
Kybernetika

Evžen Kindler
Programming means for simulation of logical networks. I

Kybernetika, Vol. 8 (1972), No. 6, (517)--534

Persistent URL: http://dml.cz/dmlcz/124661

Terms of use:
© Institute of Information Theory and Automation AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124661
http://project.dml.cz


K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 6 

Programming Means for Simulation 
of Logical Networks I 

EVZEN KlNDLER 

The paper contains the information about programming of simulation programs concerning 
the array of logical networks. The matter is arranged so that it can be accepted also by the users 
who have not been trained in general methods of algorithmic programming of computers. The 
present part contains the programming methodics for the first generation computers. The use 
of the programming means typical for the second and third generation computers is described 
in the following parts. 

1. GENERAL CONCEPTIONS 

Nowadays we can hope that the meaning of the word simulation has been fixed 
at least for some decade of years. The origine of the modern interpretation of the same 
word has been founded by Monte-Carlo methods (see [2]). The modifications of these 
interpretations have started by using the same word in modelling of continuous 
systems by means of analogue computers. Of course, there are some theoretical 
aspects which could put equivalence between both the interpretations, because the 
same aspects and their similar effects were known from the quantum physics: the 
mean values of certain attributes of continuous processes (i.e. classical physical 
variables or state characteristics of analogue computers) are limit cases of mean 
values of corresponding attributes of corresponding discrete processes (i.e. mean 
values in quantum physics or in Monte-Carlo methods — see [4]). Nevertheless the 
analogy has implied no unification in interpreting the word simulation (may be for 
a great difference in the used metodics in Monte-Carlo methods and in analogue 
computer applications) but — moreover — has implied a greater chaos: the generali­
zation of the analogy has led to a generalization of the use of the word simulation, 
e.g. in numerical analysis (in case of numerical methods based on random numbers). 
The hasty development in computing technics, influenced by propagation slogans 
of the business-oriented people, has amplified that process, as any new interpretation 



518 of any "scientific" word gave an illusion of a new facilities of the propagated com­
puter techniques. 

But the same computing means which have caused the latter explosion in the inter­
pretations of the word simulation have caused also the final unifying of them: the 
real property of the automatic computers (i.e. computers with the program that can 
modify itself-see e.g. [5]) — its universality — has led to accentuation of the same 
universality in case of simulation so that nowadays there is a definition of this word, 
accepted by the world of investigators and other specialists, which is an general that 
we can take it as definitive. This definition is the following: 

The simulation is a research technique the substance of which is that the researched 
system is replaced by its model with which the experiments are performed in order 
to obtain information about the originally given system. 

The terms used in the definition and the actual aspects of the same definition have 
been presented in [1]. Let us only mean that nowadays there are three great fields 
to apply the simulation: prognostics of the behaviour of systems, determination of 
structural parameters of systems according to their behaviour, training the work 
with simulated systems. If the model (mentioned in the definition above) is program­
med at a computer, we put an attribute computer before the work simulation. If the 
computer is a digital one (especially an automatic computer) we put an attribute 
digital before the same word. In the present paper only the last type of simulation 
is already considered; thus we can omit the attribute digital, supposing it before any 
pattern of the word simulation occuring in the next text. 

The logical network is a special case of dynamical system (see [1]) risen by a gene­
ralization of a classical concept of neuron network (see e.g. [3]). It is a system of 
objects called neurons, each of which has n inputs (n = 0, 1, 2, ...) and one output. 
At the inputs logical values can enter into the neuron as input informations. At the 
output there leaves the neuron also a logical value which is a function of the input 
values. The input and output values go into and from the neurons in discrete time 
moments so that either the output value leaves the neuron in the same time as the 
corresponding values enter the same neuron, or the output value leaves the neuron 
in the next time moment as the corresponding values enter the same neuron through 
its inputs. The possibility is given for every pattern of neuron as a fixed one; thus we 
speak about a neuron without delay if the output information leaves it in the same 
time as the corresponding input informations, or we speak about a neuron with delay 
if the output information leaves the neuron with delay of one time step (difference 
between two time moment one of which follows the other one) after the corresponding 
input informations. Of course, the corresponding informations must enter always 
simultaneously. The logical system is composed of one or more neurons: more 
neurons can be connected one to other so that the output of one is joined with one 
or more inputs of other neurons of the same system. The information which leaves 
the first neuron through its input enters immediately eventual neurons through the 
joined inputs. The cycles of neurons without delay through which an information 



