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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 5 

ESTIMATING INTERACTIONS 
IN BINARY DATA SEQUENCES 

MARTIN JAN2URA 

Gibbs random sequences with pair interactions, as defined in frame of statistical mechanics 
(cf. e.g. Follmer [5] and Preston [9]), are used to form probability models for dependent binary 
data. The appropriate probability measure is uniquely determined by the vector of interactions 
which describe its dependence structure. An applicable method for estimating the interactions 
is developed, and properties of the obtained estimate are derived. Direct instruction for implemen­
tation is given and demonstrated by a numerical example. 

1. INTRODUCTION 

A sequence of binary data is supposed to be generated by a discrete time stochastic 
process assuming only values zero and one. On base of the given finite sequence 
we try to find distribution of the stochastic process. 

This could be hardly done without any additional assumptions on the class of 
distributions under consideration within the problem. Generally, the assumptions 
should involve some kind of homogeneity and weak dependence. Gibbs random 
processes, studied in frame of statistical mechanics, seem to satisfy the conditions 
mentioned above. The homogeneity is ensured by time stationarity, and the dependence 
structure being described by pair interactions of some fixed finite range, the require­
ment of rather weak dependence is satisfied as well. Besides, the class of Gibbs 
random processes is wide enough, including e.g. both the i.i.d. and the Markovian 
cases. 

The problem of finding the unknown distribution is transformed to problem 
of estimating the interactions, the role of which is in some sense similar to that 
of covariances within the time series theory. 

Since no "good" direct method seems to be available, the interactions will be 
estimated via estimating probabilities of some suitably chosen sets. Then the estimate 
of interactions is obtained by numerical minimization of a given convex function. 

After the basic definitions and results in Section 2 the estimate is constructed 
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and its properties are proved in Section 3. The following Section 4 contains several 
remarks to the implementation of the method. The numerical example in Section 5 
shows, in addition, a possible application of the method to testing "quality" of some 
generators of pseudo-random numbers. 

Most of the known theoretic results are adopted from Follmer [5] and Preston [9], 
while all applications of these models in statistics up to now seem to be either hard if 
not impossible to be implemented (cf. Mase [7]) or considerable approximative 
(cf. Besag [1]). 

2 PRELIMINARIES 

Binary random sequence (b.r.s.) will be a probability measure n defined on the 
product measurable space (Xs, Fs) where X = {0, 1} is the state space, J5" = exp X 
is the er-algebra of all its subsets, and 2£ denotes the set of all integers. 

For "V c 2£ we denote by Prr: Xs -» Xr the corresponding projection function. 
For the sake of brevity we shall write xr instead of Prr(xx) for xz e Xs. Further, 
we shall write x instead of % , and simply x„ instead of x{n) for one-point subsets 
of!%. For xr e Xr we denote by xr = Prr

 l(xr) e 3"s the corresponding measurable 
cylinder. 

Furthermore, we shall use short notation for the conditional distributions, i.e. 

p(xr | yzw) means E j / , ^ , | Pr^r(^
s^r)] (y) for every T <= &, xr e Xr, y e Xs, 

where / is used for the indicator function. 

A b.r.s. p is called R-Markovian (R = 1) if 

KXn I XZ\{n}) = I*(X„ I X[n-R,n + R}\{n)) 

for every x e Xs, ne^f. 

An R-Markovian b.r.s. p. is Gibbs b.r.s. with pair interactions if 

exp { x ^ U o + ^ U ^ ; + * „ _ , . ) ) } 
KXn I Xln-R,n + RTMn}) = 

l + explUo + X U ^ . + x,,.,.)} 
i = l 

for every x e Xs, n e f , where U = (U0, ...,UR)e3ZR+1 (& denotes the set of all 
reals) is (R + l)-tuple of parametets called (pair) interactions. The number R is 
called range of the interactions. In the sequel, R being fixed, we shall denote 3$R + 1 

simply by S. 

For every U e £ there is exactly one Gibbs b.r.s. with pair interactions given 
by U (Theorem 3 in Dobrushin [2]). This uniquelly defined b.r.s. which will be de­
noted by p.v is stationary (Proposition 5.4 in Preston [9]), i.e. 

