
Kybernetika

Jaroslav Král
The formulation of the problem of program segmentation in the terms of
pseudoboolean programming

Kybernetika, Vol. 4 (1968), No. 1, (6)--11

Persistent URL: http://dml.cz/dmlcz/124514

Terms of use:
© Institute of Information Theory and Automation AS CR, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124514
http://project.dml.cz


KYBERNETIKA ČÍSLO 1, ROČNÍK 4/1968 

The Formulation of the Problém 
of Program Segmentation in the Terms 
of Pseudoboolean Programming 

JAROSLAV KRÁL 

The problem of (a priori) segmentation of a program is formulated. Two equivalent formula­
tions are stated as programs with zero-one variables. 

Let us have a program P for a digital computer. Let its length be N, i.e. the program 
is in the machine language expressed by N instructions. If N is large, a part of P must 
be placed on a backing store. We shall suppose that an information from a backing 
store can be called only in tracks of the length K and that the bounds of tracks on the 
backing store are given by the hardware of the computer. We shall assume that the 
backing store has practically unlimited capacity. 

In the run time the segment with the executed instruction must be previously 
transferred into the main store. If the control of the computer after the execution 
of the instruction in one segment needs the instruction from another segment, an 
administrative program must be called verifying whether the new track is in the 
main memory. If it is not the case, the administrative program calls the new track 
from the backing store. The problem of segmentation is the collecting of all the 
instructions of the program into the tracks so as to minimize the number of calls 
of the administrative program. This problem can be stated mathematically as follows: 

Find the covering of the set of instructions of the program by the sets Bu ..., Bs 

so that the number of elements in any Bt is not greater than K and that the number 
of cases, when — in the run time — an instructions in Bj must be executed after 
execution an instruction in Bi (i + j), is minimal. 

.B; is the collection of instruction in the i-th track (a track needs not contain just K 
instruction as some of its location can be "empty"). As for various executions of the 
program the number of jumps from an instruction J; on to an instruction I} varies, 
we must state the problem in terms of mean values. Let us assume that we know the 
values of Su where Su is the mean value of the number of cases that (in the run time) 
after the execution of the instruction I{ the instruction Ij is executed. For the problem 
of estimation of S y see [7]. The structure of the program is for our purposes com-



pletely described by the matrix (S;j) or by an oriented graph ^ of JV vertices Vx, ..., VN 

labelled by instructions lx,...,IN. The edges (Vh Vj) of (S are labelled by S;j which 
can be interpreted as flows through the edges. We shall assume that no instruction 
can be in two segments. This assumption is somewhat limiting but, on the other hand, 
avoiding this assumption would cause such unwanted consequencies as insertion 
of almost all procedures on the places of their activations, and so on. It is clear that 
for a given segmentation of the program P the mean number of cases when after 
execution of an instruction in one segment an instruction from another segment 
is executed (or more shortly the mean number of intersegment jumps) is given by the 
expression 

(i) i i i stJ 
s = l i,JisBs j.IjtfB, 

where Bs denotes the s-th track (or segment) and £ denotes that the summation 
1,1mB. 

is taken over all i for which It belongs to Bs. The number Q of segments is not fixed. 

Now we can formulate the problem of segmentation in the following way: 

Find the disjoint subsets BX,...,BQ of the set {1,2, . . . , JV}, 

U B , - { l , 2 , . . . , i V } 
i = l 

(i.e. all Bi cover the set {1, 2,..., JV}) so that 

(1) number of elements in each Bt is not greater than K. 

(2) the value of 

(2) I I ISy 
i s 1 ieBs JiBs 

is minimal. 

We note that although Q is not given (fixed) we can take Q S [!V/[£/2]] where [ 
denotes the integer part. This results from the fact that the mean number of instruc­
tions per one segment need not be less than \K\2\ (in the opposite case at least two 
segments can be joint into one) and that each instruction is just in one segment. 
As we can allow Bt to be empty, we can take Q — [NJ\_KJ2j\ + 1. 