can leave a neuron, go through the other neuron of the same cycle and then return to 519 
the first neuron (modified eventually during that way), are forbidden. We shall write 
the logical values as 1 (true) and 0 (false), because they were in the same way inter­
preted in the computer models. 

2. SIMULATION OF LOGICAL NETWORKS AT FIRST GENERATION 
COMPUTERS 

2.1. The automatic computers of the first generation can be characterized by the 
following properties: their electronical circuits are based in electronic tubes, their 
memories are realized as magnetic drums, where one computer can store about 1000 
words; these words have constant length which corresponds about 36 bits. Every 
computer has a small number of input and output units; when a program runs at the 
computer, one can see clearly the phases of computation at the input and output 
units and he can control it manually from the controle desc (konsole). The computers 
are facilitated by standart subroutines and by systems of automatic programming 
of simple algorithmic type: one writes the rules of computation desired in a sequence 
which corresponds to the sequence in which they are performed; there are simple 
facilities to describe cycles jumps and subroutines. Such a description is punched 
into paper tape or into cards and the translator (compiler) transforms the description 
into the machine code (see e.g. [6], [7], [8]). 

2.2. The neurons can be programmed in such a programming language (called 
first-generation-language) so that every neuron gets a sequence of instructions, where 
its output value is computed from the input values, represented by corresponding 
identifiers. It is suitable to enumerate all the neurons of the simulated system — every 
neuron gets its order number (a natural number). Thus an identifier for an output 
value can be written e.g. An where A is the character of the machine alphanumeric 
code and n is the order number. E.g. A7 is the output information which leaves the 
neuron enumerated by 7 (we shall say simply the 7-th neuron). The input informations 
are identified similarly; e.g. the neuron enumerated as the 5-th one, which performs 
the conjunction of the output informations from the neurons enumerated by numbers 
2 and 4 is programmed as following: 

A5 = Al. A4 

The neuron enumerated by 3 joined at the output from the 6-th neuron, which per­
forms, the negation, is programmed as following: 

A3 = 1 - A6 

Thus the program is consisted of such patterns of sequences of instructions. After 
the last pattern there is programmed the print of results: it may contain a sequence 
of instructions so that they might print a table of values in outputs of neuron which 



interest us. Every line contains e.g. k fields where the logical value at certain places 
of the simulated system are printed. As the facilities for printing are different for 
every computer, we shall not describe the prints detailly (see the example presented 
further). This series of patterns of instructions is a body of cycle, which causes that 
the body is repeated so that the simulation is performed as long as we wish. Before 
the heading of the cycle one can put a pattern of program which performs the actions 
desired at the beginning of the simulation, after the last instruction of the body there 
can be programmed the action demanded after the simulation (e.g. printing of a con­
clusion, stop instruction). Schematically the simulating program has the following 
form: 

inital action 
FOR T = 1 STEP 1 UNTIL K 
BEGIN 
pattern for one neuron 
pattern for another neuron 

pattern for the last neuron 
instructions for printing of the results 
END 
conclusion action 

The second line is an example taken from ALGOL 60 (see [6]) or from MOST 
(see [7]) which are typical algorithmical programming languages; it means that the 
body (closed in the words BEGIN and END which are here in a function of paren­
theses) might be repeated for every value of T (identifier of the simulated time) 
equal 1, 2, 3 , . . . , K, where K denotes the duration of the investigated process. 

