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KYBERNETIKA CiSLO 2, ROCNIK 5/1969

The Convergence of One Group
of Correction Training Procedures

SVATOPLUK BLAHA

The most of all training procedures for single threshold unit have a common feature: the
change of weight vector depends directly on the pattern vector. The convergence condition can
be formulated uniformly for all methods. There it is shown, that convergence of training pro-
cedures depends on the angle between the weight vector and the solution vector. A special condi-
tions can be obtained by simple application of common principle on the individual methods.
The principle can be used also when dead-zone of threshold element cannot be omitted.

1. INTRODUCTION*

Let 2 be a set of patterns each of them characterized by the d real numbers x,,
X3, ..., Xg. We can take the individual numbers for components of the pattern vector
X or point X in d-dimensional Euclidean space E,. Let each pattern X € & belong
to one of two subsets &'y and &,. We shall suppose, that these subsets are linearly
separable, i.e. there exists such scalar linear function of vector X (discriminant
function)

(1.1) g(X) = x W, + Xowy + oo F XgW + Wary
depending also on real parameters wy, ..., wy;q, that
(1.2) g(X)>0 forall Xed,,

g(X) <0 forall Xe%,.

1t is usefull to augment the set of components of X by a (d + l)st component,
whose value is always equal to +1. We shall denote this augmented pattern vector

* More details about the problems in Introduction can be found in [3].



by the symbol Y. The components of vector Y will be given by the equations
(1.3) ye=x; i =12..,d,
yp=+1; D=d+1.

The set of augmented pattern vectors will be denoted by # and two subsets by the
symbols %, and %,.

We can consider the parameters w;, ..., Wa4 1 for the components of weight vector
W. The discriminant function g(X) can be written as a dot product of the vectors Y
and W:

(1.4) aqX)=Y.W.
The equation
(1.5) Y.W=0

is for fixed weight vector W the equation of hyperplan, which is normal to the weight
vector and is called the decision hyperplan and will be denoted by symbol W. The
equation (1.5) is for the fixed pattern vector the equation of hyperplan normal
to the pattern vector. This hyperplan is called the pattern hyperplan and will be signed
by Y. Both hyperplanes pass throught the origin and each divides space Ej, into two
half-spaces, the positive and the negative one, in dependence on the signum of product
Y. W. The denomination positive or negative half-space of weight vector (pattern vector)
will be used. It is clear from (1.2), that all patterns Y, belonging to the subset &,
are the vectors of positive half-space of the solution weight vector W and others
are the vectors of the negative half-space. The solution weight vector is any weight
vector, for which the function g(X) = Y. W has the quality (1.2).

Let the set %% be a set of the negatives of the vectors in %/,. The negative of vector Y
will be denoted —Y and has the opposite direction to the vector Y. The union of the
subset %, and @ is the adjusted training set %’ and all members of %’ are lying in the
positive half-space of solution vector W. Two relations (1.2) can be replaced by one:

(1.6) Y. W>0 forall Ye®'.

A classifying problem for two given subsets will be solved by generating a weight
vector sequence Sy = {Wy, W, ..., W,, ...} such, that beginning with some index r
the vectors W, = W,,, = ... satisfies the inequality (1.6). The initial weight vector
W, is arbitrary. The weight vector sequence is recursively generated from a training
sequence Sy, = {¥{,Y5,..., ¥y, ...} whose cach vector is the member of set &' and
every element of %’ occurs infinitely often in the training sequence. A weight vector
is corrected by using a correction rule, when the pattern was classified incorrectly.
If we omit in the training set all correctly classified patterns and in the weight vector
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sequence all corresponding vectors, we shall obtain a reduced training sequence:
(17) Sy = (Vo Voo Vun o}
and a reduced weight vector set
(1.8) ) Sp={Wy, Wy, .., W, ..}.
In this paper will be considered the adjusted training set % and reduced sequences
Sg, Sy only.

