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KYBERNETIKA — VOLUME 29 (1993), NUMBER 1, PAGES 4 8 - 6 1 

LARGE SCALE DYNAMIC SYSTEM STABILIZATION 
USING THE PRINCIPLE OF 
DOMINANT SUBSYSTEMS APPROACH 

VOJTECH VESELÝ 

This paper considers the problem of stabilizing a large scale dynamic system via decen­
tralized control using the principle of dominant subsystems approach. Sufficient conditions 
for the existence of local decentralized control laws stabilizing a given large scale dynamic 
system with dynamic and parametric uncertainties are derived in terms of controller pa­
rameters for incompletely known continuous- and discrete-time systems. 

1. INTRODUCTION 

In order to receive practically applicable control of Large Scale Dynamic Systems 
(LSDS), the decentralized controllers (DC) have to be used. These controllers con­
sist of several independent control stations, each of which observes only the local 
output of a subsystem and controls only the local input. It is desired to find the 
decentralized control of LSDS which satisfies the following requirements [17]: 

- The structure and parameters of DC are designed using only the subsystem math­
ematical models so that the overall system stability is ensured and a desired control 
performance quality is achieved. 

- The DC has to be robust with respect to 
1. changes of the interconnections between subsystems, 
2. changes of the structure and parameters of other subsystems, and 
3. changes of structure and parameters of subsystem itself. 

- The decentralized control laws have to be obtained in a decentralized design pro­
cedure. 

All of these requirements demand the new approches to the design of the decen­
tralized control. In general, the decentralized adaptive control strategies are closely 
related with the robust S1SO adaptive control methods as for example, applications 
of model reference adaptive controllers [4]. The literature is mainly concerned to 
the centralized design procedure, in which all DC are determined using the known 
mathematical model of LSDS, for example, for linear dynamic systems in [1,12,10], 
nonlinear dynamic systems in [5,13] and adaptive decentralized control in [6,10]. 
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Decentralized procedures can be found rarely [7,10]. Various approaches were pro­
posed for the solution of the state control problem for a class of systems stabilizable 
by the DC. The LSDS subsystems dynamic are supposed to be known while the 
nonlinear-time-varying interconnections are unknown [4,10]. Recently [16,17,18], 
we have presented the decentralized adaptive control method stabilizing LSDS using 
the principle of dominant subsystems. In this paper, we pursue the same idea and 
the presented results are a generalization of the pole placement method for linear 
system to the nonlinear-time-varying case. 

The remainder of this paper is organized as follows. In Section 2 mathematical 
description of an investigated system and problem formulation are given. For a given 
nonlinear-time-varying LSDS with uncertainties, sufficient conditions for the choice 
of structure and parameters of local continuous and discrete-time controllers which 
ensure stability of composite systems are derived in Sections 3 and 4. 

2. PROBLEM STATEMENT 

Consider a nonlinear-time-varying LSDS which can be split into At subsystems: 

Xi=fi(xi,t) + bi(xi,ui,t) + hi(x,t) i e N = { l , 2 , . . . , A t } (1) 

where X{ £ Rn<, u,- G Rm' are the local state and control vectors of the i th sub-
N N 

system, respectively, n = Y2 n«> m — Y2 m«"> /'(')> &»"(')> !*«'(') a r e continuous and 

uniformly bounded vector functions, differentiable on the set RPi x T x Rm' with 
respect to variables of the system 

Rp. ={Xi £Rn> : ||z,-|| < />,}, Pi > 0 

and 

fi(0,t) = bi(Xi,0,t) = lu(0,t) = 0 

||fc,-(*,<)||<6-||-f||, V(x,t)eRnxT (2) 

T = (<0,oo), Xi(t0) = xi0, i eAf 

The numbers £,• > 0 are supposed to be unknown. The problem of the local 
control agent is to find adaptive DC of the form: 

m = qi(xi,ri,t) (3) 

f,- = gi(xi,n,t) (4) 

such that the closed-loop system consisting of the plant (1) and the adaptive decen­
tralized controllers (ADC) (3) and (4) is stable under the disturbances and uncer­
tainties defined below. 