2.3. The important problem is the ordering of program segments in the body. 
Always the pattern for printing has to be the last one in the body because the values 
must be at first computed and then printed. For the patterns corresponding to the 
neurons is the ordering controlled by a more complicated rules: evidently if a neuron 
enumerated by a number k is joined to an neuron without delay enumerated by 
a number m so that an input of the k-th neuron is connected with the output from 
the m-th neuron, the pattern corresponding to the m-th neuron must be written 
before the pattern corresponding to the fc-th neuron. Let us note, that this rule is 
always satisfiable as the cycles of neurons without delays are forbidden. The ordering 
of patterns for the neurons with delay can be made by two different way which we 
shall call first type or order and second type of order (this affair will be interpreted 
also for the second and third generation of the computers). 

2.4. The first type of order is controled by the rule that the pattern of program 
corresponding to a neuron with delay must always follow all the patterns of programs 
corresponding to neurons the inputs of which are joined at the output of the neuron 



with delay. Thus when the fc-th neuron is connected by one of its input with the output 521 
of the m-th neuron which is that with delay, the pattern, of the m-th neuron must 
occur after the pattern of the /c-th neuron. This way of order need no additional 
programming tools and all the patterns can be done as it has been demonstrated 
by the examples in 2.2. From the fact that the instructions in the body are performed 
in the same order as they are written follows that the delay is well simulated. In one 
step the instructions simulating the neurons, where the information should come from 
a neuron with delay, are performed at first, so that the input values are taken from the 
preceding step. Then the simulation of the neuron with delay is performed, but the 
output information which leaves it, is only printed, if it is desired: as the input 
it can function only in the next step, because all the patterns which need it have been 
written before and thus they have been already performed before, if we consider the 
present step only. The described type of ordering has one obstacle: if there is a cycle 
composed only of the neurons with delay, the rule cannot be satisfied. In this case one 
can put a "fictive" neuron in any place of such a cycle, which is without delay and 
which interprets at his aoutput the information identical with the information in 
its only one input. Let us present an example: let a neuron enumerated by 4 is con­
nected with a neuron enumerated by 7 in a cycle; let both the neurons are with delay. 

Fig. 1. a) b) 

Thus their patterns of programs cannot be ordered so that the pattern of the 7-th 
neuron is before the pattern of the 4-th one and inversely. Thus we can enrich the 
original cycle (see fig. la) by a new neuron without delay, enumered e.g. by 10 
(see fig. lb). The new cycle can be ordered satisfying the rule: 

A10 = A4 
pattern for the 4-th neuron 
pattern for the 1-th neuron 

The first line of the program part is the pattern from the fictive neuron enumerated 
by 10. 



522 2.5. The second type of order admits any ordering for the neurons with delay 
(the ordering of the neurons without delay must however satisfy the general rule 
expressed above). Even any fictive neurons are not needed. But the pattern of the 
programs corresponding to the neurons with delay must be done in a different way: 
the result of computation simulating the action of the neuron must be identified by 
another variable, e.g. Bn where n is the number with which the neuron is enumerated. 
Thus a neuron performing the conjunction of the values which come from the neurons 
enumerated by 4 and 5, if it is with delay and if it is enumerated by 6 has the corres­
ponding pattern: 

B6 = A4. AS 

The body of the cycle contains one program pattern, which is not present in the first 
type of order: it is a pattern for transfer (assigning) of all the values of Bk to cor­
responding Ak, for all the order numbers k of neurons with delay. The described 
pattern is placed at the end of the body of the cycle, after the pattren for the prints. 
Thus the organization of the simulation program is the following: 

initial action 
FOR T = 0 STEP 1 REPEAT K 
BEGIN 
pattern for one neuron 
pattern for another neuron 

pattern for the last neuron 
instructions for printing of the results 
transfers from Bk to Ak 
END 
conclusion action 

This way has an obstacle: beside the use of new address for Bk one must take atten­
tion about all the possible k which correspond to neurons with delay, and then one 
must specially program all the transfers from Bk to Ak. It is not suitable, even for 
the automatization of the whole programming process (see further — for the second 
generation computers). One can minimize the obstacle so that the enumeration is 
performed at first for the neurons with delay, the number of which is stored in the 
memory (of programmer or — in case of eventual automatization of the program­
ming — in the memory unit of the translator), and then the enumeration of the re­
maining neurons, i.e. those without delay is done. In this case the transfers from Bk 
to Ak (see the previous schema) can be programmed by one cycle — a subcycle of the 
main cycle of simulation: 