Theorem 1. The problem of segmentation is equivalent to the following pseudo-
boolean program: 

(2a) x f ' = 0 , 1 ; i = 1, 2, ..., N; j = 1, 2, ..., Q , 

(2b) 14 ^K, 
i = l 

(2c) f>j = l, 
J = I 



(2d) £ £S i J t f>{x^max . 
, - = i ) i = i j=i 

Proof. Associate with each Bf a set of zero-one variables 

x{,xi,...,xN. 

Let x\ = 1 if/; belongs to B} and x\ = 0 in the opposite case (i.e. the values of x{,... 
..., xJ

N) coincide with the values of the characteristic function of Bj). Then (2b) is 
equivalent to the requirement that Bj contains at most of K elements, (2c) holds if 
and only if all Bb i = 1, 2 , . . . , n, are disjoint and cover the set {l1,I2, •••JN] i-e-
cover the whole program P. (1) is then equivalent to 

(3) £ i isikxi(i-X£) 
j=i , = i k = i 

as x{(l — x[) is equal to 1 if and only if It e Bj and Ik $ Bj. But (3) is minimal if and 
only if the expression 

N N Q 

(4) £ YSik^xjxi 
i=ik=i j=i 

is maximal. QED. 

We find now the formulation of the problem of segmentation as a linear program 
in zero-one variables. We shall prove. 

Theorem 2. The problem of segmentation is solved if the solution of the following 
linear program in zero-one variables is known: 

(5a) xu = 0, 1 for ІJ = 1 , 2 , . . .,N, 

(5b) *y = xл for ij = 1 , 2 , . .., JV, 

(5c) Xц = 0 for i = 1 , 2 , . , . , J V , 

(5d) xik ~ xJk '• й xtJ for ІJ,k = 1,2,. , . , J V , 

(5e) îxuŁN 
j= i 

- к, i = 1,2,. . . , J V , 

(5f) 
N N 

E YSu 
i=l j=l 

Xij -» min . 

Proof. Let us put in (3) 
Q 

ľ,x%l-
s= l 

x)) = XІJ ; 

then (2c) implies 

У>*(1 - Xj) = xү(í - xV) - xtj = 0, 1 



where s ; denotes the unique segment containing I ;. xu = x ; ; = 0 if It and I} belong 9 
to the same segment and xu = xJ{ = 1 if J ; and I} belong to different segments. 
(2b) is then equivalent to the system of inequalities (5e), because 

(6) i x u = ixY(i-xy) = N-ixV. 
j=l j = l j=l 

Further (3) is equivalent to (5f). It only remains to express the conditions (2c). (2c) 
is equivalent to the requirement that each instruction of the program belongs to one 
and only one segment. But then for a fixed ; 

xu = i - Xs,(j); 

Xs,(j) is the characteristic function of the segment containing It. If J ; and I} belong 
to the same segment (we know that this is equivalent to requirement xi} = 0) we have 
Xs, = Xsj a n d hence xik = xJk; k = 1, 2, ..., N. So for Q disjoint segments the matrix 
( x u ) u = i contains just Q mutually different rows and if xu = 0 then i-th and j-th 
row coincide. 

Now we prove 

Lemma 1. Let a matrix of zero-one variables (x;j-^J = 1 fulfil the conditions (5b), 
(5c) and if xu = 0 then xik = xjk ,k = 1, 2, ..., N. Let Xtl, ..., XiQ be all mutually 
different rows of (xu). Let Xk(j) — 1 — xikj

 and let Bk be a subset of {l, 2, ..., N} 
with the characteristic function Xk- Then the sets Bk, k = 1, 2, ..., Q.form a disjoint 
covering of {1, 2, ..., N} 

Proof . {Bk \ k = 1, 2 , . . . , Q} forms a covering as xu = 0 so each i belongs to 
at least one Bk. Now, if there exist s and m so that s # m, Bs 4= Bm and Bm n Bs =f= 0 
(i.e. Bk, k = 1,2, ...,Q, are not mutually disjoint) then there exist ;', r, q so that 
jeBsn Bm, r e Bs, q e Bm and r £ Bm, q $ Bs. Then xrj = xjq = 0, xrq = I but from 
the assumption of the lemma follows that 

xrk = xjk for k = 1,2, ..., N , 

Xjk = Xqk f01" fe = 1, 2, . . ., TV 

and thus 

xrk = Xqt f ° r k = 1,2, ...,N. 

