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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 2  

ON THRESHOLD AUTOREGRESSIVE PROCESSES 

JIŘÍ ANDĚL, IVAN NETUKA, KAREL ZVÁRA 

A threshold autoregressive process of the first order with Gaussian innovations is 
analyzed in the paper. Four methods are used for finding its stationary distribution: (a) the 
exact solution is derived in some special cases, (b) a Markov approximation is proposed, (c) 
a numerical method for solving an integral equation is applied, (d) simulations are produced. 
In the cases (b) and (d) also estimates of the correlation function and of the spectral density are 
compared. 

1. INTRODUCTION 

The classical autoregressive (AR) process {Xt} is defined by 

(1.1) Xt = £ akX,-k + e,, 
k=i 

where ak are cons tan t s a n d {e,} is a white noise , i.e. a sequence of uncor re la ted 

r a n d o m variables wi th Eet = 0, Var e, = a2 > 0. O t h e r simple mode ls used in the 

t ime series analysis are m o v i n g average ( M A ) process 

(1.2) Xt = t bje.-j 
j=o 

and autoregressive-moving average (ARMA) process 

(1-3) X, -. t akXt-k + t bjet-j, 
k=l j = 0 

where bj are also constants. In the last years also some nonlinear models have been 
proposed. A bilinear model is defined by 

X, - t °kXt-k + t bjet-j + I I PMXt-pet-q, 
k=l J=0 p=lq=l 
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where e, are supposed to be not only uncorrected, but also independent (Granger 
and Anderson [6]). Ozaki and Oda [14] consider models of the type 

Xt = cxXt_x + ... + CpXt_p + dxX
2
t_x + ... + dpX

2
t_p + dp+lX,_1Xt_2 + . . . 

••• + dp+p(p+v>i2Xt_p+lXt_p + ... + zrX
s
t_x ...Xs

t1m + et. 

They use the Akaike's Information Criterion AIC (Akaike [ l ] ; Andel [2]) for 
estimating the dimension of the model. Tong [17] and [18] introduced a non-liuear 
model in the following way. Let Bu ..., Bh be disjoint subsets of the real line M such 
that Bx u . . . u Bh = R. Let {Y} be a time series. Define 

X, = flo/c + _L ajkXt-j + et if Yt_x e Bk, 
_ = i 

where aJk are some constants. Then { Yj is called an instrumental time series. Usually, 
B0 = ( - c o , rx), Bk = [rk, rk + x) for k = 1, ..., h, where rh + 1 = co. The points 
ru ..., rh are then called the thresholds and {Xt} is said to be threshold autoregressive 
(TAR) process. A special case arises when Yt = Xt. Such process {Xt} is sometimes 
called a self-exciting threshold autoregressive (SETAR) process. It has been shown 
by Pemberton and Tong [16] that TAR models exhibit features known in non-linear 
vibrations like jump resonance, amplitude-frequency dependency, limit cycles 
etc. Tong [19] generalized the TAR model to threshold autoregressive-moving 
average (TARMA) processes. 

Haggan and Ozaki [8] proposed and analyzed exponential autoregressive (EAR) 
process defined by 

Xt = £{ak + bke-°x'-')Xt_k + et, 
k=i 

where ak, bk and c are constants. Ozaki [13] deals with processes of the type 

f akXt_k + e, if \Xt-A ^ r, 
Xt = 

__{__bkJXU)Xt_k + et if \Xt_x\ <r, 
k=l j=0 

where r is a threshold and the parameters of the model satisfy the condition 

«k 

__bkjr
J - ak, k «= 1, 2 , . . . , p. 

j=o 

One of the important problems is to find conditions, under which the processes are 
stationary. All MA processes (1.2) are always stationary. The AR process (1.1) and 
the ARMA process (1.3) are stationary if and only if 

z" - a ^ " - 1 - . . . - a„ * 0 for \z\ J> 1 

(of course, it is understood that Xt belongs to the Hilbert space generated by the 
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variables e„ e,_1, ...). However, little is known about stationarity conditions for 
non-linear processes. For example, Jones [10] investigated the process 

(1.4) Xt = X{Xt.t) + et, 

where X is an autoregressive function and e, are independent identically distributed 
random variable (i.i.d.r.v.'s). Some "negative conditions" are derived in a quite 
explicit form. E.g., if the distribution of et has infinite tails with exponential-like beha
viour, then no polynomial autoregressive function of degree greater than one can lead 
to a stationary process {Xt}. Jones does give conditions ensuring stationarity, but their 
verification seems to be rather difficult in any non-trivial case. (Let us mention that 
it can happen that X depends on a parameter 6 and the distribution of et depends 
on a parameter \p; Jones [ l l ] uses the maximum likelihood method for estimating 0 
and \j/ and derives some asymptotic properties of the estimators.) 