FOR I = 1 STEP 1 REPEA T R 
BEGIN 
AI = BI 
END 

where R identifies the number of the neurons with delay. But on can present a more 



uniform technique of programming, which needs some more of computer run (there 
are some instructions without importance) which can be nevertheless well automat­
ized. In this technique one programs the neurons with delay in the same way as it 
has been just demonstrated. But the neurons without delay are programmed more 
complicatedly: the result in sent to An both to Bn, where n is the order number of 
the corresponding neuron. E.g. a program pattern for the 7-th neuron without delay 
winch performs the conjunction of informations comming from the neurons enume­
rated by 2 and 3 is the following: 

A7 = A2.A3 or Bl = Al. A3 
Bl =A7 Al = Bl 

Another example for the 5-th neuron which performs the negation of the information 
comming from the 4-th neuron: 

A5 = 1 - A4 or B5 = 1 - AA 
B5 = A5 A5 = B5 

Then the transfers from Bi to Ai can be performed at the end of every step for all 
i = 1,2, ..., n where n is the complete number of all the neurons which occur in the 
simulated system. The transfers are superfluous in case of the neurons without delay 
but the programming is more compact: the organization of the simulation program 
is the following: 

initial section 
FOR T = 0 STEP 1 REPEAT K 
BEGIN 
pattern for one neuron 
pattern for another neuron 

pattern for the last neuron 
instructions for printing of the results 
FOR I = 1 STEP 1 REPEATn 
BEGIN 
AI = BI 
END 
END 
conclusion action 

We can see that the variable identified R (or the corresponding constant) is not used 
here. 

2.6. The first generation languages admit to program all sorts of neurons. Let 
us present here the program patterns for the most known sorts: 

The neurons with one input, connected with the output of the fc-th neuron, 
while the described neuron is enumerated by the integer j : 

negation: 

Aj = 1 — Ak 



524 identical transfer (the neuron which reproduces in its output the same value which 
has entered through its input): 

Aj = Ak 

identical constant 0 (the output information of the neuron is always 0, without 
regard to the input information): 

Aj = 0 

identical constant 1: 

Aj = \ 

The neurons with two inputs, connected with the outputs from the neurons fc-th 
and m-th respectively, while the described neuron is enumerated by the integer j : 

conjunction: 

Aj = Ak . Am 

disjunction: 

Aj = Ak + Am — Ak . Am 

the same operation programmed for very simple programming facilities (admitting 
only binary operations in the instructions): 

X = Ak. Am or X = \ — Ak 
X = Ak- X X = X.Am 
Aj = X + Am Aj = X + Ak 

implication [Ak -> Am): 

Aj = 1 — Ak + Ak . Am 

the same operation programmed in binary operations: 

X=Ak.Am or X = Am — 1 
X = X— Ak X = X .Ak 
Aj = \ + X Aj = \ + X 

equivalence: 

Aj = 1 — Ak — Am + 2 . Ak . Am or Aj = (1 — 2 . Ak) . (1 — Am + Ak) 

the same operation programmed in binary ones: 

X = Ak .Am or X = Ak - 1 
X =X + X X = Ak + X 
X =X- Ak X = Am.X 
X = X— Am X = X— Ak 
Aj = \ + X Aj = X+\ 



Sheffer stroke: 

Aj = 1 — Ak. Am 

The same operation in the binary ones: 

X = Am.Ak 
Aj = \ - X 

Symmetrical difference: 

Aj = Ak + Am — Ak . Am . 2 

The same operation programmed in the binary ones: 

X = Ak .Am or X = 1 — Am 
X = X + X X = X— Am 
X = Ak- X X = X.Ak 
Aj = Ak + Am Aj = X + Am 

One can similarly program other eventual operations performed by neurons with 
two inputs. As concern the neurons with more inputs the technique of programming 
is similar but the possibilities would overflow the capacity of this paper. Thus we shall 
present only two examples: 