For k = r 

^ r = Xqr = Xrq = 0 

what is a contradiction. 

We now return to the proof of theorem 2. From lemma 1 and from the first half 
of the proof of theorem 2 it follows that [Bk, k = 1, 2 , . . . , Q} forms the disjoint 
covering if the matrix (xu) fulfils the assumptions of the lemma 1. So these assump­
tions imply (2c). As xu = xjh the inequalities (5d) imply that from xu = 0 the equality 
xik — xjk follows for k = 1, 2 , . . . , N and the theorem is proved. 



10 In the conclusion of the paper a few remarks will be convenient. The numbers S ; , 
must fulfil some limiting requirements (see [ l ] or [5]). For example, for the majority 
of j e {1, 2 , . . . , N} the equality 

JV N 

(7) 1 ^ = 1 ^ 
i = i i = i 

must hold. (7) holds for all I , in which the work of the program can neither start nor 
end. For a small number of j either 

(8) £ s , , = £ SJi + Pj, p ,>0 
i = i i = i 

holds if the work of the program ends with probability p, in instruction /,, or 

(9) i.Sy + 4 j - £ s qj>Q 
i = l i = l 

holds if the work of the program starts with probability q, in the instruction / , . 
The program can be therefore described by the oriented graph with flows S,,. The 
total flow through this graph is one because £ p ; = ^qt = 1. In many cases there 
exist one and only one vertex Vs which fulfils (8) and one vertex VE fulfilling (9). 
Without loss of generality we can assume that Vs is Vt and VE is VN. Then 

Y,Su~Y.Sjt for j = 2,3,...,JV, 
i = l i = l 

N N 

- + £s« . = E s l i 5 
i = l i = l 

JV JV 

I siN = I Sm + 1, 
i = l i = l 

For this case an effective algorithm of segmentation for segments Bt of the form 

B, = {lk \id^k< Q 

was developed in [1]. 
(Received January 16 th, 1967.) 
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VÝTAH n 

Formulace problému segmentace programu jako problému 
pseudobooleovského programování 

JAROSLAV KRÁL 

Předpokládejme, že program P pro číslicový počítač C je v jazyce stroje C vyjádřen 
N instrukcemi. Je-li JV velké, nemůže být program P v době výpočtu umístěn celý 
v operační paměti počítače C a musí být rozdělen na části — segmenty tak, že v kaž­
dém okamžiku výpočtu je v operační paměti počítače C jen několik málo segmentů. 
Jestliže je v době výpočtu provedeno předání řízení s instrukce v jednom segmentu 
na instrukci v druhém segmentu, musí být volán administrativní program, který 
prověří, zda je „nový" segment již v operační paměti a je-li třeba, přepíše tento seg­
ment z vedlejší paměti do operační paměti a provede předání řízení. Problémem je 
rozdělit program do segmentů (čili segmentovat program) tak, aby byl střední počet 
volání administrativního programu během výpočtu podle P minimální. V článku 
je nalezena matematická formulace tohoto problému a je ukázáno, že problém 
segmentace programu může být pro disjunktní segmenty formulován jako úloha 
nalezení extrému kvadratické nebo lineární formy v proměnných nabývajících hodnot 
0 nebo 1. Problém segmentace programu může být formulován jako úloha pseudo­
booleovského programování (viz [33] a [4]). Optimální segmentace programu může 
být tedy nalezena metodami pseudobooleovského programování. 

Jaroslav Král, prom. matematik, Ústav výpočtové techniky ČSAV—ČVUT, Horská 3, Praha 2. 
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