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K Y B E R N E T I K A - V O L U M E 26 (1990), N U M B E R 2 

COMPUTATION OF IRREDUCIBLE GENERALIZED 
STATE-SPACE REALIZATIONS 

ANDRAS VARGA 

In this paper, an efficient, numerically stable procedure is presented for the computation 
of irreducible generalized state-space realizations from non-minimal ones. The order reduction 
is performed by removing successively the uncontrollable and the unobservable parts of the 
system. Each reduction is accomplished by the same basic algorithm which deflates the uncontroll­
able part of the system using orthogonal similarity transformations. Applications of the proposed 
procedure are also presented. 

1. INTRODUCTION 

Consider the linear time-invariant generalized state-space model (GSSM) 

XE x(t) = A x(t) + B u(t) (1) 

y(t) = C x(t) 

where x, u, and y are the n-dimensional state vector, the m-dimensional input vector, 
and the p-dimensional output vector, respectively, and where X is the differential 
operator d/dt for a continuous system or the advance operator z for a discrete 
system. The matrices E, A, B and C have appropriate dimensions, E and A being 
square. The system (1) will be referred to alternatively as the triple {XE — A, B, C}. 
If the matrix E is singular, the system (l) is also called singular or descriptor system. 

Linear time-invariant systems can also be represented by differential or difference 
state-space models (DSSM) of the form 

T(X) z(t) = U(X) u(t) (2) 

y(t) = V(X) z(t) + W(X) u(t) 

where z is a g-dimensional "internal" state vector, u and y are as above, and T(X), 
U(X), V(X), W(X) are polynomial matrices having appropriate dimensions with T(X) 
square. The system (2) will be alternatively denoted by {T(X), U(X), V(X), W(X)}. 

A third frequently used representation of linear constant systems is by the transfer-

89 



function matrix model (TFMM) 

Y(X) = G(X)U(X) (3) 

where D(X) and Y(X) are the transforms of the input and output vectors, respectively 
(the Laplace transform for continuous systems or the Z-transform for discrete sys­
tems), and where G(X) is a p x m rational matrix. 

If (1), (2) and (3) correspond to the same system, we have the following basic 
relations 

G(X) = C(XE - A)~l B (4) 

G(X) = V(X) T'^X) U(X) + W(X) (5) 

For a given DSSM or TFMM, the determination of a corresponding minimal 
order (or irreducible) GSSM is known as the minimal realization problem (MRP). 
The MRP has no unique solution. If {XE — A, B, C) and {XE — A, B, C) have the 
same order and correspond to the same TFMM, then there exist invertible matrices 
Q and Z such that 

XE - A= Q(XE - A)Z , B = QB , C = CZ (6) 

Two GSSM will be called similar if their matrices are related as in (6) and therefore 
the transformation (6) will be called system similarity transformation. If Q and Z are 
orthogonal matrices, the transformation will be called orthogonal system similarity 
transformation. 

In this paper we describe an efficient, numerically stable procedure for the computa­
tion of irreducible GSSM from non-minimal ones. The order reduction is performed 
by removing successively the uncontrollable and then the unobservable parts of the 
system. Each reduction step is accomplished by using a new numerically stable 
algorithm which separates the uncontrollable part of a GSSM. This basic algorithm 
uses exclusively orthogonal system similarity transformations and is an efficient 
alternative to existing procedures [1], [2], [3]. The proposed algorithms are presented 
in Section 2. 

The main applications of the new algorithms are: 1) the solution of the MRP; 
2) the computation of minimal order inverses of linear systems; and 3) the eva­
luation of the transfer-function matrices of GSSM. These applications are presented 
in Section 3. Numerical examples are given in Section 4. 

N o t a t i o n s and def in i t ions 

Throughout the paper AeRmX" denotes an m x n matrix with real elements. 
We use AT for the transpose of A. I or /„ denote identity matrices of known order 
or of order n, respectively. 0mn denotes an m x n null matrix. A square matrix Q 
is orthogonal if QrQ = I. im A and ker A denote, respectively, the image and the 
kernel of A. For two subspaces 3C and <$/, A3C is the image of 3C under A, and SC + <& 
is the sum of subspaces 5C and <25l. A polynomial matrix is called regular when it is 
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square and has a nonzero determinant. A deflating subspace $C of a regular pencil 
XE — A satisfies dim {AX + ESC) = dim 3C, where dim stands for "dimension of". 
O(e) means a quantity of the order of s. 