The neuron which performs the disjunction of 4 inputs; they come from the neu­
rons 2-th, 3-th, 4-th, 5-th while the neuron itself is the 6-th one: 

X = A2 + Ai + A4 + A5 
A6 = \ IFX>0 
A6 =0IFX = 0 

The same function programmed by binary operations: 

X =A2 + A3, 
X =x + A4 
X =X+ A5 
X = 1 IFX>\ 
A6 =X 

The neuron with three exciting inputs (connected with the outputs from the 2-th, 
3-th and 4-th neurons) and with one suppressing input connected with the output 
from the 7-th neuron. The neuron inself is enumerated by 8. The same neuron has 
sensitivity bound 2. It means: if at the exciting inputs come at least two values 1 
and if at the suppressing input comes 0, the output value is 1, otherwise it is 0 (see 
[3])-

X = 0 
IF Al = 1 GO TO M 
Y = A2+A3+A4 
IF Y< 2 GO TO M 



526 X= 1 
M:A8 = X 

The same neuron can be modelled by the following pattern of program composed 
of binary operations: 

X = 0 
IF AT = I GO TO M 
Y = AZ + A3 
Y= Y + AA 
IFY< 2 GO TO M 
X=\ 
M:AS=X 

Let us note that the presented patterns concern the case of the first type of ordering. 
In the other case one would either modify the last instruction so that instead of the 
letter A at the left hand side of the assign ment the letter B is put, or join a new 
instruction Br = Ar where r is the index of the assigned variable at the left hand side 
of the last instruction, according to the discussion presented in the paragraph 2.5. 

2.1. In the logical networks there are often generators. They can generate a logical 
constant, random logical value or a function of time. As concern the generation of 
logical constants, one possibility has been already presented in the preceding para­
graph — the generator of a logical constant would be a neuron with "Active" input. 
But it is rather sophisticated possibility which can be formulated among some spe­
cialists but not for people who would like to simulate the logical networks for the 
purposes of the logical networks and not for the purposes of the theory of program­
ming. Thus we can define an element generator as a neuron without inputs, the output 
information of which is generated according to the proper function of the neuron: 
it can be a constant, a random logical value, a value of a function of the time etc. 
The program patterns for all the generators are to be put before all the other program 
pattern, therefore at the beginning of the body of the main cycle. 

Let us note that the program patterns for the generators of constants are the same 
as presented in the preceding paragraph. The program pattern for the generation 
of random logical value is the following: 

X = RANDOM(0,1) 
Ar = X 

where RANDOM is the function in machine code which generated random or pro­
bably pseudorandom numbers (see [9], page 48), while the assignment in the second 
instruction includes rounding of the value X (from the interval <0,1» to the nearest in­
teger. If the function generating random numbers does not exist in the machine 
software it must be programmed in machine code. If the assignment does not include 
the rounding we must use the sequence of the following instructions in place of the 
last assignment instruction: 



^ = 0 f f I < 0 - 5 527 
AT = 1 IF X> 0-5 

Let us present the sequence of machine instructions which has appeared as very 
suitable sourse of trandom numbers from the interval <0, 1>. The author thanks 
to his collaborator Z. Rezny for testing the statistical properties of that source: 

1. transfer the contents of the address S into the accumulator; 
2. multiply it in fixes point by 1220703125 (i.e. by a certain power of 5) so that the 

upper part of the product remains in the accumulator, the lower part goes in a register; 
3. transfer the contents of the register in the accumulator; 
4. transfer the contents of the accumulator into the address S; 
5. take the contents of the accumulator as the fixed-point result of the generating 

and transform it eventually into floating-point form. 

Thus the random number remains in the accumulator from what it can be trans­
ferred in any address. The address S must contain an odd integer at the beginning 
of the simulation. 