In (3) and (4), r; 6 RPi collects the local controller parameters which will be 
adapted and flf,-(0, r,-, <) = 0, r,-(/0) = r,o, lim r,- = rf E Rs, for i £ M, where 
Rs = {r,- g RPi : system (1) with (3) and (4) is stable in Lyapunov sense, i € J\f}-
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3. LARGE SCALE SYSTEM STABILIZATION PROBLEM 

3.1 . Continuous t ime case 

Recently, we have presented the decentralized adaptive control method stabilizing a 
LSDS using the principle of dominant subsystem approach. From [3] we recall some 
preliminary results. 

Definition 1. The square matrix W = [wt'j]jvxjv is diagonally dominant if there 
exist dj > 0 (j = 1,2,..., At) such that 

N 

di |wu | > Yl di IWi-i I' i = 1.2,..., At 

4 K - | > E * K I ' i = 1.2 TV. (5) 

The square matrix W is negative diagonally dominant if it is diagonally dominant 
and wa < 0, i G M'. The square matrix W is called M-matrix if W(j > 0 for all 
off-diagonal elements of W. 

Lemma 1. M-matrix is stable if it is negative diagonally dominant. 

Let us refer a square matrix W as an aggregation matrix [18,19] of the investigated 
system (1), (3) and (4) in the form 

IF - Wva (6) 

where vj = [v\a,. .., VMa] is a vector Lyapunov function. 
The entries of va are the Lyapunov functions of isolated subsystems with ADC. 
In order to ensure the negative diagonal dominance of the investigated system, 

the stability measure of the i th subsystem given by the formula 

dVia/dt 
ai = > —wa (7) 

Via 

has to be increased when the system (1) with ADC (3) and (4) is not stable and/or 
a desired control performance quality is not achieved. From Lemma 1, it is obvious 
that if the LSDS is stabilizable by the supposed ADC there must exist such values 
of diagonal entries wu (i G N) of the matrix W that the investigated system will 
be stable. The design problem is to find DC (2) and (3) which ensure the negative 
diagonal dominance of the investigated system. 

On the set Rpi, determine the function u,-a : Rn' x T - * R+ as a Lyapunov 
function of the i th isolated subsystem 

it = Mxi,t), ietf. (8) 
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The entries of vector Lyapunov function (6) can be taken as [8] 

via = Vi + (n - r*)T (n - if) (9) 

The conditions for the change of the stability measure of the i th subsystem as a 
function of local controller parameters i\ are given by: 

c__i__± f_____\ _ - {^[(^dvt)
Tbl} + 2ri} ^ + 2 ^ ( r , - rt) _ ^ 

dn " 8ri V via ) ~ vfa * [l > 

for \\xi\\ £ 0 and i £ M. 
If for all entries of the vector -^+ satisfy the following inequality 

then from the equation (10) for the ADC algorithm one has got 

n =-Pi ^-[(gmd Vl)
Tbi] (12) 

art 

with A > I and r,- > 0. For 

one obtains 

ri = -T«7^:[(gradV0T6,-] (14) 

with ji < \ and f,- < 0. 

The proposed ADC algorithm (12) or (14) ensures that the stability measure of 
all subsystems will increase in the time if r,- is not identically equal to zero. Owing 
to Lemma 1 or the principle of negative diagonal dominance of the investigated 
system, if the system is stabilizable by the proposed DC, there exist such values of 
wa (wtj = const), for i 6 M, j € M, that the system (1) with controller (3) and (4) 
will be stable. The sufficient conditions of stability of the investigated system are 
given by the following theorem. 

Theo rem 1. The equilibrium zT = [xT, (r — r*)T ] = 0 of the system (1), (3) and 
(12) or (14) is stable and asymptotically stable with respect to variables x (or some 
part of variables x) on the set Rpi x T, i £ AT, if the following sufficient conditions 
hold: 

(i) For the Lyapunov function of the investigated system 

Va = __щa (15) 
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the following condition holds [11]: 

a( | | . - | | )<Y a ( . - .0 . 