2. THE IRREDUCIBLE REALIZATION PROCEDURE 

In this section we present a numerically stable procedure to compute an irreducible 
GSSM from a non-minimal one. The order reduction is performed by removing 
successively the uncontrollable and then the unobservable parts of the system. 
Each reduction step is accomplished by the same basic procedure which deflates 
the uncontrollable part of a GSSM using orthogonal system similarity transformations. 

The definitions used in this section closely follow the woik of Van Dooren [1], 
The controllable and unobservable subspaces of the ^-dimensional state-space 3C 
of GSSM {XE — A, B, C} can be defined as the deflating subspaces <€ and G, re­
spectively, which satisfy 

<€ = inf {Sf | dim {ESC + ASC) = dim Sf;imB<=.ESf + ASP} (7) 

G = sup {Sf | dim {ESC + ASC) = dim Sf; Sf e ker C} . (8) 

The system is said controllable when its controllable subspace <€ has dimension n, 
and observable when its unobservable subspace G has zero dimension. We shall 
assume that the pencil XE — A is regular. 

Let r be the dimension of <€ defined by (7) and let Z and Q be orthogonal trans­
formation matrices whose first r columns span <€ and E<€ + A<€, respectively. Then 
we can transform the system {XE — A, B, C} as 

QT(XE - A) Z = Ж - A, 
0 

QTB 
_oJ}» (9) 

CZ = [Cc | CJ 
r n — r 

The reduced order system {XEC — Ac, Bc, Cc} is controllable and has the same TFMM 
as {XE — A, B, C}. The eigenvalues of the regular pencils XEC — Ac and XE-C — Ac 

are called, respectively, the controllable and uncontrollable poles of the system. 
Analogously, let q be the dimension of the unobservable subspace G and let Z 

and Q be orthogonal transformation matrices whose last q columns span G and 
EG + AG, respectively. Then the system {XE — A, B, C} can be transformed to 

Q\XE-A)Z 

CZ = [c01 o] 
n-q Ч 

Ж - A, __°1}"-
M, - AJ}« 

QTB (ю) 

where {XE0 — A0, B0, C0} is observable, having the same TFMM as (AE — A, B, C}. 
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As can be observed immediately from the form of matrices in (9) and (10), if we 
have a procedure for computing the controllability form (9) of the system, then the 
same procedure can be used to determine also the observability form (10) applying 
it to the dual GSSM {2ET - AT, CT, BT}. Therefore, the computation of an irreducible 
GSSM from a non-minimal one can be performed in two steps: first, determine the 
controllable part of the system, {XEC — Ac, Bc, Cc] and then determine the observ­
able part {XEC0 — Ac0, Bc0, Cco] of the resulted controllable part. This system is both 
controllable and observable, and therefore it is irreducible. It has the same TFMM 
as the initial GSSM. 

2.1 The reduction algorithm 

The reduction of the initial system (l) to the form (9) can be accomplished in 
a numerically stable way using the pencil algorithm of Van Dooren [ l ] . However, 
this algorithm, applied as it is stated, is computationally expensive. For example, 
for a controllable single-input system with E non-singular, the algorithm uses O(n4) 
floating-point operations (flops). (One flop is roughly equivalent to compute a + b x 
x c, where a, b, c are floating-point numbers.) 

Paige [2] outlined a numerically stable algorithm, applicable when E is non-
singular, which reduces the system (1) to form (9). This algorithm as well as its 
modification proposed by Chu [3], performs also O(«4) flops, the former being 
a variant of the pencil algorithm for invertible E. 

In this section we propose a new numerically stable procedure for the computation 
of the controllability form (9), which requires only 0(n3) flops. The procedure is 
applicable regardless E is singular or not. The procedure is based on the following 
algorithm: 

Algorithm 1. 

1. Reduce E to upper-triangular (U —T) form by using a suitable orthogonal 

transformation matrix Z 0 

E +- EZ0 , A <- AZ0 , C +- CZ0 . 