As concern of the generators of any function which is not a constant we do not 
recommend to use them, as one can come into contradictions if he use the procedures 
(see further): such generators need certain "inner states" which could influence one 
another in case that the semantics of variables used in procedures is not exactly known 
(that semantics varies for diverse softwares of computers). We recommand to com­
pose such generators of more simple generators (if they are needed) and of neurons 
with inputs. E.g. the generator of the function which has its value 1 in odd time mo­
ments and 0 otherwise can be made of a cycle containing the only one neuron which 
performs the negation of the value occuring at its input. It is a neuron with delay and 
its output (identical with the output of the generator) is connected with its input 
(thus one must join an identical-function neuron in that cycle in case of the first 
type of order). 

2.8. In the studying of the logical networks one need often the inputs into the whole 
system which is to be simulated. In other words one need often to simulate the logical 
networks which process the logical values which enter them from their surroundings. 
It can be simulated so that the surrounding of the simulated network is modelled 
by the surrounding of the computer and the inputs from outside into the simulated 
system are simulated by the patterns of program which read the values punched at a 
paper medium (or — and it is logically equivalent — from a control console, teletype 
etc.). In the figures those inputs are presented by means of certain lines the end of which 
corresponds to the physical entering of the signal, carrying the information, from the 
surroundings into the system. This mode is suitable for arranging in the programming 
tool: we can consider such an end of a line as a generator; the program pattern for 
its simulation contains the instructions for reading an input information, i.e. an in­
formation perforated in the computer input medium. Similarly as the other generators 



the input units get their proper order number. If such a unit gets e.g. the number k 
the corresponding program pattern is the following: 

More input units into the simulated system can be simulated by more input units 
of the computer or by special ordering of the information at the only one input: 
if there are e.g. three input units for the simulated system, enumerated 3, 4 and 6 so 
that their program patterns are in the order: pattern of the 6-th input unit, pattern 
of the 3-rd unit and patternd of the 4-th unit the input file of the computer must con­
tain the following informations: l\,l\,l\,l\,l\,l\, 1%,l\, 1%, 1%, ... where I{ is the 
information prepared for the t-th input unit at time s. In the following parts we shall 
not distinguish between proper generators and input units: both types are neurons 
called generators, without input simulated in the considered network, for both types 
there will hold the same rules expressed only for generators. 

2.9. The output units — i.e. the lines through which the information leaves the 
simulated system — need not interess us, because after leaving the simulated system 
the information has no meaning for the simulation. As the leaving informations are 
usually those which interess us so that we let them to be print, we can metaphorically 
say that the input unit of the system is simulated by the pattern of program which 
performs the printing of the results in every step of the simulation. 

2.10. The use of procedures and functions, which is a facility of a lot of algorithmical 
programming systems even in the first generation of the computers, can cause the 
programming more simple: instead of writing the instructions for simulating the 
functions of any neuron in any pattern of program we can declare all the necessary 
logical functions outside the simulating program (often only once and to let it re­
write in any program for the purpose of simulation) while the program patterns 
would contain the only instruction for each of them, i.e. calls of the corresponding 
function. E.g. the program pattern for a neuron which is enumerated by 6 and which 
performs a disjunction of the informations comming from the 2-th and from the 4-th 
neurons, is the instruction 

A6 = DISJUNCTION (A2, A4) 

while outside the simulating body there is declared 

FUNCTION DISJUNCTION (X, Y) 
DISJUNCTION = X + Y— X.Y 

Another possibility is that the program pattern has the following form: 

DISJUNCTION (A2, A4, A6) 

while the declaration of the procedure outside the program body has the following 
form: 



PROCEDURE DISJUNCTION (X, Y, Z) 
Z = X +Y- X.Y 

From the form of the declarations one can see the danger which can be present in the 
case of the generators of functions: the declarations of various functions need the 
variable which occurs only in the declaration; it is the variable (or a system of vari­
ables) representing the "inner state" of the generator. If the same procedure is called 
in two or more places of the simulating program (i.e. if the simulated system contains 
two or more generators of the same function) one can get into a conflicting situation 
if the programming system does not represent any called procedure by its proper 
pattern of variables. Theoretically it would be possible to restrict the calling of 
generators so that one could call the same generator only once but even in this situa­
tion it would be possible to construct conflicting situations (e.g. by using the same 
letter in different declarations). The descriptions of the semantics of applied program­
ming languages are often as unexact that one cannot clearly recognize whether the 
mentioned conflicts would be caused or not. 