The situation is even worse if we need to compute a stationary distribution of the 
process. There are two main problems: 

(i) The distribution of e, is given. Calculate stationary distribution of X, (if it 
exists). 

(ii) A distribution is given which should serve as a stationary distribution of Xt. 
Find a distribution of et (if it exists) which implies such a stationary distribution. 

Generally, these problems are hard enough even for the stationary AR process (1.1) 
with n = 1 (see Andel [2] and [3]). 

As for the non-linear processes, Pemberton and Tong [16] analyzed the proper
ties of a stationary distribution in the model 

Xt = X{Xt_1,...,Xt_p„1) + et. 

Their main result can be formulated as follows: If et has a symmetric density and 
if X is an odd function, then all the finite stationary joint densities of Xtl, • • •, Xlk are 
symmetric about (0,..., 0) for all tx, ..., tk. However, they showed by an example 
that this condition is not necessary for the symmetry of stationary densities. 

Jones [9] and [12] proposed three methods for evaluating stationary distributions 
of the model (1-4). All the procedures are based on some power-series expansions. 
They seem to be too complicated for a practical use. The problem is very difficult 
also from the theoretical point of view. The results concerning stationary measures 
(existence, uniqueness) are available under Doob's Condition D ([7], pp. 190-218). 
This condition is not satisfied even for Gaussian linear processes. 

In the present paper we propose some other methods for computing the stationary 
marginal densities in non-linear processes. For simplicity, they will be explained 
in the case of a TAR model of the first order with one threshold r, although they can 
be used for any model (1.4). In a special case an explicit analytical solution is derived, 
which enables to compare the accuracy of other methods. The results are also checked 
by simulations. 
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2; PRELIMINARIES 

In this section we calculate some integrals needed for derivations of main results in 
further parts of the paper. 

Denote 

(p(x) = (27r)- 1 / 2 exp{-x 2 /2} and <P(x) = (p(t)dt 

the density and the distribution function of N(0,1), respectively. Let 

jx„ = x" q>(x) dx , n ^ 0 , 

be the moment of the nth order of N(0, 1). 

Lemma 2.1. Put 

J „ = [ ° ° x"e-kx2,2<P(-x)dx, n = 0,l..., 

where fc > 0 is a constant. Then 

J0 = [TC/(2/C)]1/2 , J, = -k~\k + 1 ) " 1 / 2 , J2 = k~lJ0 , 

J3 = [2/fc + l(fc + 1)] Jt , J 4 = (3/fc) J2 . 

Generally, 

J„ = - -J„-2 ~ fc-Ҷfc + 1 ) - ^ 2 ^ - ! , n = 2 . 

fc 
Proof. Using _»( —x) = 1 — <P(x), we have 

J 0 = f" e - ^ 2 / 2 dx - f" e- f c x 2 / 2 _>(x)dx = (27i/fc)1/2 - J0 . 

From here we obtain J0. The expression for J . can be obtained using the integration 

by parts. The same method gives 

Jn =_ -(l/fc) f00 ( - f c x ) e - t a 2 / 2 x « - 1 <5(-x)dx =1^1jn_2 - fc--(fc + l )-" / 2 /. B _i . 
J-oo fc 

Inserting n = 2, 3 and 4 we get the formulas for J2, J3 and J4. D 

Lemma 2.2. Let fc > 0. Denote 

H(k) = f c-kx2'2 _>(x) dx , M(fc) = P x 2 e ^ 2 <P(x) dx . 

Then 

H(fc) = (27tfc)-1 / 2arctgv/fc, 

M(fc) = (27ifc)-1/2 fc"1 arctg V(fc) - (^n)'1'2 k~\k + 1 Y - . 
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Proof. Obviously, 

H'(k)= - _*_(*) . 
Integration by parts gives 

(2.1) M(k) = k'1 H(k) - (2n)-112 k~\k + I)'1 . 

Therefore, H(k) satisfies the linear differential equation 

H'(k) + (2k)-1 H(k) = 2-\2n)-U2 k~\k + l)'1 . 