2. THE PRINCIPLE OF THE TRAINING PROCEDURES

In the k-th step the pattern vector ¥, is, by assumption, incrorrectly classified using
the weight vector i.e., the weight vector W, lies on the negative side of the pattern
hyperplan ¥,. The point W, must be moved to the positive side of the hyperplan Y;,
if the correct classification is requested after the correction. It is clear, that the
optimal trajectory for moving point W, is the line normal to the hyperplane Y,
i.e., perpendicular to the vector ¥,. A correction rule can be expressed for these
cases by the equation

21 Wi =W, +af,

where ¢, is a positive number called correction increment. Individual training methods
differ one from the other just by the determination of correction increment.

3. DISTINCT TRAINING PROCEDURES

There are many variants of the mentioned training principle known from literature.
Let us mention the typical ones of them.

The fixed increment correction procedure
The correction increment of this procedures is
(3.1) ¢, =2A; A=const.

This procedure represents the first group of the training methods, which are charac-
terized by the dependence of change of weight vector W, on the pattern vector Y
only. Other features of this procedure will be derived in chapter 6.

The fractional correction procedure

This procedure, which is also known as relaxation method, represents the second
group of training methods. This group is characterized by the dependence of the

-



weight vector change on the distance of the point W, from pattern hyperplane
corresponding to the vector 7,‘4 It is not too difficult to verify that this distance &

is [3]
. LAY
(62) o=l

The correction increment is given by the relation

(3.3) o = AM’J; A = const. > 0.
’ Y.Y.

The fractional procedure for the classifier with the dead-zone

1f a dead-zone of threshold element must be considered, the correction increment
will be given by the relation

_ ] + W

34 [
G4 - V.. ¥,

d>0,

where d represents the width of the dead-zone. The pattern ¥, is correctly classified
if |W, . ¥.] > d.

4. GEOMETRIC ARRANGEMENT OF VECTOR SPACE

All pattern vectors from a training set, which is adjusted by the way described
above, lie in the positive half-space %" of a solution vector W. Let us consider
some weight vector W, k = 1,2, ..., and a pattern vector ¥.. As both vectors are
the members of reduced sequences, their scalar product is negative i.e., the pattern
vector lies in the negative half-space of vector W,. Let us denoteit by %'; . Generally
each pattern vector from the reduced training sequence lies in some region 2,
which is a penetrating of the positive half-space #°* and the negative half-space % .
This idea is illustrated for three-dimensional space E; in two perpendicular projections
on Fig. 4.1. The new point WkH will lie in the region Z,, which will be obtained
by the translation of the region &,. This translation is determined by the vector Wk.

The solution vector W and the intersection of the decission hyperplanes Wand W,
(determined by vectors W and W,) determine the hyperplane P, which divide the
space Ej into two half-spaces &, and &2,. If the weight vector Wk lies in 2,, then
region &, is always in &, and similarly Z, is always in 2,.

In every step of the training procedure the convergence of the process depends
on the positions of three vectors: W, Wk and ¥,. We shall denote the angles between
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There is evident, that for any D = 2, 3, ... is always valid in Ej:
(4.2) 0
0 <n

in <&,

IIA
lIA
Bl

@y

A
lIA

in,

IIA

.

The training process will terminate, if such hyperplane W will be found, that all
pattern vectors Y € @/’ will be in the half-space % *. The hyperplane W pass through
the origin and is determined by the solution vector W. The absolute value of the
solution vector is evidently irrelevant for this purpose.

It is obvious, that there exists more than one solution of the training process.
Each of them lies in the solution region #”, the form of which is a polyhedral cone
with vertex in the origin. The assumption that only one solution vector W exists
is the strictest assumption and will be used in the next chapters. All, that will be said
about one solution vector, will be valid, of course, for any other vector from the
same solution region.

