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KYBERNETIKA CISLO 1, ROCNIK 4/1968
The Formulation of the Problem
of Program Segmentation in the Terms
of Pseudoboolean Programming

JarosLAV KRAL

The problem of (a priori) segmentation of a program is formulated. Two equivalent formula-
tions are stated as programs with zero-one variables.

Let us have a program P for a digital computer. Let its length be N, i.e. the program
is in the machine language expressed by N instructions. If N is large, a part of P must
be placed on a backing store. We shall suppose that an information from a backing
store can be called only in tracks of the length K and that the bounds of tracks on the
backing store are given by the hardware of the computer. We shall assume that the
backing store has practically unlimited capacity.

In the run time the segment with the executed instruction must be previously
transferred into the main store. If the control of the computer after the execution
of the instruction in one segment needs the instruction from another segment, an
administrative program must be called verifying whether the new track is in the
main memory. If it is not the case, the administrative program calls the new track
from the backing store. The problem of segmentation is the collecting of all the
instructions of the program into the tracks so as to minimize the number of calls
of the administrative program. This problem can be stated mathematically as follows:

Find the covering of the set of instructions of the program by the sets B, ..., B,
so that the number of elements in any B, is not greater than K and that the number
of cases, when — in the run time — an instructions in B; must be executed after
exccution an instruction in B, (i = j), is minimal.

B, is the collection of instruction in the i-th track (a track needs not contain just K
instruction as some of its location can be “empty”). Asfor various executions of the
program the number of jumps from an instruction I; on to an instruction I; varies,
we must state the problem in terms of mean values. Let us assume that we know the
values of S;; where S;; is the mean value of the number of cases that (in the run time)
after the execution of the instruction I, the instruction I; is executed. For the problem
of estimation of S;; see [7]. The structure of the program is for our purposes com-



pletely described by the matrix (S;;) or by an oriented graph & of N vertices V;, ..., Vy
labelled by instructions Iy, ..., Iy. The edges (V,., V;) of & are labelled by S;; which
can be interpreted as flows through the edges. We shall assume that no instruction
can be in two segments. This assumption is somewhat limiting but, on the other hand,
avoiding this assumption would cause such unwanted consequencies as insertion
of almost all procedures on the places of their activations, and so on. It is clear that
for a given segmentation of the program P the mean number of cases when after
execution of an instruction in one segment an instruction from another segment
is executed (or more shortly the mean number of intersegment jumps) is given by the
expression
o
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where B denotes the s-th track (or segment) and ). denotes that the summation
i,IieBg
is taken over all i for which I, belongs to B,. The number Q of segments is not fixed.

Now we can formulate the problem of segmentation in the following way:
Find the disjoint subsets By, ..., By of the set {t,2,..., N},

Q
UB={12..,N}

(i.e. all B, cover the set {1,2,..., N}) so that

(1) number of elements in each B, is not greater than K.
(2) the value of

@ Y Y vs,

s=1 ieBy j¢By
is minimal.

We note that although Q is not given (fixed) we can take Q < [N/[K/[2]] where [ ]
denotes the integer part. This results from the fact that the mean number of instruc-
tions per one segment need not be less than [K/2] (in the opposite case at least two
segments can be joint into one) and that each instruction is just in one segment.
As we can allow B; to be empty, we can take Q = [N/[K[2]] + 1.

Theorem 1. The problem of segmentation is equivalent to the following pseudo-
boolean program:

(2a) xi=0,1; i=12,...N;j=12..0,
N

(2b) Yx2K,
i=1

2 .
(2c) Yxi=1,
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Proof. Associate with each B; a set of zero-one variables
XX, o xh .

Let x] = 1if I; belongs to B; and x{ = 0 in the opposite case (i.c. the values of x{, ...
ey x’v) coincide with the values of the characteristic function of Bj). Then (Zb) is
equivalent to the requirement that B; contains at most of K elements, (2¢) holds if
and only if all B;, i = 1,2, ..., n, are disjoint and cover the set {I,,I,_, ..,,IN} ie.
cover the whole program P. (1) is then equivalent to

as x{(1 — x{) is equal to 1 if and only if I, € B; and I, ¢ B;. But (3) is minimal if and
only if the expression

@ ¥ ¥ Su Yl

is maximal. QED.

We find now the formulation of the problem of segmentation as a linear program
in zero-one variables. We shall prove.

Theorem 2. The problem of segmentation is solved if the solution of the following
linear program in zero-one variables is known:

(52) ;=01 for ij =1,2,..,N,
(5b) Xy = Xp for i,j =1,2,..,N,
(5¢) x; =0 for i =1,2,..,N,
(Sd) Xy — Xp 2 x5 for i,j,k=12,..,N,
N
(50) YxyzN-K, i=1,2,..,N,
=t N N
(57) Y Y Six; — min.
i=1 j=1

Proof. Let us put in (3)

then (2c) implies



where s; denotes the unique segment containing I;. x;; = x;; = 0 if I; and I; belong
to the same segment and x;; = x;; = 1 if [; and I; belong to different segments.
(2b) is then equivalent to the system of inequalities (Se), because

N N . N
(6) Yoxg =y Al - x) =N Y xi.

i=1 i=1 =1
Further (3) is equivalent to (5f). It only remains to express the conditions (2¢). {2¢)
is equivalent to the requirement that each instruction of the program belongs to one
and only one segment. But then for a fixed i

Xij = - X.\-,-(j)l

%s{J) is the characteristic function of the segment containing I;. If I, and I; belong
to the same segment (we know that this is equivalent to requirement x;; = 0) we have
Xsi = Xs; and hence xy = x;; k= 1,2,..., N. So for Q di:joint segments the matrix
(xu) ;=1 contains just @ mutually dlffelent rows and if x;; = O then i-th and j-th
row coincide.