The solution is 
H(k) = k-ll2[c + (2K)-1'2 arctg./!<] • 

A direct evaluation of the integral yields H(l) = i(2n)1!2, which implies c = 0. 
The formula for M(k) follows from (2.1). • 

Lemma 2.3. Let r e R, fielR. Then 

(2n)~1/2 J x2 exp { - _(x - n)2} dx = 

= (1 + n2) <P(r - n) - (27c)-1/2 (r + ju )e X p{-_(r - tf} , 

(2n)~1'2^x2 exp {-_(x - /_)*} dx = (1 + »2) 4>(» - r) + 

+ (27i)-^2(r + / _ ) e x p { - _ ( r - / J ) 2 } . 

Proof. The formulas can be derived by direct calculations. • 

3. THE MODEL 

M *•={£::: 
defined by 

s__ + e_, if Zs__ g r , 
+ es, if _XS__ > r , 

where es are independent iV(0, a2) variables and a, /?, r, a are given constants such 
that — 1 < a, ft < 1, a > 0. This is a TAR process of the first order with normally 
distributed residuals. We shall assume that Xs and et are independent for s < t. 

The main aim of our paper is to find a stationary distribution of {Xs}, its statistical 
characteristics, the correlation function and the spectral density. In a special case 
we were able to derive an explicit result. The approximate methods can be applied 
also to more general models than (3.1). 

Obviously, the conditional distribution of Xs given _VS__ = y is 

_-_.|i..1_,)-{_tfJ' ^ S r -
. v * I. * ' J> [N(Py, a2), if y > r. 
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Let tjj(x | y) and q2(x | y) be the density of N(ay, a2) and N(fiy, a2), respectively. 
Assume that Xs-l has a density/(y). Then the simultaneous density of Xs and Xs_ t is 

K*.y)-få[ 
l2(x | y)f(y), if _v > r . 

The density j is stationary if and only if the marginal density of Xs is also j . This 
gives the condition 

f(x) = j h(x, y) dy = T qt(x | y ) /0 ) dy + J " q2(x | _.•)/(_>) dy . 

Inserting for qt and q2 we have the equation 

(3-2) / 0 ) = ^ j ; r o e x P { - ( ^ J / 0 ) d , + 

+ -j-rexPj-^-^n/o)d,. 
V(2^)crJr

 P l 2a2 VW 

Without any loss of generality we shall assume that a = 1. 

4. AN EXPLICIT SOLUTION 

In this section we shall assume that r = 0, j8=— a, 0 < a < 1. Under such 
conditions we prove that there exists a stationary density / satisfying (3.2) and that 
the solution of (3.2) is unique apart from a multiplying factor. 

Theorem 4.1. Consider the equation 

(4-1) /(*) = - 7 ^ - f exp {-i(x - ay)2}f(y) dy + 
V(2*)J-« 

+ " 7 ^ r e x P { - i O + «y)2}/0)d.v. 
V(2«)Jo 

Then 
(4.2) f(x) = [2(1 - a2)/7i]1/2 exp {-i(l - oc2) x2} _»(-_«) 

is a solution of (4.1) and/is a probability density. 

Proof. Denote C = [2(1 - a2)/7t]1/2. If/(x) is defined by (4.2), then the right-
hand side (RHS) of (4.1) is 

RHS = (2n)-1/2 J J exp {~_(x + ay)2} [/(y) + /(-_/)] dy = 

= (2TI)-1/2 C f°exp {-i(x + ay)2} exp {-i(l - a2) y2} dy , 
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since <P(—ay) + <J>(<xy) = 1. Further we have 

RHS = C exp {-_(1 - a 2) x 2 ) (2K)~ 1 / 2 V exp {-_(>> + ax)2} dj> = 

= C exp {-1(1 - a 2) x2} <_ ( - a x ) = j(x) . 

Obviously, f(x) > 0. From Lemma 2.1 we obtain J/(x)dx = 1. This concludes 

the proof. • 

Theorem 4.2. Let j(x) be the density (4.2) and 

v'„ = xnf(x)dx . 