2. Set j = 1, r = 0, n0 = m; E0 = E, A0 = A, B0 = B, Q = In, Z = Z 0 . 

3. Determine the orthogonal transformation matrices Q} and Z} to compress the 
(n — r) x n} _ t matrix B} _ t to full row rank while keeping the U-T form of E} _ t; 
perform the transformations and partition the matrices Q^Bj_l, Qj}E}_{Z} and 
OjA j . jZj analogously: 

n/-i 

L_J^J>" 
"J 0J 
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4. For i = \, ...,j — \ transform and partition Ai^Zi and EitjZj analogously: 

^ijZj = \Ai,j I Aij+i] ; EijZj = [Eij | E.j + iJ 

5. Accumulate the transformations and transform C 

ß<-ß 
_) 

ßj 
__ 

C <- C - r Г-Ғl-
LozJ Comment. Exit if the system has controllable finite poles. 

6. r <r- r + ny, If Qj = 0, then k = j and stop; else, go to 7. 

Comment. Exit if the system is uncontrollable. 

7. If «j = 0, then k = j — 1 and stop; else, j *- j + 1 and go to 3. 

At the end of this algorithm, we obtain the system matrices in the form (9), where 

Я n £ 1 2 

0 -^22 

0 0 
0 0 

_ D ' J j X / J j 

0 Et 

-4, 

AЦ A12 

^ 2 1 ^ 2 2 

-4. 1 ^fc.fc-i Lfc,fc 

[""""-Si = 1 

B. = 

-4-ю 
0 

0 
0 

( П ) 

In (11), Eii,AiieWiXni, i = \,...,k; ^ . ^ r " ' - ' , ! = 1,..., fe have ranks nK 

Ec is U-T and Ac is in an upper block-Hessenberg (U-BH) form. For single-input 
systems, Ac is obtained in an upper-Hessenberg (U-H) form. 

The reduced system {XEC — Ac, Bc, Cc) has no finite uncontrollable poles. This 
can be verified easily by inspecting the forms of matrices Ec, Ac and Bc and observing 
that 

rank [AEc - Ac, Bc] = r for all finite X e C 

[4]. Therefore, the uncontrollable part 

XEC - A-c = XEk - Ak 

contains all uncontrollable finite poles of the system. However, the pair (XEC — Ac, Bc) 
resulted from Algorithm 1 may have uncontrollable infinite poles. 

In order to remove the uncotrollable part of the system corresponding to the in­
finite poles, we apply the same algorithm to the system {XA — E, B, C}. This is 
equivalent to replacing X by \\X and it is the basic technique for the study of the 
infinite pole structure of GSSM. We shall use the label "oo" for the resulted matrices 
in (9). As can be seen again from the form of the resulted matrices Ef, A™ and B^ 
(Ec°° is U-BH, Ac°° is U-T), we have 

rank [Ec

ro - XA™, B?] = r for all finite X e C 

In particular, for X = 0, we have 

rank [Ec°°, Bf] = r , 

that is, according to Theorem 2 of Cobb [4], the system {XE™ - A™, B™, Cf} has 
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no infinite uncontrollable poles and the only uncontrollable finite poles can be 
those in origine. Thus, the uncontrollable part XEf — Af contains all uncontrollable 
infinite poles of the system as well as the finite uncontrollable poles excepting those 
which are zero. 

For reducing a given system {XE — A, B, C) to the form (9), in which XEC — Ac 

has no uncontrollable (finite or infinite) poles, the following procedure can be used: 

Controllability form procedure (CFP) 

Comment. Separate uncontrollable infinite poles. 

1. Perform Algorithm 1 on {XA — E, B, C], accumulate the transformations in Q^ 

and Zx and partition the transformed matrices as follows: 

"JF00 _ Ac 
Ab" A" Q\B Q[(XE - A)ZÍ = 

0 
'в: 

o XE? - Al 

czx = [ c | cf\ 
Comment. Separate uncontrollable finite (zero) poles. 