PuT'1 = pv, 
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where T: Xs -> Xs is the shift on Xs defined through T(x)„ = x„ + 1 for every 
A- e Xs, n e 2. 

Moreover, according to Proposition 4.1 in Preston [9], the b.r.s. fiv is ergodic, 
i.e. its restriction to cr-algebra of invariant sets assumes only values zero or one, i.e. 
if nv'F) > 0 then fiv(F) = 1 for every F e if = {E e &s\ T'lE = £} . 

For every U e S the limit 

lim N~* log £ exp { £ Uf( f x ^ + < + X x,z,+1)} = p(U) 
JV^oo *tl,Nl 1-0 J = l J = J V - t + l 

exists (due to Proposition 4.24 in Follmer [5]), where the z,-w+1>00) eXlN+1,m) may 
be taken arbitrarily. 

Following e.g. Mayer [8], Section 1.2.1., we obtain 

p{U) = R^ log XmJyMv), 

where Mv is strictly positive-valued (2R x 2R)-matrix with elements defined through 
the formula 

R R-i R 
Mu(xll,RV Z[l,«]) = e xP { X u l X XiXi+ i + X XJZJ+ i-ft)} 

i = 0 j=\ j-R-i+1 

for every x[1>R], z[1>R] e X " ' " 1 , 

and Amax(Ml,) is its uniquely defined strictly positive eigenvalue larger in absolute 
value than all other eigenvalues of the matrix M[/(Amax(M[/) exists due to the well-
known Perron-Frobenius theorem). 

The latter formula for p(U) shows, according to known theorems on analytic 
behaviour of matrices depending on parameters, that the function p: S -> 3% is real 
analytic in all variables U0,..., UR. Explicitly, denoting 

it holds 

and 

C; = {x є Xs; x 0 . x ; = 1} є &s for í = 0, . . . , K , 

^(U) = џv(Q, 
ÓU i 

-^-(U)= f W C n T - ^ ) - ^ ) ^ . ) ] 
oUfdUj fc=-oo 

(cf. Theorem 5.1 in Kiinsch [6]). 

Furthermore, the function p is strictly convex (cf. Lemma 8.6 and Lemma 8.7 
in Preston [9]) wherefrom the one-to-one correspondence between U and \iv follows, 
and even strongly convex (cf. Dobrushin and Nahapetian [3]) wherefrom it especially 
follows that d2pjdUi dUj(U0) > 0 for every U° e S. 
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3. ESTIMATION OF INTERACTIONS 

A sequence xu ..., x„e{0, 1} of binary data is now supposed to be generated 
by a stochastic process with distribution given by a Gibbs b.r.s. nu0 with pair inter­
actions U° of some fixed finite range R _ 1. Considering the interactions as vector 
parameter, we have obtained a parameter estimation problem. 

Let us define the transform <Z>: S -* S given by 

<PKU) = (^(C0),...,^(CR)) 
for every U e S. 

Proposition 3.1. The transform <P is one-to-one. 

Proof. Let <P(U) = <P(U) hold. Then, according to the formula 4.25 in Follmer 
[5], it follows 

0 5£ H(pv | ixv) + H(nv | nv) = I (U; - U;) (fiv(C) - fiv(Ct)) = 0 , 
i = 0 

where H(- | •) is the relative entropy rate (information gain) given by 

H(n | v) = lim n~x E„ [log f&Ji] 

»-*. L v(xuJJ 
providing the expressions make sense and the limit exists. Therefore U = U due 
to Theorem 4.27 in Follmer [5]. • 

If we denote by D(U) = ((dQjdUj) (U))fJ=0 the matrix of the first partial deriva­
tives of the partial functions constituting the transform <t>, it holds that 

D(U),. . = ° P (U) for every i, j = 0, . . . , R 

is a continuous function due to the properties of the function p mentioned in Section 
2. Moreover D(U) is positive definite matrix which follows also from the strong 
convexity of the function p. 

Thus, we have proved that the transform <P is so called regular mapping on S. 
This especially yields that the image 4>(d) of every open S cz S is again an open 
subset of S. 

The aim of introducing the transform <t> consists in the fact that the unknown 
parameter U° will be estimated via estimating the transformed parameter /?° = <P(U°). 

