitis 0-25 0-63 0-02 0-15 

Jaundice without f. 0-29 0-66 0-12 0-44 

Jaundice with fever 0-48 0-90 0-26 0-66 

Jaundice long time 4-7 89-7 0-08 0-28 0-01 0-10 

Gull-bladdeг filling 55-9 48-5 0-54 0-50 0-58 0-50 

Stones 0-46 0-78 0-02 0-17 

Itching 5-9 78-4 0-04 0-19 0 0 3 0-16 

Tangible drops 7-7 24-4 0-04 0-19 0-12 0-32 

Having used the second program of the system (MEDIP), we have obtained 
the significance analysis of the features. The course of feature excluding is in Table 3. 
The last columns of this table contain significances S(x,) of features. Column 5 
contains the feature significances "inside" the whole subset of remaining features 
in that step, in which is the feature excluded. Column 6 contains the "individual" 
feature significances under hypothetical assumption that the feature is independent 
on the others. 

Let us pay attention to the fact that the sooner excluded features have not the 
smallest values of individual independent significance. Until the dimensionality 9 
has bsen reached the decrement of MDP was less then 5% of maximal MDP, thus all 
these features can be definitely excluded, because the significance of this whole group 
of features for the considered decision making is negligible. 

From the significance analysis it follows that not more than 12 features, chosen 
according to the computed order, are sufficient for the decision rule construction. 
On the other hand, in the case of less than four features the loss of discriminative 
power is already essential. From these reasons the decision rules for all numbers 
of features in the range from 4 to 15 have been computed and evaluated from the 
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Significance analysis 
Excluding method 

MDP 

I I 

16 15 14 13 12 

Table 3. Course of feature excluding. 

11 10 9 8 7 6 

Dimension 
Fig. 1. 

5 4 3 2 1 

Dimen- No of excluded 
feature M D P 

Decrement to 
Max in % 

M D P of excluded feature 

sionality 
No of excluded 

feature M D P 
Decrement to 

Max in % in the set independ. 
1 2 3 4 5 6 

16 4-407 0-00 
15 16 4-406 0-02 0-0009 0-239 
14 15 4-404 0-07 0-012 0-0002 
13 14 4-390 0-39 0-014 0-140 
12 13 4-372 0-81 0-019 0-005 

11 12 4-334 1-66 0-037 0-078 
10 11 4-296 2-52 0-038 0-124 
9 10 4-246 3-67 0-051 0-321 
8 9 4-190 4-94 0-056 0-076 
7 8 4-090 7-20 0-099 0-068 
6 7 3-966 10-02 0-125 0-573 
5 6 3-826 13-20 0-140 0-118 
4 5 3-569 19-01 0-256 0-139 
3 4 3-332 24-39 0-237 0-847 
2 3 3-025 31-35 0-307 0-474 
1 2 2-384 45-91 0-642 0-840 

1 0-000 10000 2-384 2-384 



viewpoint of probability of error and reject probability. The results are presented 
in Table 4 and in Figure 2. 

Probabilities Gtj (i = 1, 2; j = 0, 1, 2) that patterns x from classes ct>,- are mapped 
into acceptance and reject regions Qj are the results of classifications using decision 

Table 4. Class conditional non-error (oii), error {Gtj) and reject (o0,) rates. 

M Ø ц G2ì G 0 1 G 2 2 G\2 G02 

5 0-355 0-075 0-570 0-712 0-010 0-278 
6 0-486 0-075 0-439 0-721 0-013 0-266 
7 0-411 0-056 0-533 0-744 0-013 0-243 
8 0-393 0.047 0-560 0-753 0010 0-237 
9 0-467 0 047 0-486 0-724 0-013 0-263 

10 0-477 0-056 0-467 0-750 0-016 0-234 
11 0-542 0-065 0-393 0-782 0-022 0-196 
12 0-477 0-084 0-439 0-805 0-022 0 173 
13 0-383 0-065 0-552 0-776 0-042 0-182 
14 0-374 0-056 0-570 0-776 0010 0-214 
15 0-383 0-047 0-570 0-737 0010 0-253 

CLIN. 0-598 0-196 0-206 0-907 0-016 0-077 

Decision quality criteria 

100 

5 6 7 8 9 10 11 12 13 14 15 

Dimension 

Risk index 

Yi aprox. 

Ri aprox. 

Sensit. 

Fig. 2. 