Then 

v ^ a - " - 1 ^ - a2)/7t]1 / 2 J„, 

where J„ is defined in Lemma 2.1 for k = a~2 — 1. The expectation n and the vari

ance v2 belonging to j(x) are 

/_ = -(2/jt) 1 / 2 a(l - a 2 )" 1 - ' 2 , v2 = (1 - a 2 ) " 1 I 1 - — Y 

Proof. The formula for v_ follows from Lemma 2.1. Further we have n == v_, 

p» = v_ - (v'O2 . D 

The central moments 

v „ = Ґ ( x - / ( ) " Д x ) d x 

can be computed for n = 3 and « = 4 from 

v3 = v'3 - 3v_v; + 2(v;)3 , v4 = v, - 4v3v; + 6v_(v;)2 - 3(v_)4 . 

Then the coefficient of skewness a 2 and the coefficient of excess a 4 are given by 

«3 = v3/u3 , a 4 = v4/u4 . 

Theorem 4.3. Let the variable X s _ x in the model (3.1) have the density f(x) 

given in (4.2). Then the correlation coefficient _ of the variables Xs and X s _ t i s 

Q = (K- 2 a 2 ) - 1 a[it + 2a(l - a 2 ) 1 / 2 - 2a - 2 arctg ( a " 2 - l ) 1 / 2 ] . 

Proof. The simultaneous density h(x, y) of the variables X = Xs and Y = Xs-i IS 

Then 

h ( x v) _ 1(2*)- 1 / 2 exp {-(x - a>02/2}j(>0 , if V = 0 , 
'^X>}} - \(2TC)- 1 / 2 exp { - ( x + aj/)2/2} f(y), if y > 0 . 

EXY= i xy /i(x, y) dx dy = 
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= 7t-1( l-a2)1 / 2 |T .vexp{-(l-a2));2/2}<£(-aj) V xexp{-(x-aj)2/2}dxdy + 

+ J J y exp { - (1 - a2) >>2/2} 4»( - ay) J " x exp { - (x + aj/)2/2} dx dyl . 

From 

| x exp {-(x + ay)212} dx = ±(2n)1/2 ay 

and from Lemma 2.2 we obtain 

£XY= (1 - a2)"1 a + 27c~1(l - a2)"1/2a2 - 27r1(l - a2)"1 arctg (a~2 - 1)1/2. 

Since EX = EY= \i and Var X = Var Y= v2, where n and v2 are introduced 
in Theorem 4.2, it only remains to insert into the formula 

e = (EXY - n2)jv2 . • 

In the following part of this section we prove that (4.2) is a unique density satisfying 
(41). 

Lemma 4.4. To any solution fel}(R) of (4.1) there exists a function <p 6 Ll(R) 
such that 

(4.3) (p(az) = (axJn)~1\ e- ( z- , ) 2 <p(t) dt, zeff, 

and 

(4.4) j(x) = (a V-T;-1 J " exp j - ( - ^ + t j \ <p(t) dt, x <= ft . 

Proof. Let feI}(R) be a solution of (4.1). Put 

(4.5) 9(t)=f(tsl(2)\*)+f(-ts](2)la). 

Since q> e lJ(R) is an even function, we get 

I"* e-(*-')2<p(t)dt = p [ e - ( z + ' ) 2 + e-(z-')2]<p(f)df. 

Inserting from (4.5) we obtain four integrals. After the substitutions ±t•sJ(2)ja = s 
we use the fact that j is a solution of (4.1). This yields 

J^e- ( z- ' ) 2<p(rjdr = JL [/(zV2) +j(-zv
/2)]V(2K) = a V(TT) cp(az). 

Further, from (4.1), 

j(x) = (27T)-1'2 Jjexp {-$(x + ay)2} [f(-y) + f(y)] dy . 

The substitution y = t ,/(2)/a immediately leads to (4.4J. • 
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Proof. Put 

Then 

Lemma 4.5. Let <p s Ll(R) satisfy (4.3). Then for the Fourier transform 

v(t)=T eitx<p(x)dx 

of the function (p the relation 

(4.6) y(tjx) = e~'2/4^(f), teR, 
holds. 

Proof. The Fourier transform of e~*2 is ^(K) e~'2/4. Calculating the Fourier 
transforms of both sides of (4.3) we obtain (4.6). • 

Lemma 4.6. Let F be a function such F(t\a) = e~'2'4 E(r). If F is continuous at 
t = 0, then there exists a constant c such that 

GW-no*-p{^'t 

G««) - F('W<«P {; J - ^ ; ' j " =-"'4 <*P {̂  J ^ J <j f(') - C(0 • 

The function G is also continuous at t = 0. For any f e R we have a"f -> 0 and 

G(f) = G[(af)/a] = G(af) = G(a2t) = ... = G(a'7) -> G(0) = c. D 

Lemma 4.7. If q> e Ll(R) is a solution of (4.3), then there exists ke R such that 

(4.7) cp(t)= fcexp j - 1 ~ g f-1, ! £ » . 