2. Perform Algorithm 1 on [XE? — A?, B?, Cf}, accumulate transformations 
in Q2 and Z 2 and partition the transformed matrices as follows: 

"XE, - A, 
QlttK 

c?z7 

-Al°)Z2 = 

\cc | c{-\ 
0 XEÍ - AÍ 

Q2B? = m 
3. Compute the transformation matrices 

^;].-.--.ř?] 
At the end of this algorithm we obtain 

'XE, - A, 
QT(XE - A)Z' = 

cz = [ce I c{ cf\ 

XE{ - A{ 
0 XEl Al 

QTB = 

which is in the controllability form (9). We note that the resulted GSSM matrices 
Ec, Ac and Bc have the forms (11). For the computation of the observability form (10), 
the CFP should be applied to the dual GSSM {XET - AT, CT, BT}. 

The computation of an irreducible GSSM from a non-minimal GSSM 
{XE — A, B, C) can performed by removing successively the uncontrollable and 
then the unobservable parts of the system using the CFP. However, in the following 
procedure we use for convenience Algorithm 1. All computations will be performed 
without accumulating the transformations. 
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Irreducible realization procedure (IRP) 

1. Perform Algorithm 1 on the GSSM {XA — E, B, C} and determine the reduced 
GSSM {XEf - Ac°°, B*, C*}. 

2. Perform Algorithm 1 on the GSSM {XE™ - Ac°°, B^, Cc
w} and determine the 

controllable GSSM {XEC - Ac, Bc, Cc}. 

3. Ec ^ PEcP, Ac <- PAcP, Bc <- PBc, Cc ^ CcP, where 

P = 
0 • 

1 0 
1 

(12) 

4. Perform Algorithm 1 on the dual GSSM {XAT - ET
C, CT, BT} and determine the 

reduced GSSM {1EC°°0 - Ac°°0, Bc°°0, Cc°°0}. 

5. Perform Algorithm 1 on the dual GSSM {2(Ec°°0)
T - (Ac°°0)

T, (Cc°°0)
T, (Bc°°0)

T} and 
determine the irreducible GSSM {XEC0 — Aco, Bc0, Cco}. 

Remarks. 

(a) The reason for permuting the rows and columns of the system matrices at 
Step 3 using the permutation transformation matrix (12) is to obtain the dual pair 
(PETP, PATP) in (U-T, U-BH) form. As we shall see in the following subsection, 
Algorithm 1 can be implemented in such way that it can exploit efficiently the null 
elements structure of E matrix. 

(b) The CFP and the IRP can gain in efficiency if the given system {XE — A, B, C} 
has some particular features. For example, if the matrix E is non-singular, that is the 
corresponding transfer matrix (4) is a strictly proper rational matrix, only Step 2 of 
CFP or Steps 2, 3 and 5 of IRP must be performed. If the matrix E is nilpotent, 
that is the corresponding transfer matrix is a polynomial matrix or if the matrix A 
is non-singular, that is the system has no poles in the origine, then only Step 1 of 
CFP or Steps 1, 3 and 4 of IRP must be performed. Furthermore, if the system is 
controllable (observable) only Steps 4 and 5 (l and 2) of IRP should be performed. 

2.2 Algorithmic details 

In order to increase the numerical accuracy and speed of the IRP, Algorithm 1 
should be implemented with special care so that the number of flops required for 
performing Steps 1 and 3 — 5 to be minimized. We recommend to use for annihilating 
elements of vectors, the class of symmetric orthogonal (Householder) matrices 
2tfk(i, j), (k < i <: j or i <. j < k) of the form I + vuT, where u and v are vectors, 
vTu — —2, v is a scalar multiple of u, only components i, i + 1, ...,j and k of u 
are nonzero and uk — \. Given a vector x, it is easy to choose a member Q e J^k(i,j) 
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so that Qx = x + (uTx) v has its i, i + 1, ...,j components equal to zero, its kth 
component changed and all other components unchanged [5]. Since, uk = 1, the 
computation of Qy for any y requires 2(j — i + 1) + 1 flops. If Q e j f k(i, i), 
the multiplication Qy requires 3 flops. We note that standard plane rotations (Givens) 
require 4 flops instead. 

The reduction of E to U-T form at Step 1 of Algorithm 1 can be performed as 

follows: 

Step 1. 