5. GENERAL CONVERGENCE CONDITIONS

Let’s suppose there exists a solution weight vector W and an adjusted training
set @', which contains the patterns of two different classes. The changes of the weight
vector Wy, k = 1,2, ... are determined by any rule, the mathematical expression
of which can be equation (2.1). As the patterns are classified only by signum of
discriminant function the following definition of the training method convergence
can be used:

A training method converges, if for angle w, between weight vector W, and solution
vector W is

(5.1) lim w, = 0.

k— oo

This equation can be satisfied only if it is possible to find such value of correction
increment ¢, that in every step (after every change of weight vector) is valid:

(5.2) Wyy < O .
Since the scalar product of vectors is
(5.3) W. W, = |W||W,]cos o,

the relation (5.2) can be rewritten also using functions cos w:

A 2 A7 2
(5.4) (M> <(w'w"“) for 0=, <in

lewkI W] wk+1|

141
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and is valid conversely for 4n < @, < w. Using the equation (2 1) is easy to.arrange
the inequality (5.4) to the form

(w.v‘vk2<(w.W) + 2c{W. W) (W.T,) + cXW. \r,()2
w,. W, W, . W, +2W, .V + Y. 1,

(5.5)

1t is easy to verify, that the inequality (5.5) will be fulfilled when

(5.6) 26(W. W) (W.T,) + cW.Y) - 2, W, . ¥ + c2Y,. ¥,
(W. W, W,. W,

and from this relatioﬁ we shall obtain with assumption that ¢, > 0:
(57) Al (W. W) - [ W, (W 7)7] <
<2qW L (W. WY (W.T) - (W. W) (W,.7)].

I [T, (W. W,)? — [W,]2 (W.¥)? > 0 (it is equivalent to cos® w, — cos? i, > 0),
then will be evidently
(W2 (W W) (W. ¥ — (W. W,)* (W, . 7))

5.8 c <2 = — =
) : T (W W) — W (W 7

‘and in the opposite case the inequality (5.8) will be valid conversely. We shall remind
- equations (4.1) and multiply numerator and denominator of (5 8) by (|W| ,Wkl [Ykl)z

and arrange (5.8) to the form

(59) < 2|W,| cos wk(cos 1 + [cos {k] cos wk)

¥ cos? @y, — cos® 1, l

For economy of notation we define

(5.10) P w,(cos n, 4 |cos &, cos w,) )
' * cos? w, — cos?y, - = s

The inequality (5.9) is correct, of course, only for 0 £ w, < 4z (i.e. for cos w, > 0)
and for cos® w, — cos® 7, > 0. The inequality (5.9) is valid conversely if cos® w, —
— cos? i, < 0. The relations for ¢, if 4n < @, < 7 can be calculated using this
way and considering signum of denominator of A,. Eventualy the relations for ¢,
can be written for clearness in table (5.11). : :

The region of possible angles w, and #,, which is denoted by o consist of four
subregions 75, ..., &, defined also by relations (5.11). These regions are also
illustrated on Fig. 5.1. Let us now investigate the properties of ‘A, in regions &4, ...

oyl g



(5.11) - !
cos® w, — cos?n, >0 | cos? w, — cos?yy, < 0
0L o, <in oy A,
2|W,] 2w
cos @y > 0 o < =k 4 ¢ > K 4,
(oos e > ) 7 A
In<wo S EA A3
(cos w, < 0) ¢ > 2’1”"' Ay ¢ < MA,‘
@ 2
ix
Ny > 0k Wt e >x
T COs Wi > Cos My )
jcos wi| > cos 7
S o o3

g+ < i

COS Wi <COSTk

Wk > Tk

Wi+ 7%

|cos wi| < cos Nk

oy

< n

|
|
i
0
Fig. 5.1.