Fig. 2. 

2.11. Let us present an example for simulation of a simple logical network by 
a simple computer. The network is presented at the fig. 2. There the numbers mean 



530 the enumeration of the neurons while the letters preceding the numbers mean the 
type of the neuron: G is a generator, D is a neuron with delay, E is a neuron without 
delay. The functions of the neurons are the following: 

1-st neuron: conjunction, 
2-nd neuron: negation, 
3-rd neuron: disjunction, 
4-th neuron: conjunction, 
5-th neuron: negation, 
6-th neuron: identical, 
7-th neuron: negation, 
8-th neuron: input. 

The simulating computer is ODRA 1013 (see [10]), facilitated by the system MOST 
of automatic programming (see [7]), which satisfies all the properties of the algo­
rithmic languages of the first generation, described in this part. Let us present the 
simulation program using the first type of order; at the right hand side of the program 
there are comments and explications: 

INTEGER X, T, D, AS 

LABEL 1 

BEGIN 

1: READ D 

FOR T = 0 STEP 1 UNTIL D 

READ AS 

A5 =\~ A6 

Al = \~ A\ 

A6 - A\ 

A2 = 1 — A\ 

A\ = AS * Al 

X = Al * A5 

X = A2~ X 

A3 = X + A5 

X = AS * A3 

A\~X *A5 

PRINTLINE 1 

PRINT T, 4 

PRINT A\,\ 

PRINT A2,\ 

PRINT A3, 1 

PRINT A\, 1 

PRINT A5, 1 

PRINT A6, 1 

PRINT Al, 1 

heading of the program according to 
the rules of MOST 

initial section (only reading of D) 

heading of the basic simulation cycle 

pattern of the 8-th neuron 

pattern of the 5-th neuron 

pattern of the 7-th neuron 

pattern of the 6-th neuron 

pattern of the 2-nd neuron 

pattern of the 1-st neuron 

pattern of the 3-rd neuron 

pattern of the 4-th neuron 

instructions for printing of results 



PRINT A8, 1 the last instruction for printing 531 

END T the end of the basic simulation cycle 

STOP the concluding action (only stop of the computer) 

START 1 the end sign of the program according to the rules of 
MOST 

The first line introduces the variables used in program, i.e. X as an auxiliary variable, 
Tas the variable where time information is stored, D identifying the end of the simula­
tion and eight variables Al, A2, ..., A8. The second line and the third line are neces­
sary because of the syntax of the language MOST; then the initial section follows 
which is composed in our example of the only one instruction, therefore for reading 
of the value of the simulated time determining the end of the simulation. Then the main 
cycle of the simulation follows; at the end there are the instructions which print in 
every step a new line of the results so that in every line there is the value of the actual 
simulated time and then the output values for each neuron are printed. The integer 
following the comma in every printing instruction determines the length of the printed 
information. The end of the main simulation cycle is indicated by the word END 
followed by the variable which controles the cycle (T in our example). Then the 
conclusion of the simulation follows (in our case it is only stop) and then a necessary 
indication that the program description is finished. The asterisc denotes the multi­
plication. The informations perforated at the input medium are the following: the 
first one is an integer determining the last value of the time when it is to be simulated. 
Then the values 0 and 1 follow representing the information which enters the system 
through the generator enumerated by 8. Every value corresponds to the entering 
information in one step. The entering values are printed at the end of every line during 
the simulation (as they are identical with A8). 