1.1. Set Z 0 = I. 

1.2. For i = n, n — 1,...,2 

1.2.1. Find k = = min {j itJ*0,j= 1,2 I}. 
1.2.2. If k = i, next i. 

1.2.3. Choose Z e 2^ Ik, i — 1) to annihilate eitk, eijk+i, ..., e^-i-

1.2A. E+-EZ,A+-AZ,C±- CZ, Z 0 *- Z0Z. 

This algorithm performs an RQ decomposition of the matrix E, without row pivoting. 

It exploits efficiently any particular form of the matrix E (U-T, U-H or U-BH). For 

this reason, if Algorithm 1 is performed repeteadly, as for example in the IRP, 

the number of operations performed at second and subsequent executions is usually 

negligible. 

We consider now the efficient implementation of Step 3 of Algorithm 1. This step 
performs the compression of the (n — r) x nj_± matrix Bj-i to a full row rank 
matrix, while keeping simultaneously the U-T form of E/-i unaltered. For standard 
state-space systems with E = I, at each step Zj = Qj and therefore E/-i = I„-r. 
In this case, row compressions can be computed using either the QR or the singular 
value decompositions of Bj_i [5]. Algorithms based on these techniques have been 
proposed in [ l ] , [6]. For a general (possibly singular) E matrix, we propose a modi­
fied QR-type decomposition based on the use of the elementary orthogonal transforma­
tions from ^i(j,j). Row transformations are used to annihilate single elements 
in the columns of Bj_1. Each row transformation is followed by a column trans­
formation which annihilates the non-zero element generated by the previous trans­
formation under the diagonal of E,-i. For n = 5, the reduction can be described 
diagrammatically as 

*J--1 

X X X 

X X X 

X X 

зţ 
X X 

l ţ 
X X 

V i 
X X X X 

X X X X 

X X X 

* 3 4 
X X 

* 1 2 
X 
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Here the row transformations 1 and 3 are applied to Bj_i and Ej_i to eliminate 
elements in B,-i under the diagonal and produce non-zeros xl and x3 in E/_i. 
These are eliminated by column transformations 2 and 4 applied to E/_i. The 
technique is similar to that proposed by Miminis and Paige [7] for single-input 
GSSM. In the algorithm given below, we also included a column pivoting strategy 
in order to make the rank decisions more robust. For ease of notation we define 
G & _?,_! and E _= Ej.v 

Step 3. 
3.1. Set Qj = Zj = In_r, nj = 0, Qj = n - r, imax = min (n - r, nj-t). 
3.2. For i = 1,2, ..., imax 

n — r 

3.2.1. Computesf = ]T [qfcf|, for t = i, i + 1, ..., « / - i . 
fc=i 

3.2.2. Findq such that sg = max (sf [ t = i, i + 1, ..., ftj-i}-
3.2.3. If sg ^ TOL, then go to 4; else, if q + i, permute columns q and i of G. 
3.2.4. «j «- «j + 1, Qj *- Qj•, — 1; If ^ = 0, then go to 4; else, go to 3.2.5. 
3.2.5. For k = n — r, n — r — 1, . . . , i + 1 

3.2.5.1. Choose QT e Jffe_i(/c, /c) to annihilate gk)i. 
3.2.5.2. G <- QTG, E <- QTE, Qj «- QjQ. 
3.2.5.3. Choose Z e Jf& (k — 1, fc — 1) to annihilate fk,k-i-
3.2.5.4. E <- EZ, Zj- «- ZjZ. 

Algorithm 1 has been implemented in double precision as a FORTRAN 77 
subroutine TGSCO. The implementation of Steps 3 — 5 has been made such that all 
elementary operations at Step 3.2.5 are applied to all system matrices E, A, B, C 
as well as on the transformation matrices. Moreover, an option in TGSCO allows 
to apply the transformations performed on submatrices of the model matrices to the 
whole matrices. This option is useful when TGSCO is used to implement Step 2 of 
the CFP, where transformations are applied to the whole system matrices and not 
only on Ef, etc. on which actually one works. An efficient version of Algorithm 1 
for single-input system has been implemented as a separate subroutine TGSCOl 
in order to be used in the evaluation of TFMM of GSSM [8] (see Section 3). 

The IRP has been implemented in subroutine GSRMIN. This subroutine offers 
several useful options for increasing the efficiency and the accuracy of the results. 
Shorter algorithmic paths are provided for performing the algorithm on strictly 
proper systems, on systems having no poles in the origine, on controllable or on 
observable systems. 