The region </,

in

At the end of training process the angles @, 1 and &, converge to these values

(5.12) lim w, = 0 so that lim cosw, =1,
k= k=

lim 4, = 4m_, sothat limcosn. =0,
k-0 k—oo

lim & = $m(,, so that lim [cos & = 0.
k-0

k-

Using this limits we shall compute, that

(5.13) lim A, = lim —
[

€OS Wy COS 1y

k= €os? @y, — cos? 1,

;+nmwﬁé_&L=0‘

k= €082 @, — cos% 1y
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As in region &/ must be

0<¢ < i—kl/lk»

\A

it means, that the training process converge if the change of the weight vector can
be sufficiently small. The function A, = A(®y, M Exmax) is illustrated on Fig. 5.2.

10 Ay = const
ook 01 02 03 04 05
07
Nk
>
75° —
2 4
@,
60° /
Ay = Mwk,me)
45"
[ 15° 30° 45° 60° 75° 90°
—— ()
Fig. 5.2.

The region &/,

In the region &,(w, + 7, > im; 4n < w, < Im) is A, negative ie., the respective
convergence condition (5.11) is fulfilled for any positive c;.

The region <

In the region #Z5(4n < @y S 5 @, + 7, < m) is cos o, negative and denommator
of Ay is negative too, because
(5.14) i fcos a| < cos 7, .
Numerator of 4, will be positive if

€S 1,
(5.15) IC—;—%'L! > feos & .
k

By (5.14) the fraction cos ff|cos w| > 1, so that inequality (5.15) is valid and



A, > 0in the region o/5. The training methods will converge not only if
(5.16) G < Tk 4,

The convergence condition in /5 means that [cos w,.1] < [cos wy, i.e.
(5.17) Wppy > T — @

and when the change of weight vector is so great (when is ¢; > ZIW,,] [7,(]" A,) that
inequality (5.17) is valid conversely, then respective convergence condition (5.11)
must be converted too. For two-dimensional case is this situation illustrated on
Fig. 5.3.

Fig. 5.3.

The training methods converge in region &7 also for any positive value of cor-
rection increment c.

The region o7,

In the region &7, is cos w, < 0 and denominator of A, is positive. Numerator
of A, can be positive, zero or negative if cos 7,f|cos w,| < |cos &, cos m/|cos wy| =
= |cos & or cos f|cos w,| > [cos &]. The possible values of angle ¢ are defined
by following relations
(5-18) Se>dn, &> ap — 1y,

Se<o +m for o+ <m,

L<2t—w—m for o +m>m.

145
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This situation is illustrated on Fig. 5.4. If the angles between vectors Wk, Y.and W
are o, and 7,, then the values of angle & between vectors W, and ¥, can be '§ <
< &, £ *&. Using the system of curves cos #,f[cos ;| = const, can be found the
value &o, for which cos #,f[cos ,| = cos & for each point (e, ni). For & > &
is cos nf[cos w,| < |cos &| and for & < & is cos nf[cos w| > |cos &.

The convergence condition in s, is ¢, > 2|W,| [fi[! 4,. For determination of
value of A, is decisive the upper limit of &, ie. & = 2§, because for this value
is A, > 0. The function A, = A(@y, f. >,) is limited and the highest value is 4, = 1
for A(wy, n, 2&,) = A(r[2, /2, n/2). The function A in &7, is shown on Fig. 5.5.
In point w = 4=, = 4x the function is undefined and its value is 0-5 < 4, £ 1,
similarly in point w, = =, #, = 0 where 0 £ 4, £ 0,5.

The training methods in region o/, converge always if the value of ¢, is

“TR T

(5.19) >0 for & <& (e 4 <0),
AW 2AW o s s g (4> 0).
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If the last condition is not fulfilled, then it is not too difficult to prove, that the
sequence of weight vectors can converge to the origin. This trivial solution is of
course undesirable.

The conditions derived in this chapter are not sufficient as proofs of convergence
of distinct training procedures, but can be used for it and is not difficult the proofs
finished. The proofs will not be described in this paper, because they are known from
[3], where are based, of course, on different principles.