Let us define ft" = (n - i ) - 1 ^XjXJ+i for every i = 0, . . . , R and every x [ l j n ] e 
e{0,iy,ne£,n>R. y = 1 

The estimate ft" = (/?",,..., $R) is consistent if $" -> P° a.s. [/.p0], and asymptotically 

normal if 
J?(nV

2(P" - p0)) ^ NR+.(O.V), i.e. 
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nll20" — p°) converges in distribution to (R + l)-dimensional normal distribution 
with zero vector of mean values and covariance matrix V. 

Theorem 3.1. For every U° 6$ the estimate /?" is consistent and asymptotically 
normal with asymptotic covariance matrix given by D(U°). 

Proof. The consistency follows immediately from the well-known ergodic theorem 
due to which it holds „ 

n - ^ f o !-«->£„[/] a.s. |>] 

for every ergodic \x and bounded measurable f. Thus, we may substitute for f sub­

sequently all ICt, i = 0 , . . . , R, and since p" = (n - if1 YJC . . TJ holds, the con­

sistency is proved. J = l 

The asymptotic normality follows after some easy rearrangements from the 
central limit theorem for one-dimensional Gibbs random fields (cf. e.g. Theorem 3 
in Dobrushin and Tirozzi [4]). • 

Now, the estimate 0" of the parameter U° e $ will be obtained by means of the 
inverse transform of the estimate /T. For /?" $ &(<%), the probability of which tends 
to zero, we may define the estimate U" arbitrarily. 

Theorem 3.2. For every U° e & the estimate U" is consistent and asymptotically 
normal with asymptotic covariance matrix given by D(U°)_1. 

Proof. The statement of the theorem follows immediately from the properties 
of the transform <P and known theorems. • 

Corollary. For every U° e <? it holds 

Sf(n(U" - U°)T D(Uo)(U" - U0)) => xl+l , 

i.e. the asymptotic distribution on n(0" - U°)T D(U°)(U" - U°) is the chi-square 
with R + 1 degrees of freedom. 

The proof is again an easy consequence of known limit theorems. • 

4. IMPLEMENTATION 

The method of estimation proposed in the previous section seems to be suitable 
enough from the point of view of the standard properties of the estimate. The crucial 
role within the method is played by the transform <P. Its properties are known and 
serve to transfer properties of the estimate of the transformed parameter to the 
estimate of the original parameter. However, no explicit formula has been introduced 
which could enable us to calculate the inverse transformation. Thus, while implement­
ing the method, we have to follow a slightly different way. 
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First, let us define for every fixed [Peg the function 

Fp0: S -» 0t through the following formula 
R 

Fp0(U) = p(U) - £ Uj3° for every U e 8 . 

i = 0 

Proposition 4.1. For every U° e g it holds 

F^o /U 0 ) = min F(P(UC)(U) . 
UeS 

Proof. Cf. Theorem 4.27 in Follmer [5]. Q 
Corollary. For every f}° e 8 it holds 

jg° = $([/°) iff F/J0(U°) = min F/)0(U) . 

Proof. Let F„„(U°) = min F/J0(U). Then 0 = dFf0]dUt = <£;(U°) - j6° for every 
t/e<f 

i = 0 , . . . , R. Thus the sufficiency is proved, while the necessity follows immediately 
from the preceding proposition. • 

Thus, following the corollary above, we shall minimize the function Ff„ to find 
U" = <P"i(p"). (Providing the minimum does not exist, some stopping rule in the 
minimization algorithm will give a result "better" than any arbitrary definition 
of U" in this case.) The only problem might be with calculating the function p. 
But, the definition of p(U) through the matrix Mv for every Ueg (cf. Sec. 2) is 
rather easy to be dealt with providing the range R is not too large. Thus, realizing 
this, we conclude that the method is, in fact, not difficult to be implemented. 