Youden Index 

Specif. 
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rules with the number of features from 5 to 15 and are recorded in Table 4. In the 
last row of this table there are presented results of pure clinical diagnostics of this 
problem for the same set of patients with the full number of investigated features. 
The classification quality has been evaluated by estimations of the classification 
errors and risk index. Most of all medical diagnostic problems cannot afford to have 
a case without decision: either is possible to made more informative examination 
or to abandon the error probability limitation at least one class. For this case the 
second possibility is the true one and therefore in the last step of the decision rule 
the patterns mapped into reject region Qoi, i = 1, 2, are classified into class co{, e.g. 
into class "complicated form". (For computation the value G02 must be added 
to the value G12 and value G01 to the C n ) . On the medical field the test quality is 
evaluated by sensitivity and specificity of the test and by its joint in Youden's index. 
If Et(d) = PjGij (i = 1, 2; j = 1, 2; i # / ) ) is the error probability of the rule d 
then specificity SP is 

SP(d) = [1 - E,(d)] 100 

and sensitivity SE is 

SE(d) = [1 - E2(d)~\ 100 

where the class a>1 is the one which should be recognized in population, e.g. in our 
case the class "complicated form". Youden index YI is 

Yl(d) = SP(d) + SE(d) - 100 . 

For quality evaluation of the rule by average risk R(d) (11) have been defined losses 
like this 

L11 ~ L22 = L01 = 0 , L12 — L02 = 1 1 L21 ~ L-

The actual value of the loss L21 is not known and can be supposed value from interval 
(025, 0-5). The variant for each of both values has been computed. 

Each decision has two trivial solution dependent on assigning all elements into 
the one class. To each trivial solution corresponds an average risk and let RT(d) 
is the less of them. RT(d) = min (Plt LP2). The average risk R(d) must be less than 
RT(d) to be the decision rule usable. Risk index defined as 

Rl(d) = -------- 100 
V ; RT(d) 

gives relative value of remaining risk for the rule. 
Values, which can be used as criteria for decision rule quality are in Table 5. 

In this table the purely clinical diagnosis is compared with computer diagnosis for 
different numbers of used symptoms. The clinical diagnosis has evidently high 
quality but computer diagnosis gives comparable results. Clinical diagnosis has out­
standingly better the values of total error probability and error probability of the 
class co2, e.g. "simple form". 
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Table 5. Decision quality criteria expected conditional errors Eit total error E, senzitivity SE, 
specificity SP, Younden's index YI and risk indexes RI for loss ratio L = 0-5 and L -= 0-25. 

M ą% E2Уo E SE SP YI *I0.5 Ä / 0 .25 

5 7-5 28-8 24-5 2-5 71-2 63-7 65-1 36-4 
6 7-5 27-9 23-8 2-5 72-1 64-6 63-3 35-4 
7 5-6 25-6 21-6 4-4 74-4 68-8 56-8 31-2 
8 4-7 24-7 20-7 5-3 75-3 70-6 54-1 29-4 
9 4-7 27-6 23-0 5-3 72-4 67-7 59-9 32-3 

10 5-6 25-0 21-1 4-4 75-0 69-4 55-6 30-6 
11 6-5 21-8 18-7 3-5 78-2 71-7 50-1 28-3 
12 8-4 19-5 17-3 1-6 80-5 72-1 47-4 27-9 
13 6-5 22-4 19-2 3-5 77-6 71-1 51-3 28-9 
14 5-6 22-4 19-0 4-4 77-6 72-0 50-4 28-0 
15 4-7 26-3 22-0 5-3 73-7 69-0 57-3 31-0 

CLIN. 19-6 9-3 11-4 0-4 90-7 71-1 38-2 28-9 

Computer diagnosis gives outstandingly better error probability for the class colf 

e.g. "complicated form" in the whole investigated range of dimensionality and it was 
exactly the main reason for the solution of given problem. Comparison of quality 
evaluation by risk index depends on loss ratio L= L21JL12. Computer diagnostics, 
in this case, is better than clinical one, if loss ration is small, e.g. if a great difference 
between consequences of misclassifications for both classes exists. 

Table 6. Weights for stepwise decision rule solving cholecystolithiasis problem. 

Features Feature weights wkj xj 

l : 1 2 3 min max 

Threshold weight wk 2-3071 -3 -3571 1-3903 
Max. width of gull-duct -0 -1515 + 0-1515 -0 -1117 0 30 
Max ALP -0 -3965 + 0-3965 -0 -4779 0-06 5-6 
Course of attacks - 0 - 1 6 9 0 + 0-1690 -0 -0509 0 5 
Stones -0 - 4750 + 0-4750 -0 -4492 0 2 
Pankreatitis - 0 -3056 + 0-3056 -0 -1238 0 2 
Jaundice without fever -0 -2459 + 0-2459 -0 -4041 0 2 
Cholangitis -0 -4415 + 0-4415 -0 -5758 0 2 
Tangible drops + 0-2951 -0-2951 + 0-1518 0 1 
Number of attacks - 0 - 0 5 5 2 + 0-0552 -0 -0307 1 5 
Age -0 -0061 + 0-0061 -0-C007 18 59 
Itching 0-3450 + 0-3450 -0 -0131 0 1 
Jaundice with fever 0-0870 -0 -0870 -0 -1390 0 3 