2.3 Properties of algorithms 

O p e r a t i o n coun t s 

The reduction of a full E matrix to the U-T form at Step 1 of Algorithm 1 requires 
(3) " 3 + Pn2 tlops. Additional n3 flops are necessary when the transformations 
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are accumulated. It was shown in Subsection 2.2 that at the second and subsequent 
executions of the algorithm (as for example in the CFP or in the IRP), the null elements 
structure of E is exploited at Step 1 for improving the efficiency. If we assume that E 
has q subdiagonals, the reduction of E in this case requires at most 

M(n, q) = q2(n + 2q/3) + q(n - q) (2n + q) + qp(2n - q) (13) 

flops and at most nq(2n — q) additional flops for the accumulation of transforma­
tions. We note that if E is U-T, then q = 0 and if E is U-BH then q = min {2m — 1, 
n — 1}. If q <| n, then the second and subsequent executions require only 0(n2) 
flops to be performed. 

In evaluating the number of flops required at Steps 3 — 7 of Algorithm 1 we took 
into account that the reduction of B/_i is performed using only transformations 
of type Jft(j,j). Therefore, each multiplication Qy, where Qe^lj,}) and y is 
a vector, requires 3 flops. Let r be the order of the reduced system computed by 
Algorithm 1. The reduction, performed by repeated execution of Steps 3 and 4, 
requires approximately N(n, r) flops, where 

N(n, r) = 4r3 + 3r(n - r) (3n - r) + §(m + p) r(2n - r) (14) 

and additional 3nr(2n — r) flops for the accumulation of transformations by execut­
ing Step 5 repeatedly. In the worst case, when the system is controllable, Algorithm 1 
requires about -3-n3 + |(m + 3p) flops for the reduction of matrices and additional 
4n3 flops for the evaluation of the transformation matrices. 

The CFP requires for the reduction of system matrices to the controllability form 

(9) 
| n 3 + M(n, q) + N(n, rx) + N(n, r2) flops , 

where rx and r2, rx ^ r2, are the orders of reduced systems computed at Steps 1 and 
2, respectively. The accumulation of transformations can be performed using about 
n3 + nq(2n — q) + 3n\r1(2n — ri) + r2(2n — r2)] flops. In the worst case (i\ = 
= r2 = n), the CFP requires about -3-n

3 + 3(n + 3p) n2 + M(n, q) flops for the 
reduction and 7n3 + nq(2n — q) flops for the accumulation of the transformations. 

If r l5 r2, r3 and r4 are the orders of the reduced systems determined by the IRP 
at Steps 1, 2, 4 and 5, respectively, then the total number of flops required is 

N = | n 3 + £ M(ru q) + £ N(r._1? r.) 
i = l i = l 

where r0 = n, and M(% •) and N(-, •) are given by (13) and (14), respectively. 
In the worst case of an already irreducible system, that is rx = r2 = r3 = r4 = n, 
the number of required flops is less than 

Nmax = 18n3 + (6m + Ip) n2 + 3M(n, q). 

In the best case we have r1 = r2 = r3 _ r4 = r and the number of required flops 
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is about 

Wmin = ! " 3 + Pn2 + 3M(r, q) + N(n, r) + 3N(r, r) = 

5,„3 
= ŤИ + pn2 + ЗM(r, q) + lбr3 + 3(m + p) r(n + r) + Зr(и — r) (Зn — r) 

3' 

In practice, as we shall see from the examples presented in Section 4, the number 
of required operations is usually half or even the quarter of the above evaluations. 
This happens because frequently only one or two computational steps of the IRP are 
necessary to be performed. 

S torage r e q u i r e m e n t 

All computations involved in Algorithm 1 as well as in the CFP can be performed 
in the same place, thus 2n2 + (m + p) n storage locations are only necessary to 
hold the system matrices. Additional 2n2 storage locations are needed for storing the 
transformation matrices if they are accumulated. For the IRP, the computations 
can be performed in In2 + 2 max (m, p) n storage locations. 