(ii) The conditions given by Eqs. (11), (12) or (13) and (14) are satisfied for the 
disturbances acting upon the LSDS. 

(iii) The investigated system (1) with the controller (2) and (12) or (14) is stabil-
izable. 

P r o o f . Determine a function Va : Rn x Rp x T —> R+ (cf. (15)) as a Lyapunov 
function of the investigated system as follows: 

N 
Va = J2 Vi(xi,t) + (r. - r*)T (n - rf) 

! = 1 

For the time derivative of the Lyapunov function on the solution of (1), (2) and (3) 
we can obtain 

^ = Y{(g™dvif[fi+bi(xi,qi(xi,ri,t),t) + hi] + 2(ri~rt)TTi} + ^ (16) 
i = l 

Owing to the condition (12) or (14) the negative definiteness (semidefiniteness) of 
the second part of Eq. (16) 

(grad i>i)T bi(xi,qi(xi,Vi,t),t), i G N 

become more intensive in the time if r; is not identically equal to zero. Since the 
stability measure of all subsystems within the dynamic behaviour of the investigated 
system is almost permanently increasing in the time, owing to the conditions (iii) 
of Theorem 1 for all controller parameters rij there exists such instant of time, 
say t\ £ {to,tc), that r,-j £ Rs; the last but one term of (16) is at least negative 
semidefinite then for t > t\ the following inequality holds: 

and the system is stable and asymptotically stable with respect to the part of vari­
ables z\, z = [x,r — r*] = [z\, 22], for which the following inequality holds: 

dVa(z,t) „ ,,, 

d y ; < - c | M | 2 , c > 0 . 

This completes the proof. D 

3.2. Discre te- t ime case 

Consider a nonlinear discrete-time-varying LSDS with At subsystems 

Xi(t + 1) = fi[xi(t), t] + bi[Xi(t), m(t), t] + hi[x(t), t] (17) 
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and the adaptive DC 

Ui(t) = qi[xi(t),n(t),t} (18) 
An(t) = gi[xi(t),n(t),t] (19) 

where f £ f = {0,1 ,2 , . . .} , i G JV. Determine the Lyapunov function of the ?!th 
subsystem with adaptive DC (18) and (19) on the set Rpi x / as follows 

via(t) = Vi(t) + (n(t) - r*)T (n(t) - r?) (20) 

where Vi(t) is a Lyapunov function of the isolated subsystem x,(t + 1) = fi[x,(t), t). 
Let us take the Lyapunov function of LSDS in the form (15). For the first difference 
AVa(t) along the solution of (17), (18) and (19), one can write [9]: 

N 

AVa(t) <^Li\hi[x(t),t}\ + Avi[xi(t),Ui(t),t]-ArJ(t)[2(rt-n(t))-An(t)} (21) 
i=i 

where Ar;(<) = n(t + 1) — ri(t), Li > 0 satisfy the following inequality 

\vi[xi(t)',t] - Vi[xi(t)"]\ < Li\\xi(t)' - Xi(t)"\\ 

for all Xi(t)', Xi(t)" £ Rn', t £ I and i £ N. In order to ensure the negative diagonal 
dominance of the investigated system, the stability measure of the £ th subsystem 
defined by the following formula 

—tf 
has to be increased when the system (17) with adaptive DC (18) and (19) is not 
stable. From Eq. (10), one can obtain the following adaptive decentralized control 
laws: 

g > 0 (23) 

An(t) = -f3i^-(Avi(t)) (24) 

with pi > \ and Art(t) > 0 

Ari(t) = -1i^-(Avi(t)) (26) 
art 

with 7,- < | and Ar{(t) < 0, i £ M. 
The stability of the LSDS (17) with (18) and (24) or (26) has to be checked. 
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T h e o r e m 2. The equilibrium z(t)T = [x(t)T,(r(t) - r*)T] = 0 of the system 
(17) with adaptive DC (18) and (24) or (26) is stable and asymptotically stable with 
respect to the variables x(t) (or some part of variables x(t)) at the set Rpi x 1, i £ N, 
if the following sufficient conditions hold: 

(i) The Lyapunov function of the investigated system (15) satisfies [11]: 

a(||«||) < Va(t) 

(ii) The conditions given by Eqs. (23), (24) or (25) and (26) are satisfied for dis­
turbances acting upon the LSDS. 