If we wish to program the simulation of the same logical network using the second 
type of order, we can use the same ordering of the program patterns corresponding 
to different neurons; but for the illustration we present here another ordering, which 
would not be possible for the application in the first type of order. The program can 
be made in two forms; the first one is the following: 

INTEGER X, T, D, A8, B8 heading of the program 
LABEL 1 
BEGIN 
1: READ D initial section 
FOR T = 0 STEP 1 UNTIL D heagind of the basic simulation cycle 
READ A8 pattern of the 8-th neuron 
Al = 1 — A4 pattern of the 7-th neuron 
B\ = A8 * Al pattern of the 1-st neuron 
AS = 1 — A6 pattern of the 5-th neuron 
B6 = A\ pattern of the 6-th neuron 
A2 = 1 — A\ pattern of the 2-nd neuron 



X = A2 * A5 

X =X + A2 

A3 = X + A5 

X = AS* A3 

B4 = X *A5 

PRINTLINE 1 

PRINT T, 3 

PRINT Al, 1 

PRINT A2, 1 

PRINT A3, 1 

PRINT A4, 1 

PRINT A 5,1 

PRINT A6, 1 

PRINT Al,\ 

PRINT AS, 1 

Al = Bl 

A4 = B4 

A6 = 56 

END T 

STOP 

START 1 

pattern of the 3-rd neuron 

pattern of the 4-th neuron 

the instructions for printing 

the transfers of the values for 

the neurons with delay 

the end of the basic simulation cycle 

conclusion 

the end sign of the program 

The second form of the program is the following (compare with the discussion pre­
sented in the paragraph 2.5): 

INTEGER X, T, D, AS, BS, J 

LABEL 1 

BEGIN 

1: READ D 

FOR T = 0 STEP 1 UNTIL D 

READ AS 

BS = AS 

Al = 1 - A4 

Bl = Al 

Bl = AS * Al 

A5 = 1 - A6 

B5 = A5 

56 = Al 

A2 = 1 - Al 

52 = A2 

heading of the program 

initial section 

heading of the basic simulation cycle 

pattern for the 8-the neuron 

pattern for the 7-th neuron 

pattern for the 1-st neuron 

pattern for the 5-th neuron 

pattern for the 6-th neuron 

pattern for the 2-nd neuron 



X = Al * A5 

X = X + A2 

A3 = X+ A5 

53 = A3 

X = , 4 8 * .43 

5 4 = X *A5 

PRINTLINE 1 

PRINT T, 4 

PRINT Al, 1 

PRINT Al, 1 

PRINT A3, 1 

PRINT A4, 1 

PRINT AS, 1 

PRINT A6, 1 

PRINT AT, 1 

PRINT AS, 1 

FOP / = 1 STPF 1 WV77Z, 

/f/ = 5 / 

£7VB/ 

END T 

STOP 

START 1 

pattern for the 3-rd neuron 

pattern for the 4-th neuron 

the instructions for printing 

the heading of the transfer cycle 

the body of the transfer cycle 

the end of the transfer cycle 

the end of the basic simulation cycle 

conclusion 

the end sign of program 

Note. We have used the language MOST as it is a typical first generation language 
and as the presented examples have been realized in the same languages in a real 
computer ODRA 1013 in the Biophysical Institute of Charles University. The other 
illustrations presented in the second part of this paper have been so formulated that 
they might represent typical facilities of the first generation algorithmic programming 
languages. There is no real language corresponding that illustrations, which would 
be implemented in any computer but it is easy to translate the presented illustrations 
in any implemented language. 

(Received February 24, 1972.) 

REFERENCES 

The list of references will be presented in the part III. 



534 

Programovací prostředky pro simulaci logických sítí I 

EVŽEN KINDLER 

Článek podává informace o obecných rysech konstrukce simulačních programů 
pro logické sítě. Informace jsou formulovány tak, aby byly přístupny i uživatelům 
samočinných počítačů, kteří nejsou profesionálními programátory. Tato část obsa­
huje metodiku programování modelů logických sítí na počítačích první generace, 
s použitím algoritmicky orientovaných jazyků. Využití prostředků typických pro 
druhou a třetí generaci počítačů bude podáno v následujících částech. 

PhDr. RNDr. Evžen Kindler CSs.; Biofyzikální ústav Fakulty všeobecného lékařství Karlovy 
university (Biophysical Institute, Faculty of General Medicíně, Charles University), Salmovská 3, 
Praha 2. 


		webmaster@dml.cz
	2012-06-04T22:40:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