Proof. In view of (4.6) and Lemma 4.6, 

^ )=cexp{-4i^i-
This implies (4.7J. D 

Theorem 4.8. The function (4.2) is a unique density satisfying (4.1). 

Proof. It was proved in Theorem 4.1 that/(x) given in (4.2) is a solution. From 
(4.2) and (4.5) we obtain 

</,(0 = [ 2 ( l - a 2 ) / K ] ^ e x p | - i ^ ^ J . 
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However, according to Lemma 4.7 this cp is the only solution of (4.2) leading to 
a density. Since any solution j must satisfy (4.4), we proved the unicity. • 

5. MARKOV APPROXIMATION 

The Markov process {Xs} defined by (3.1) can be approximated by a Markov 
chain with a finite number of states. We choose some points Cj < c2 < . . . < ch^l 

in such a way that one of them coincides with the threshold r. If we formally put 
ch = oo, then the real line is divided into intervals Ju ..., Jh, where JL = (— oo, cL), 
Jk — \ck-u ck) for k = 2, ..., h. Let 

-"i = c i - Kc2 - ci)» zk = Kck-i + ck) for k = 2,..:,h-i, 

zi, = c, ,-i + _ ( c * - i _ ch-i) • 

This is the classical representation of the intervals Jk by their middle-points. 

Let i,j be some numbers from the set {1 ,2 , . . . , / . } . The probability P(A"se 
€ Jj | A s_j e / ;) can be approximated by 

piJ = F(XseJj\Xs-l = zi). 

From the model (3.1) we can see that the conditional distribution of Xs given .__._ t = 
= z, is N(azh a2) for z, < r and N(Pzh a2) for z, > r. This leads to a homogeneous 
Markov chain with h states represented by zu ..., z,, and with the matrix of transition 
probabilities P = (pu), where 

f_.[(z, - « . ) /_] - «P[(z,_t - «Z,)/<7] if z, < r , 
^ « l $ [ ( z , - /Jz,)/.] - # [ (_ ,_ . - )Sz,.)/a]. if z ; > r . 

The stationary distribution of the Markov chain is given by such a vector of pro
babilities p = (pu ..., ph)' which satisfies the equation 

p = Pp, pt + ... + ph = 1 . 

The moments of the stationary distribution are 

The expectation ft and the variance v2 are 

.*--__ ziPi, t>2 = E z?/\- - /J2 • 

The central moments of higher orders as well as the coefficients a3 and a4 of this 
distribution can be calculated in the same way as v3, v4, a3 and a4 in Section 4. 

The matrix of transition probabilities after k steps is Pk. Its elements will be denoted 
by pf/. If {Xs} is our stationary Markov chain with the states zu ..., zk, then 

EJff.Y.+„-I2>,zip<pg>. 
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The correlation function of the process {Xs} is 

8k = (BXsXs+k - fi2)lv2 , fc=l,2,... 

The spectral density g of this stationary process can be calculated by the formula 

g(X) = f J fce-". 

where Q0 = 1 and Qk = Q-k for fc < 0. In practical cases we shall compute Qk only 
for |fc| g; K, where K is a bound depending on the rate how Qk tends to zero. Then 
the spectral density is approximately 

a(A) = ̂ ( 1 + 2X<?* cos *d). 
2% fc=i 

6. A NUMERICAL SOLUTION 

The equation (3.2) can also be solved numerically. Generally, consider the integral 
equation 

(6.1) f(x)-X^j(x\y)f(y)dy = 0, 

where q is a given function. First, we choose the points alf..., an + 1 such that the 
integrals 

P" q(x\y)f(y)dy and f°° q[x\y)f(y)dy 
J - m J a„ + i 

are negligible. One of the points a; must coincide with r. Put At = ai+1 — at, 
s ; — (>';+i + a,-)/2. Then 

T q(x | y)f(y) dy = £ P + 'a(x | y)f(y)dy 
J -co i= l j a , -

and each integral from at to ai+1 will be numerically evaluated using the Gauss 
formula with three knots: 

I q(x | y)f(y) dy = £ wu q(x | yi})f(Уij) , 

J ' = I 

Г±At for j = 1, js ; - iV(l)--«- f o r j = 1 , 

*У ™ jt-1. f o r ! = 2 ' ?u = | s ; f o r J = 2 , 
l-Ł/l, for j = з , U + ł V d ) - 1 ! f o r !' = з . 