(iii) The investigated system (17) with controller (18) and (19) is stabilizable. 

P r o o f . The proof of Theorem 2 is strictly similar to that of Theorem 1. • 

3.3. Simplifications of proposed adapt ive decentral ized control ler 

Let us assume that instead of (12) or (14) one may use the following algorithm 

ri = -Qi(xi,ri,t) (27) 

where the entries of the vector Qi(xi, n, t) are positive (negative) definite continuous 
algebraic functions with Qi(0,rt,t) = 0, Qi(xi,0,t) ^ 0 for ||x,-|| ^ 0, and the next 
matching conditions are valid in Eq. (16) 

m; tij 

(grad Vi)T bi(xi, qt(xi,n, 0) = E E r^+lmijv(xt, t) + mij0(xi, t) (28) 
j=\v=\ 

where the indices indicate i th subsystem, j th input of the i th subsystem, and v th 
controller parameter of the j th input; ktjv = 0,1,2,. . . ; p. = ^27=1 ^ij > i £ N 
One can rewrite Eq.(16) using Eqs. (27) and (28) in the following form: 

Ş = £<-*(,.,)-
j=lv=ì 

Ĺ •(29) 

Hi(x, t) = (grad ,t-)T [/. + hi] + ^ + £ E m^ 
j=\v=i 

jv(xi,n,T)dT I ri^mijv(xi,t) + 2(n-rt)1 Qi(xi,n,t) 

where 

ff/r f\ — ro-rarl „ - \ T \ f. 1 1,1 1 -
Ot 

and we substitute the following equation instead of rtjv : 

Tijv ~ -rijvo - / Qijv(Xi,n,T)dT. 
Jta 

The sufficient stability conditions of the investigated system (1) with adaptive DC 
(3) and (27) are given by the following theorem. 
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Theorem 3. The equilibrium zT = [xT,(r — r*)T] = 0 of the system (1) with 
adaptive DC (3) and (27) is stable and asymptotically stable with respect to the 
variables x at the set Rpi xT, i 'e Af, if the following sufficient conditions hold: 

(i) The following condition holds for the Lyapunov function of investigated system 
(15) (cf. [11]): 

a(\\x\\)<Va(x,t). 

(ii) The investigated system (1) with the controller (3) and (27) is stabilizable, 
i.e. there exist r* £ Rs, i £ j V such that the system is asymptotically stable. 

(iii) If the entries of the vector Qi(xi,ritt) are positive (negative) definite then 
the corresponding functions rriijV(xi,t) for i £ M, j = 1, 2 , . . . , m,-, v = 1, 2 , . . . , 4 j 
have to be positive (negative) semidefinite (or definite). 

P r o o f . If there exist some j = 1, 2 , . . . , m,-, v = 1, 2 , . . . , £,\j that the functions 
niijv(xi,t) are definite for all i £ M, then owing to (27) and condition (iii) of 
Theorem 3 the negative definitness of second part of Eq. (29) become active as for as 
r\ is not identically equal to zero. Since the investigated system is stabilizable and 
the third part of Eq. (29) is negative definite, there exist instant of time t\ £ (̂ o, U) 
and r,- £ Rs such that for t > t\ the 