Assigned class otk co2 © ! co2 
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Optimal criteria values are marked in Tables 4,5 by different print and so evidently 
best solution given the group of 12 features. The decision rule has three steps. Weights 
wkJ for individual features Xj, j = 1, ..., m and for each decision step k = 1, 2, 3 
are in Table 6 and they are considered as weight vectors components wfc. Stepwise 
decision rule (7.43) to the purpose of software simplicity was modified like this: 

Distribution of patterns in classes 
1st and 2nd step 

10 20 30 40 50 60 70 80 90 100 
ränge of y % 

3rd step 

0,02 

A 

10 20 30 40 50 60 70 80 90 100 

range of y % I 

—— Complicated —^~ Simple 

F ig . 3. 
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set k = 1 and 

start: if xTwfe + vvfe > 0 
then assign the pattern x to class ak, 
else set k : = k + 1 and 

if k ^ m then go to the start, 
else reject to classify pattern x. 

Here ak = cjy, a>2 and sequence ak, k = 1, ..., m is the result of problem solution. 
The features in Table 6 are ordered according theirs weights for the first decision 

step and this weights include range of feature values. As value xTwfe + wk must be 
greater than 0 to be the patient x assigned to the class ak, it is evident that most of all 
symptoms, if they have nonzero values, support classification of the patient x into 
class ak with exception symptoms tangible drops and jaundice after attack with 
fever in the first two decision steps. 

Distribution of the value y = xTwfe, evaluated from the training set by histograms, 
are in Figure 3 which is valid for 1st and 2nd decision step. Acceptance region Q2(wi) 
for the 1st step and £?i(w2) for the 2nd step and reject region Q0 are marked out; see 
(7.7). All elements which are mapped into reject region Q0 are considered as new 
training set and the decision problem can be solved from the beginning. In the 
described problem the significance analysis was not applicated for the new training 
set; only a 3rd step of decision rule has been computed. Distribution of y is in 
Figure 3. 

10. CONCISE CHARACTERISTICS OF OTHER APPLICATIONS 

A number of various problems of diagnostic type from so different application 
fields as medicine, economics, remote serving, geology and power engineering has 
been solved by means of PREDITAS system. 

Since one of the medical diagnostic problem has already been treated in more 
detail, we shall confine ourselves just to characterizing individual problems. 

1. Diagnosis of risk pregnancy 

The problem of finding the most important risk factors influencing the risk of 
abortion has been solved in cooperation with the hospital in Zlin. 

A large training set consisting of various diagnostic data of 6166 women patients 
has been collected and labeled according to the fact whether abortion did or did 
not occur. A substantial reduction in the number of diagnostically significant features 
has been achieved by means of searching procedures in MEDIP program, resulting 
in cost and time saving of data preparation. The derived classification rule enables 
to classify a new women patient on the basis of particular values of several diagnostic-
ally important features and to make the decision about the risk of abortion. 
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The solution in the form of CLASSIF program, implemented on personal computer, 
is being at present tested directly in clinical use. The results can be found in more 
detail in Baran1. 

2. Diagnosis of mentally retarded children 

This problem has been solved in cooperation with the Institute of Care of Mother 
and Child, Prague. Its essence is in the fact that the handicap can be cured quite 
often provided a special treatment starts at the first month of a newborn's life. 
However, the point is that medical specialists themselves are able to make the diagno­
sis not earlier than at the age of three years, when it is too late to begin with a suc­
cessful treatment. So as a matter of fact, the diagnostic problem in question is a pre­
diction problem, since in this case the decision making amounts to predicting the state 
of the child on the basis of data available at the first weeks of its life. The training set 
has been formed by the set of medical records of individual children which were 
stored until the child reached the age of three years when the diagnosis was made 
the sample record was labeled correspondingly. 

A substantial reduction of original symptoms (more than one hundred symptoms) 
has been achieved by means of MEDIP program without loosing too much from the 
discriminative power. The results achieved in the first stage are very promising and 
on their basis a new training set of bigger size is being prepared at present. 

3. Diagnosis of stress urinary incontinence 

In a close cooperation with the Gynecological and obstetrical Clinic of the Charles 
University in Prague the problem of stress urinary incontinence diagnosis has been 
studied in Sindlaf2'3. A special significance of individual uroflow-dynamic chara­
cteristics, taking into account their mutual dependencies. 