Remark. The approach involving minimization of the function Fp„ may be viewed 
on as the estimation based on "minimum distance method" (cf. e.g. Vajda [10]). 
Let the given collection of observations generate some stationary "empirical b.r.s." 
p.. We shall look for the b.r.s. from the class of Gibbs b.r.s's with interactions of 
range R which is the closest one to /t in sense of distance measured by the relative 
entropy rate (information gain) H(- | •) as defined e.g. in the proof of Proposition 
3.1. But, to minimize H(p.\j.iv) over U eg means to minimize function p(U) -

R 

— ^ U; £(C,) (cf. formula 4.25 in Follmer [5]). Hence, it is not necessary to construct 
i = 0 

the empirical b.r.s. p.. The values fi(C0), ..., fl(CR), for which we may substitute 
our estimate fl" (cf. Sec. 3), are sufficient for our purposes. 

5. EXAMPLE 

The introduced method will be now demonstrated with the aid of a rather simple 
example. We shall estimate interactions in sequences of binary data obtained from 
some generators of pseudo-random numbers. The role of interactions will be easily 
visible from the results which can be more or less expected. 
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The considered generator is given by the recurrent formula 

yk = (c.yk^) MOD 2N, 

and produces numbers from 0 to 2N - 1, 
For every k = 1, ..., n the binary datum xk is given by checking which half of the 

interval the value yk belongs to, i.e. xk = yk DIV 2N~l (by DIV we mean the integer 
division). 

Four generators with various c = 3, 11, 67, 259, respectively, and constant N = 16 
were investigated. For every considered generator three simulations with various 
initial values y0 were performed. Further, we fixed the number of observations 
n = 1000 and the range of intearctions R = 3. 

Assuming the i.i.d. sample case with it(0) = u(l) = 0.5, all the interactions should 
be zero, i.e. U° = (0, 0, 0, 0) and easy calculation shows that 

/ 5 2 - 1 6 - 1 6 - 1 6 \ 

D ( r j o r i J " 1 6 16 0 01 
- 1 6 

, - 1 6 
0 16 0 
0 0 16 

is the asymptotic covariance matrix of the vector n1/2(U" — U°). 
This enables us to express the statistic 

f = n{0n - U°y D(U°)(U" - U°) = 

= 1000.i[(U0 + C, + U2 + U3)
2 + I((<IiY + (02)

2 + (03)
2)] 

(writing simply U, instead of 0)000 for every i = 0, . . . , 3), the distribution of which 
should be approximately %\. 

Thus, we may test the U°-hypothesis, comparing value of the statistic j 2 with 
the corresponding quantile. For the standard 0-05 level the quantile is /^(005) = 9,49. 
In the following table the significant values of the statistics x2 are underlined. 

c = 3 c= 11 

û0 -1-29 -1-51 -1-18 -0-58 -0-14 -0-39 

o, 1-30 1-56 1-37 0-30 0-22 0-63 

Ü2 
0-16 -0-11 -0-17 0-07 -0-01 - 0 0 5 

û3 -0-13 0-09 000 0-17 -0-11 - 0 0 6 

x2 109-35 153-84 119-35 j 8-18 4-58 29-49 

1 c= 67 c= 259 

Û0 ! -0-21 0-04 -0-22 0-03 -0-24 -0-12 

0, | -0-23 -0-10 0-19 0-06 0-00 -0-01 

o9 
; 0-07 0-00 0-03 0-03 0-02 0-08 

o3 
| -0-03 -0-11 -0-04 -0-13 0-17 0-08 

x2 j 3-72 1-75 2-96 1-46 2-46 1-02 

One can deduce from the results that for small c = 3 the sequence is significantly 
non — i.i.d., but approximately Markovian. This tendency, however weakened, 
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remains more or less true for c = 11 as well. For c = 67 and c = 259, respectively, 
the i.i.d. hypothesis cannot be rejected, but for the latter case the longer distance 
interactions start to play more important role. 

Now, let us write in one sequence all one-letter binary words followed by all 
two-letter ones, three-letter ones ... etc., for every length the words being written 
in the lexicographical ordering, i.e. 

0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 . . . 

We have done so up to the length six and considered the obtained sequence to be 
a sequence of binary data. The method described above showed very good "random­
like" properties of this deterministic sequence. 

Ûñ 005 

#1 000 

17, -0 -02 

tл - 0 0 2 

У2 0-04 

6. CONCLUDING REMARK 

The idea of the introduced method depends neither on the assumption of binary 
data nor on the assumption of pair interaction. The generalization is straightforward, 
only the notation and the expressions are much more complicated. 

(Received June 28, 1985.) 
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