<Wa „ „ 
—— < - e x , c > 0 
dt 

and the investigated system is stable and asymptotically stable with respect to the 
variables x. If for some i £ M there exists no definite function mijv(xi:t), j = 
1, 2 , . . . , m,-, v = 1,2,... ,lij, then owing to (27) and conditions (ii) of Theorem 3, 
there exist an instant of time, say ti £ (to,tc), and r,- £ Rs such that for t > t\ the 
following inequality holds: 

dVa „ „ 

i r<-C |NI 
and the system is stable and asymptotically stable with respect to variables x. This 
completes the proof. • 

Consider now that instead of adaptive DC one may use the following algorithms: 

m = qi(xi,ri,t) 

n = -Gi(Xilt), i^M (30) 

Let us take the Lyapunov function of the system (1) with adaptive DC (30) in the 
form 

K = | > (31) 

For the time derivative of V along the solution of (1) and (30) with matching con­
dition (28) one may write the following formula: 

£ = £.*<•.«>• Y, Y,GІJV(XІ,Í)Җjv mijv(xi, t) 
j = i » = l 

(32) 
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The sufficient stability conditions of the system (1) with adaptive DC (30) are 
given by the following theorem. 

Theo rem 4. The equilibrium x = 0 of the system (1) with adaptive DC (30) is 
stable and asymptotically stable with respect to the variables x (or some part of 
variables x) at the set Rpi xT, i G N, if the following sufficient conditions hold: 

(i) The following condition holds for the Lyapunov function of investigated system 
(31) (rf. [11]) a(||:-||) <V. 

(ii) The investigated system (1) with the controller (30) is stabilizable. 
(iii) The sign of the entries of the vector Gt(xi,t) must be the same as the sign 

of the corresponding functions niijV(xi,t) for all i G M, j = 1,2,. . . , m,- and v = 
1 , 2 , . . . , % 

(iv) Assume that there exist some functions 6ij(xi) G (6ij min,^tj max) for i 6 
M, j = 1,2,...,mi which characterize the qualitative dynamic properties of the i th 
subsystem. When, for the some instant of time and \\xi\\ ^ 0, one evaluates the 
dynamic proces of the i th subsystem by 6{j = 6ij m a x , for i G N, j = 1,2,.. . , m,-, 
then the overall system is on the boundary of stability; for <5,j = 6ijmm the dy­
namic behaviour has extremely excellent properties. This like function %(*, ) was 
introduced in [8] to design of the adaptive controller. Let there exist positive num­
bers, 6ijo G (Sij min, <5i;max), and such properties of scalar continuous functions 
Gijv(6ij(xi)), i G N, j = 1,2, ...,rrii, v = 1 , 2 , . . . , % that the following con­
ditions hold: 

- the function Gijv is increasing on the interval % G (5.j minify max), and 
- for 6ij > Sijo it holds \rijv\ > a^v > 0 
where <Jijv is a given positive number. 

(v) If for some i G Ni C M there does not exist a definite function rriijv(xi, t), j = 
1,2,... ,ra,-, v — 1,2,... ,£ij, then the function H(x, t) must satisfy: 

N 

H(x,t) = Y,Hi(x,t)<Q (33) 

on the set {xi G R" : rriijv(xi,t) = 0 and ||:ri|| ^ 0 for i £ Afi} and {xi G R" : 

P r o o f . We have to prove the existence of such positive numbers <Tijv that under 
conditions ( i )-(v) of Theorem 4, the investigated system (1) with ADC (30) is stable 
and asymptotically stable with respect to variables x or part of variables x. 

Let us assume that there exist some j ~ 1,2,. . . , m,, v = 1,2,... ,£{j such that 
the functions rriijv(xi,t) are definite for all i G N. Using (1), (2), (29) and (32), we 
can obtain: 

U lis 

+ (grad VІ)T fi(xi,t) + J2J2 mO'o ^ l5" ll^íl 
dvi 

~m 
Í = I « = I 

N 

||(grad Vifhi(x,t)\\ < \\xi\\Y^»ij\\xj\\ (34) 
3 = 1 
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l|m.i-(*.,<)ll>7y"INr 
where a; j , jijv are non-negative numbers. The substitution of (34) into Eq.(32) 
yields to: 