6. CONVERGENCE OF DISTINCT TRAINING METHODS

The conditions for the convergence of the distinct training procedures will be
obtained from the relation (5.1 l) if a particular expression for the correction increment
¢, will be put to it. Let us derive as an example such specific conditions for the training
procedures (3.1), (3.3) and (3.4). It will be derived convergence conditions only for
region &/, because in other regions the conditions are clear and very simple.

147



148 The fixed-increment training procedure

By the relation (5.11) the training procedure converges in o if

(6.1) <Al

[¥mex
where |¥],., = max |f,]. For A = const. is
k=1,2.,.
e

(6.2) : lim |W,| = lim
. k= k>o K

because by (5.13) is lim 4, = 0.
ko

The convergence condition for fixed increment training procedure will be fulfilled
for linear case, when absolute value of weight vector will grow over all limits,

The fractional training procedure

The convergence condition in &, for this method is by (5.11) and (3.3)

B W, %] 2,
6.3 aWe Y 2W
). wE R

and after the simple arrangement will be obtained
(6.4) Alcos &] < 24,
and eventually

05 wy{cos 7, + [cos & cos w,)

6.5 A2
©3) T Jeos & (cos® g — cos? )

The expression Ayf|cos & can be written

(6.6) A COS @y COS 7, cos? wy
' [cos & Jcos &|(cos? w, —~ cos? n)  cos® wy — cos? 1,

and the following relations are evidently valid. By (5.11)

(6.7 : COS W, COS ;.

>0 forall k,
[cos &] (cos? wy, ~ cos? ;)

2
(6.8) 85 D 51 forall k,

cos? w, — cos? 1



and
2
(6.9) lim __Tco&kzﬁ =1
k- m €OS% wy — cos?
hold, so that
6.10 lim - ==
(6.10) k= [c0s &

Tesy -

The convergence condition for the fractional training procedure valid in region &7,
is
(6.11) A22,
which is'the well known result, derived in another way in [2] or [3].

The fractional training procedure with the dead-zone and the influence
of the solution region

For this case it must be by (5.11) and (3.4)

(6.!2) .L (d + Ml) < 2|wl¢J Ak-

WA ¥ ¥

After the arrangement we shall obtain

- Ay
6.13 2 < 2lW| e
¢ Wd 75 W,| [cos &

As it is known that lim A, = 0 and also lim ]cos Ek] = 0 it is evident that
k>

k-

. Ay
- (6.14 lim ——er—— =0
(6.14) kiw d + |Wk‘ cos 8;',(!

Since we suppose, that 1 = const., it must be
(6.15) lim |W,| = 0.
k-0

The fractional training procedure for the case, when the dead-zone of the threshold
element cannot be omitted, will converge, if the absolute value of weight vector
can grow to infinity.

The specific convergence conditions for all variants of the mentioned typical
training procedures can be derived in the same or in a similar way.
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7. THE INFLUENCE OF THE SOLUTION REGION

The circumstances which influence the convergence of the training procedure,
are not so unfavourable in practical case as it was supposed in the previous chapters.
Especialy the solution region — it will be denoted by #°; — has a positive influence
contrary ro single solution weight vector which was assumed till now.

Let us suppose to simplify the matter that the form of the solution region #7
is a cone with vertex in the origin and solution vector W lies in the axis of this cone.
The angle between vector W and any vector on the boundary of #7 is w,. The next
relations are valid in region &7;:

(1.1) o < w, < 3t sothat 0 < cos w, < cos wy,
(7.2) 0 < <4inm— w, sothat sinw, < cos 1y,
(13) In< & <im+ o — o, sothat 0 < feosé] <!

and as before (5.12)

(7.4) lim#y, =0,
k—x
75 lim [cos &) = 0.
k>

Using (7.2) and (7.4) we can write after a simple arrangement

€OS Wy, Sin

(7.6) A > + fcos & .

cos? wy

Since the angle w, decrease to the w, (for w, < o, the training process terminate),
the equation (7.6) can be re-written:

(7.7) A, > tg g + |cos &].
If this relation will be used in ineqﬁality (5-11) for 4, we shall obtain

2,W"l (tg w, + |cos fk[) .