Instead of (6. l) we have 

(6.2) . f(x)-lt ҺщjifaІУtùĄyrì-O. 
; = i j = i 
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Inserting yu for x we obtain the homogeneous system of linear equations, where 
f()'ij) are unknown and X is a parameter. This leads to the problem of finding the 
eigenvalues and the eigenvectors of a matrix. We look for the solution which corres
ponds to such a value of A, which is near to 1. In our numerical investigations really 
a value of X was very near to 1 (e.g. 0-997), whereas the others were substantially 
smaller (below 0-5), and the identification of the proper X from the set of all eigen
values was easy. 

According to (6.2) an (approximate) formula for the stationary density / was 
found in the form 

(6-3) /(*) = £ ikiJq(x\ytJ), 
i = l 7 = 1 

where 

i = l 7 = l 

and 

(,4) * W i . _ ^ r f < ^ ; $ i ;;;><;: 

The moments corresponding to / (x ) can be easily found, because 

P xkf(x) dx = £ £ kij P° x* q(x | ytJ) dx 
J -co 1=1 7 = 1 J - co 

and jxk q(x | yu) dx is a known moment of a normal distribution (6.4). Thus we get 
the expectation fi, variance v2, <x3 and «4. 

This method also allows to calculate the correlation coefficient Q of the variables 
X = Xs and Y = Ys_j in the stationary case. Let Yhave the density / (6.3). Then 
the joint density h(x, y) of X and Yis 

h(x v) _ [ W m exp {-i(x - *y)2}f(y) if y<r, 
' ^ ' y) - \(2K)-V2 exp { - i ( x - Py)2}f(y) if y = r . 

We have 

EJГY= f xj> h(x, j ) dx dy = 

= £ £fc/7-ľ J ^ Ы Ґ x ( 2 я ) - 1 / 2 e x p { - ì ( x - a j ) 2 } d x d j ; + 
i - l j - l J-co J-=o 

+ £ £fcЛ%<гOф'ú)ľ ^-^.expf-Kx-^/Иxdj;-
І = І 7 = 1 J r J - c o 

= « £ £ ku f ^ «0> I Уij) dy + ßt £ fcy Ґ У2 q(У 1 УlD dj, . 
; = i j = i J-cc І = І J = I Jr 
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We insert from (6.4) and use Lemma 2.3. Finally we get 

E*Y = « £ £ fc„[(l + *%) *(r - ayu) - (2K)-"2 (r + aj^exp { -$(r - xyuf}] + 
i J 

yij<r 

+ «SIfc y [ ( l + « , > ( > - Pyu) - (27r)-1^(r + ^ , v ) exp{- i ( r - Pyuf}] + 
i J 

ytjir 

+ PZlku[(l + «Vv)-K«y« - r) + (27c)^/2(r + ay„.)exp {-±(r - ay,,-)2}] + 
> i 

ya<r 

+ .*ZZM.(- + P2yu)<P(Pyu -r) + (2«)-1!*(r + /?yy)exp{-i(r - ^,7)2}] . 
•• J 

Now, the correlation coefficient Q is calculated by 

e = (E*Y-At
2)/<;2. 

7. SOME NUMERICAL RESULTS 

The exact solution based on explicit formulas from Section 4 is available only 
for r = 0 and a. = — p. However, in these cases it enables to compare the accuracy 
of other methods. 

The Markov approximation, the results of which are given in Tables 1, 2 and 3, 
was obtained from a division of the real line into 10 intervals. The bounds of these 
interval (except for — oo and oo) are introduced in the row A of the Table 6. 

For the numerical solution, which was described in Section 6, the following points 
ai were chosen: 

- 8 , - 5 , - 2 , - 1 , 0, 1, 2, 6. 