4. Classification of enterprises with respect to typified software usability 

Attempts to design typified software for solving specific tasks of automated control 
and to implement this software in Czechoslovak enterprises have been carried out. 
The enterprises were characterized by a set of economic indices and the training set 
consisted of feature vectors labeled according to found out usability of typified 

1 P. Baran, P. Mares and S. Blaha: Influence of including social risk factors into risk frequency 
screening test on its quality (in Czech). Research Report OUNZ Zlin 1990. 

2 M. Sindlaf, P. Pudil and L. Papez: Use of discriminant analysis methods for determining 
the significance of UV profiles for diagnostics of stress urinary incontinence at women patients 
(in Czech). Csl. gynekologie a porodnictvi 45 (1981), 10, 700—703. 

3 M. Sindlaf, P. Pudil and L. Papez: Use of measure of discriminative power for diagnos­
tics of stress incontinence at women patients (in Czech). Proc. Conf. "Lekafska informatika", 
Praha 1981. 
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projects. The aim was to find those features which are the most significant features 
for differentiating between the classes of enterprises for which the typified projects 
are suitable or unsuitable, respectively. 

The derived classification rule can be used for the decision whether an enterprise 
going to solve certain tasks of automated control should use the typified project or 
if it is not suitable. Moreover, the results of the significance analysis can be utilized 
with the aim to carry out such changes in typified software projects so as to extend 
their scope of applicability. More about it is in Rihova4. 

5. Recognition of data from remote sensing 

Though in remote sensing problems predominantly contextual structural ap­
proaches to picture analysis are used, there are specific problems where the statistical 
feature approach can be used. A typical classification problem of this nature is 
recognition of forests based on the data from multispectral analysis recorded during 
the flight of aircraft. The results are presented in more detail in Blaha5. 

6. Recognition and classification of rock types in geology 

The usability of PREDITAS system in geology has been demonstrated by the 
solution of two following problems. The first problem has been solved in cooperation 
with the Department of Geology of Mineral Deposits, Faculty of Science, Charles 
University, Prague. The aim was to carry out the multidimensional analysis of 
feature significance for recognition of two types of granite rocks from the Moldanu-
bium of the Bohemian Massiff. The samples were characterized by their chemical 
components. The results are summarized in Pudil6 and in more detail in Pudil7. 

The second problem solved in cooperation with the Institute of Geology and 
Geotechnics of the Czechoslovak Academy Sciences in Prague, was the problem 
of classifying tholeiitic and calc-alkaline volcanic rock associations based on their 
major elements. A correct classification of these two types is very important from the 
viewpoint of prospective mining of certain special metallic ones. The results are 
summarized in Blaha8. 

4 Z. Rihova, P. Pudil and S. Blaha: Classification of enterprises with respect to usability 
of typified software for automated control. Proc. 7th Internat. Conf. on System Eng. "ST 88", 
Mar. Lazne. Dum techniky CSVTS Praha, 1988, pp. 210—211. 

5 S. Blaha and P. Pudil: Recognition of forest (in Czech). Research Report UTIA CSAV, 
No. 1339, Praha 1985. 

6 P. Pudil and S. Blaha: Recognition of rock types according to geochemical data by means 
of pattern recognition methods (in Czech). Research Report UTIA CSAV, No. 1333, Praha 1985. 

7 P. Pudil, S. Blaha and Z. Pertold: Significance analysis of geochemical data for rock type 
discrimination by means of PREDITAS program system. In: Proc. Internat. Symp. on Mat. 
Methods in Geology, Pribram 1989, pp. 119—125. 

8 S. Blaha, P. Pudil and F. Patocka: Program system PREDITAS and its possible application 
in geology. In: Proc. Internat. Symp. on Math. Methods in Geology, Pribram 1989, pp. 6—17. 
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7. Recognition of emergency states in power network 

In large power network certain states may develop which, let just by themselves 
without operator's intervention, could lead to the network breakdown. Therefore, 
it is desirable, to be able to detect such risk or emergency states so that the operator 
may use some reserves of power or to intervene in another way with the aim to 
return the state of network back to normal. 

Since acquiting data of emergency states and of possible breakdowns during real 
functioning of power network is hardly feasible, another approach has been adopted. A 
simulation model of the power network has been designed at the Faculty of Electri­
cal Engineering, enabling to generate states characterized by multidimensional data 
vectors and to evaluate them according to the development of the network (state 
does or does not converge to a breakdown). The first results from PREDITAS 
system specifying the discriminatory plane offer the possibility to generate further 
training samples of the vicinity of the discriminatory plane and thus to specify its 
equation with more precision. So this problem solution is a perfect example of 
iterative approach to arriving to the final solution. This approach has been success­
fully verified on an artificial reference power network and the project is still under 
way. 
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