(7'8) o =

The specific convergence conditions for the distinct training methods can be derived
again.
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From (7.8) and (3.1) we shall obtain considering (7.5) yet

(7.9)

y: - - ~ .
Vo S W [Pl = ..
2tgwsl o S W5 [P k:rg“_l fl

For some |W/y,, & convenient value of A can be calculated.

The fractional training procedure

From (7.8) and (3.3) we shall obtain easily

tg o

7.10 A<
( ) - |cos ék]

+1.

The value of fraction tg wy/|cos &| — o for k —> . The possible increasing of the
value of A must be considered, of course, in connection with the decreasing of the
distance & (3.2) to zero.

The fractional training procedure with dead-zone

From (7.8), (3.4) and (7.5) we shall obtain

(7.11) 1= 2w f-g;"ﬁ
or

W
7.12 — =< (W, |.
(1) Sy

Tt means that even for this case the convenient value ot 4 can be determined.

8. CONCLUSION

The contents of this paper can be summed up into several theorems. Their deriv-
ations are in previous chapters.

1. Only such training procedures will be considered, which can be described
by equation (2.1).

2. The training procedures can always converge to the solution, if the ratio of
absolute values of weight vector change and the weight vector can be arbitrarily
small at the end of training process.
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3. The influence of the solution region softens the convergence condition in all
cases.

4. The fixed increment training procedure needs increasing of the weight vector’s
absolute value compared with initial vector. On the contrary the absolute value
of the weight vectors are decreasing compared with previous weight vector if relax-
ation training procedure for A < 2 is used.

5. The fixed increment training procedure converges always to the nonzero so-
lution.

6. The training procedures of the relaxation type converge always to the point
in the solution region or on its boundary. It means, that such point can be the origin;
it is an undesirable trivial solution. The training procedure of the relaxation type
has always a non-zero solution, if initial weight vector lies in the positive half-spacc
of the solution vector.

7. If the dead-zone of the threshold element cannot be omitted, then relaxation
methods need increasing of the weight vectors absolute value over all limits, too.
This condition is softened also by the existence of the solution region.

8. The training procedure converge to the solution, if the angle between the
solution vector and the weight vector decreases in every step. The convergence is
independent of the absolute values of vectors.

Many practical cases are known which converge to the solution though does not
fulfil the demand of unlimited values of weights. It would be necessary to complete
the conditions of convergence also for the case when the limitations of weight must
be considered. But the derivation of such conditions is not simple. The position of
weight vector compared with solution vector, type of correction rule and “width”
of solution region have influence on it.

(Received April 26th, 1968.)
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VYTAH

Konvergence jedné skupiny korekénich trenovacich metod

SVATOPLUK BLAHA

Vé&Sina trenovacich metod pro udici se stroje md spole¢nou vlastnost: zména
vdhového vektoru je p¥imo umérnd prvkovému vektoru. Podminky, které musi byt
splnény, aby trenovaci metody konvergovaly k fefeni Ize formulovat jednotné pro
viechny varianty uvedeného principu. Podminky jsou odvozeny na zdkladg skuted-
nosti, Ze metody konverguji tehdy a jen tehdy, zmen3uje-li se v kazdém kroku thel
mezi vdhovym vektorem a vektorem Fefeni. Odvozené podminky ddvaji dobry obraz
o prabéhu trenovaciho procesu.

Aplikaci obecného vztahu na jednotlivé trenovaci metody snadno obdrZime
specidlni podminky konvergence, platné pro zvolenou metodu. Popsany princip
je mozno pouZit i v tom piipadg, Ze nelze zanedbat pdsmo necitlivosti prahového
Glenu.

Ing. Svatopluk Bliha, CSc., Ustav teorie informace a automatizace CSAV, VySehradskd 49,
Praha 2.
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