Again, the results are contained in Tables 1, 2 and 3. 
For each combination (r, a, /?) ten simulations were produced. Each simulation 

had the length N = 500. The results are given in the tables in the columns with 
the heading "simulations". The first number is the average of the corresponding 
sample statistics calculated from 10 realizations. The second number (in the paren
thesis) represents the sample deviation of the type 

szVi-w; 
> = i 

where xf are the sample statistics. 
i The accuracy of the Markov approximation surely depends on the number of states 

and on their location. Some information about it can be obtained from the Tables 4 
and 5. The investigated cases are denoted by the letters A — G and the bounds 
of the used intervals are in Table 6. To make the comparisons easier, the Table 4 
contains also column with the exact results and the Table 5 a column with the nume
rical solution (because in the latter case the exact result is not known). 
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The correlation functions and the spectral densities for r = 0, a = 0-9 and /? = 
= -0-9 are drawn in Fig. land Fig. 2, respectively. The solid line is the average 
from 10 simulations. The spectral densities in the simulations were estimated by 
Parzen formula. The dashed line represents the result from the Markov approxima
tion when there are 10 states corresponding to the scheme A introduced in Table 6. 
The dotted line belongs to the Markov approximation with 20 states and their scheme 
is£ . 

simulations 
10 states (A) 
20 states (E) 

0 5 10 15 k 

Fig. 1. Estimates of the correlation function for r = 0, « = 0-9, fi = —0-9. 

Table 1. 

r= 0 

Exact Markov Numerical Simulations 
approximation solution 

Џ -0-461 -0-488 -0-461 -0-428 (0.048) 

« = 0-5 v2 1-121 1-192 1-121 1-112 (0.074) 

ß = - 0 - 5 «3 -0-035 0-017 - 0 0 3 5 -0-029 (0-129) 

«4 3010 2-874 3010 2-902 (0-177) 
Q 0-173 0-174 0-173 0153 (0-060) 

Џ -1-064 -1-033 -1-063 -1-002 (0-088) 

« = 0-8 v2 1-646 1-440 1-646 1-624 (0-157) 

ß= - 0 - 8 «3 -0-245 0-165 -0-246 -0-228 (0-160) 

«4 3-134 2-528 3-136 3-065 (0-232) 
Q 0-522 0-449 0-522 0-496 (0-05S) 

Џ -1-647 -1-332 -1-639 -1-533 (0-134) 
a = 0-9 v2 2-549 1-514 2-513 2-447 (0-331) 

ß = - 0 - 9 «3 -0 -472 0-347 -0-441 -0-460 (0-220) 

«4 3-321 2-451 3-220 3-194 (0-371) 

e 0-724 0-548 0-723 0-701 (0-047) 
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Markov Numerical Simulations 
approximation solution 

џ -0-364 -0-343 -0-307 (0-053) 
X = 0-5 v2 1-297 1-217 1-216 (0-087) 

ß= - 0 - 5 * 3 0-023 -0 -023 -0-037 (0-138) 

«4 
2-851 2-988 2-882 (0-176) 

Q 0-217 0-219 0-200 (0-056) 

Џ -1-219 -1-540 -1-447 (0-149) 
a = 0-9 v2 1-801 2-829 2-784 (0-305) 

ß = - 0 - 9 x3 0-425 -0 -308 -0-300 (0-190) 

«4 
2-517 3-084 3-058 (0-355) 

í? 0-562 0-722 0-699 (0-039) 

/ • = 2 

Markov Numerical Simulations 
approximation solution 

Џ -0-261 -0-145 -0-099 (0-060) 
x = 0-5 v2 1-362 1-314 1-302 (0-071) 

ß = - 0 - 5 * 3 0-009 -0-035 -0-047 (0-076) 

Ч 2-832 2-980 2-915 (0-153) 

Q 0-278 0-356 0-342 (0-051) 

Џ -1-115 -1-326 -1-267 (0-286) 
X = 0-9 v2 

2-045 3-437 3-399 (0-506) 

ß = - 0 - 9 « 3 0-440 -0 -179 -0 -153 (0-187) 
a 4 . 2-480 2-878 2-817 (0-240) 

í? 0-590 0-747 0-720 (0-030) 

The numerical experience contained in Tables 1 — 6 and in Fig. 1—2 leads to the 
following conclusions. 

a. The numerical solution is very near to the exact values. Its quality decreases 
a little, when |«|, |j8| -» 1. 

b. Markov approximations give only rough estimates of the considered characte
ristics. The precision is not better even if the number of the states grows. We must 
remark, however, that this may be a consequence of the inaccuracies arising in the 
process of solving great number of linear equations with an ill-conditioned matrix. 
It would be interesting to analyze this problem in detail. In any case, the Figures 1 
and 2 clearly show that the estimates of the correlation function and of the spectral 
density are rather bad, whereas the approximations of fi and v2 can be of some use. 
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