(W N ( N \ 

-g < E <INP +2 iMiX>.iii--/ii (35) 
where 

< = ^ + ^ - E I : I ^ I 2 ^ + I T . > 
j = i t = i 

i 

The system (1) with adaptive DC (30) will be stable and asymptotically stable with 
respect to variables x if the aggregation matrix W — [W'JANXN is negative definite. 
From Lemma 1, it follows that there exist such positive numbers <T,-J„ that for 

Vijv\ > vijv i € N, j = 1,2,.. .,rrn, v = 1,2,... ,lih 

the matrix W is negative definite. Let us assume that for some i 6 All the functions 
rriijv are indefinite or sernidefinite. Due to the condition (iii) of Theorem 4, the 
second part of Eq. (32) for i (E Ni is at least positive sernidefinite and for i £ Af\ one 
is positive definite with respect to the variable x,-. In virtue of the conditions (v) 
of Theorem 4 and the structure of Eq. (32), there exist positive numbers <7,'j„, for 
i G N, j = 1,2,.. . ,m. , and v = 1,2,...,4'j such that 

and the system is stable and asymptotically stable with respect to variables Z\, x T = 

[zT, 2T] for which the following inequality holds: 

dV 

•5 - . . - .M. 
This completes the proof. • 

3.4. Adap t ive control of systems with uncer ta int ies 

The problem of stability robustness arises from sources such as errors and simplifi­
cations in formulating the model of the plant, errors in implementing the controller 
and the possibility of various sensors or actuator failures. A realistic treatment of 
modelling uncertainty is to describe the physical plant not by a single model, but a 
family of possible plant models. Modelling errors in physical systems fall into two 
broad categories: parametric and dynamic uncertainty [2,14]. Let us consider a 
class of non-linear time-varying systems with the known part of LSDS: 

ii = fi(xi,t) + dfi(xi,t) + bi(xi,Ui,t) + dbi(xi,Ui,t) + h[(xi, t) + dh{(x, t) + Hn(x, z) 
(36) 
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and the unknown part: 

ii = di(zi,t) + Hi2(x,z), ; ' G N 

where all functions of (36) are algebraic continuous and bounded, which ensures 
the unique solution of (36) for both all x.(-o) = _*.o € R"', _.(-o) = Zio € R1' and 
continuous input «,• 6 /-m". Assume that the functions Hu, H{2 and <-,(-,-,-) are 
unknown. The overall system (36) with the adaptive DC (3) and (27) (for example) 
can be written in the compact form: 

y = Cn(x,r,t) + Hx(x,z) z = G2(z,t) + H2(x,z) (37) 

where JV 
yT = [ _ j > - r * ) T ] , z" = [z\,...,zl\eRt, ^ = X > 

« ' = 1 

Let us suppose that (37) represents a family of plants with dynamic and parametric 
modelling uncertainty, where the first isolated subsystem 

y = Gi(x,r,t) 

describes a nominal plant model with parametric uncertainty [18]. Assume that 
G2(z,t) is asymptotically stable with respect to the variables _. Define on the set 
Rp x T the function vx : Rn+t> xT -+ R+ and on the set R7 x T v2:R

l xT -> R+ 

as Lyapunov functions for the 1st and 2nd isolated subsystem, respectively, where 
R-/ = {z £ Rl : ||_|| < 7 > 0}. For the time derivative of the Lyapunov function 

V = vi+v2 (38) 

along the solution of (37), we obtain 

^ = _ C ( ^ + ( g r a d V i ) T ^ + M i ) ) (39) 

If we suppose that the following inequalities hold: 

0 . 5 ^ | |grad.,T i_ i | |<t_1 2 | | i . | | | |_ | | 
i = i 

^ + g r a d , T G ' 1 < - W l l ( r ) | | 2 / | | 2 

^ + g r a d t ; T G 2 < - W 2 2 | | _ | | 2 

where uiy > 0, i, j = 1, 2, then for (39) it yields 

v<iw«][-:;<"' __:J[B] m 
The sufficient stability conditions of the system (37) are given by the following 
theorem. 
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Theorem 5. The equilibrium [y1 , zT] = 0 of the system (37) is stable and asymp­
totically stable with respect to the variables x on the set R.p x T, if the following 
sufficient conditions hold: 

(i) The following condition holds (cf. [11]) for the Lyapunov function of investi­
gated system (38) 

a(\\x\\)<V(x,r,z,t). 