Now we prove

Lemma 1. Let a matrix of zero-one variables (x,;} , =1 fulﬁl the conditions (5b),
(5¢) and if x;; = O then xy, = x5,k = 1,2,..., N. Let X,,, ..., X;, be all mutually
different rows of (x;;). Let zi{j) = 1 — x,,; and let B, be a subset of {1,2,..., N}
with the characteristic function x,. Then the sets By, k = 1,2, ..., Q, form a disjoint
covering of {1,2, ..., N}

Proof. {B, |k =1,2,..., 0} forms a covering as x;; = 0 so each i belongs to
at least one B,. Now, if there exist s and m so that s & m, B; + B,, and B,, " B, = 0
(ie. B, k= 1,2,..., Q, are not mutually disjoint) then there exist j, r, ¢ so that
jeB;n B, reB, geB, and r¢ B, q ¢ B;. Then x,; = x;, = 0, x,, = 1 but from
the assumption of the lemma follows that

Xp =Xy for k=1,2,..,N

Xj =Xy for k=1,2,..,N
and thus

Xg =X, for k=1,2,...N.
Fork =r

what is a contradiction.

We now return to the proof of theorem 2. From lemma 1 and from the first half
of the proof of theorem 2 it follows that {B,, k = 1,2,..., @} forms the disjoint
covering if the matrix (x;;) fulfils the assumptions of the lemma 1. So these assump-
tions imply (2¢). As x;; = x;;, the inequalities (5d) imply that from x,; = 0 the equality
Xy, = xj follows for k = 1,2, ..., N and the theorem is proved.



10

In the conclusion of the paper a few remarks will be convenient. The numbers S;

must fulfil some limiting requirements (see [1] or [5]). For example, for the majority
of je{l,2,..., N} the equality :

) 55, = %5,

must hold. (7) holds for all I; in which the work of the program can neither start nor
end. For a small number of j either

N N
(8) .leijzzlsﬁ—}—pj, p;>0
holds if the work of the program ends with probability p; in instruction I, or

N N
© _>;S.-,-+q,-=25j.~, q;>0

i=1

holds if the work of the program starts with probability g; in the instruction I;.
The program can be therefore described by the oriented graph with flows S;;. The
total flow through this graph is one because ¥ p, = Y g; = 1. In many cases there
exist one and only one vertex V, which fulfils (8) and one vertex V; fulfilling (9).
Without loss of generality we can assume that Vis V; and Vg is Vy. Then

N N
YSy=%8; for j=2,3,..,N,
i=1 i=1
N N
L+Y Sy =3 Su,
=1 =1

N

i

N
Siv =zsm +1,
1 i1

For this case an effective algorithm of segmentation for segments B; of the form

Bi={L|iaSk<i}
was developed in [1].
(Received January 16 th, 1967.)
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VYTAH

Formulace problému segmentace programu jako problému
pseudobooleovského programovani

JarosLAV KRAL

Predpoklddejme, Ze program P pro &islicovy potitaé C je v jazyce stroje C vyjadien
N instrukcemi. Je-li N velké, nemiZe byt program P v dob8 vypodtu umistén cely
v operadni paméti poéitate C a musi byt rozdé€len na &isti — segmenty tak, Ze v kaz-
dém okamZiku vypodtu je v operaéni paméti pocitade C jen nékolik mdlo segmenti.
JestliZe je v dobé vypodtu provedeno pfeddni fizeni s instrukce v jednom segmentu
na instrukci v druhém segmentu, musi byt voldn administrativni program, ktery
provéfi, zda je ,,novy” segment jiZ v operadni pamséti a je-li tfeba, pfepiSe tento seg-
ment z vedlej§i paméti do operaéni paméti a provede pfeddni ¥{zeni. Problémem je
rozdélit program do segmenti (8ili segmentovat program) tak, aby byl stfedni poget
voldni administrativniho programu b&hem vypodtu podle P minimdlni. V &lanku
je nalezena matematickd formulace tohoto problému a je ukdzéno, Ze problém
segmentace programu miZe byt pro disjunktni segmenty formulovdn jako tloha
. nalezeni extrému kvadratické nebo linedrni formy v proménnych nabyvajicich hodnot
0 nebo 1. Problém segmentace programu miZe byt formulovdn jako tloha pseudo-
booleovského programovdni (viz [33] a [4]). Optimélni segmentace programu miiZe
byt tedy nalezena metodami pseudobooleovského programovini.

Jaroslav Krdl, prom. matematik, Ustav vypottové techniky CSAV—CVUT, Horskd 3, Praha 2.
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