(ii) The first isolated subsystem of (37) is completely controllable. 
(iii) The second isolated subsystem which describes the unmodeled dynamics of 

the system (37) is asymptotically stable with respect to the variables z. 
(iv) The system (37) is stabilizable by the proposed adaptive DC. 
(v) The functions H\ and H2 are uniformly bounded, 
(vi) The following inequality holds: 

i"nW22 > w\2 

Proo f . The prove of this theorem follows immediately from Lemma 1. • 

Since we suppose that the conditions of above theorem are fulfiled, there is no 
problem to stabilize of the LSDS (37) with dynamic uncertainties via in this paper 
proposed adaptive DC. One may suppose that only parametric uncertainties occur 
in the first subsystem of (37) for the design of adaptive DC. Let us assume that the 
parameters of the 1 st subsystem (37) vary over some a priori known compact set C. 
For the time derivative of the Lyapunov function (15) along the solution of the 1st 
subsystem (36) with (28), one may obtain 

f = ÍX-o-£ E / ( Qij«dT{r%rmijv-2Qij 

+ 2rfQi + (g^r\vi)
Tdbi \ (41) 

where (see Eqs. (36) and (29)) 

hi(x,t) = dfi + dhi + h'i 

and without loss of generality we assume that ri7„o = 0. The sufficient stability 
conditions of the investigated system for db( = 0 are given by Theorem 3. 

Let us consider the following three matching conditions: 
1. dbi = Pibi(xi,Ui,t); 
2. dbi has the same structure as bi(-) and the similar matching condition holds 

as it is given by Eq. (23); 

3. the matrix S,- for the linear LSDS 

N 

xt = AuXi + BiUi + ^2 AijXj yi = CiXi, i G N 
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is given by 
Bi = Bi0(I + GiSi) 

and the adaptive DC щ — —ГiKidxi — KPICPІXІ 

w i t h r. = -xjQiXi, Qi < 0 

The robustness properties of the investigated system with above matching con­
ditions can be summarized as follows. 

1- Pi > - 1 

2. sign (mijv + dmijv) = sign(m,v,„) 

3. CTKT(I + GiSi)TBj0Pi + PiBio(I + GiSi)KiCi > 0 if C> = / and K = B?0Pi 
then it yields 

AM((G,-5,-) T + GiSi) > - 2 or \\GiSi\\ < 1 for i 6 N 

where P,- is the positive definite matrix which can be obtained from the following 
Lyapunov matrix equation: 

(An - BiKpiCpi)
TPi + Pi(Au - BiKpiCpi) = -Mt, M{ > 0. 

4. CONCLUSION 

In this paper, an original approach to the solution of the LSDS stabilization prob­
lem is proposed. Sufficient stabilizability conditions are derived for the nonlinear 
dynamic system with dynamic and parametric uncertainties. The proposed adap­
tive decentralized controllers possesses robustness properties with respect to 
- changes of the interconnections betwen subsystems, 
- changes of the structure and parameters of other subsystems with controllers, and 
- the given changes of parameters of subsystem itself. 

It is shown that under conditions of Theorem 5, the dynamic uncertainties of 
the modelled system cannot destabilize the investigated system. From the para­
metric robustness properties point of view, the parametric changes of input functions 
bi(xi,ui,t), i E N are the most dangerous. It is shown that the proposed adaptive 
DC possesses robustness properties for a broad class of parametric uncertainties 
which can be met in practice. 
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