N u m e r i c a l s tabi l i ty 

Numerical stability of Algorithm 1 and therefore also of procedures CFP and IRP 

can be easily proved because of the use of orthogonal transformations. For details 

we refer to [ l ] . It can be shown that the resulted systems computed by Algorithm 1 

as well as by the CFP or IRP, are exact for a slightly perturbed GSSM {/IE — A, 

B,C] with 

\\X - X\\ <: ex\\X\\ , X = E,A,B,C 

where, in each case, sx is a small multiple of the machine relative precision. 

3. APPLICATIONS 

In this section we present shortly the main applications of the IRP. 

3.1 Computation of minimal order GSSM of DSSM and TFMM 

For a given DSSM of the form (2) or a TFMM of the form (3), a standard numeric­
ally reliable method to obtain a minimal order GSSM having the same TFMM, has 
the following two steps. First, construct a non-minimal "ad-hoc" generalized state-
space realization and then, at second step, reduce it to a minimal one using the IRP. 
We give below two straightforward methods for constructing non-minimal GSSM 
for DSSM and TFMM. 

For the differential model (2), let d be the highest power of X occurring in the 
polynomial matrices T(X), U(X), V(X) and W(X), and let Tt, Uh Vh W{ be the coeffi-
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cients matrices of X'. Let us define 

An = 

Co = [0 - / „ ] } * 

A, = 

B; = 

Г ^ ol]. 

a p 

\u,Ъ 
Цr,p' 

l = (15) 

i = 0, 1, 

Then a GSSM {XE-A, B, C} of the DSSM {T(X), 17(A), 7(A), W(X)} is given by the 
matrices [1] 

AE 

C 

A -

-I . 

A/ 
- I 

A/ 

Ađ~ 
B = 

~вd~ 

лt 
Bx 

A0_ A-

(16) 

[0 ... 0 C0] 

The order of this realization is n = (d + 1) (q + p). If m < p, a lower order realiza­

tion results by constructing the dual GSSM corresponding to the dual DSSM 

{TT(X), VT(X), UT(X), WT(X)}. The order of this realization is n = (d + 1) (q + m). 

For particular differential models, other, usually smaller order, state-space realiza­

tions can be constructed. 

For the TFMM (3) we suggest a method based on the following separation of G(X) 

G(X) = H(X) + D(X) (17) 

where H(A) is the strictly proper part of G(X) and D(A) is its polynomial part. This 

separation can be easily computed using the standard polynomial division algorithm. 

For H(A) we determine a minimal order standard state-space model {XI — Au Bu 

Cx} such that 

H(X) = CX(XI - Axy Bx . 

A common approach for this problem is to construct a non-minimal state-space 

realization and then to remove its uncontrollable and unobservable parts. Methods 

for constructing non-minimal state-space realization of transfer matrices are given 

for example in [9]. The order reduction of the non-minimal state-space model can 

be performed using numerically stable algorithms as, for example, those proposed 

by Van Dooren [1] or Varga [6]. 

For the second term of (17), let s be the highest power of A occurring in D(A) and, 

let Dj be the coefficient matrix of A1. Then, an observable GSSM for D(A) is {XE2 — A2, 

B2,C2}, where 

AE, 
XI 

0 "V 

- / 
, в2 = 

D, 
XI -I .D°. 

(18) 

C2 = [0 ... 0 - / ] 
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This GSSM is generally non-minimal (uncontrollable). For removing its uncontroll­
able part, we need to perform only the first step of the IRP. Let {XE2 — A2, B2, C2} 
the resulted irreducible GSSM. Then, an irreducible GSSM for G(X) is given by the 
GSSM {XE - A, B, C}, where 

XE - A = 
XI - A! 0 

0 XE2 - A 
] , J,-[J], C-[C.CJ. 

3.2 Computation of minimal order inverses 

Consider a "square" GSSM of the form 

XE x(t) = A x(t) + B u(t) 

y(t) = C x(t) + D u(t) 

with p = m. Its transfer function matrix is given by 

G(X) = C(XE - A)'1 B + D . 

The inverse system, having G~l(X) as transfer function matrix, is given by the system 
{XE - A, B, €} [9], where 

ГÅE - A BІ 

L -CD\-
XE - Á=\ „ „ \ , B = C = [ 0 / J . (19) 

The extraction of the minimal order inverse system can be done using the IRP. 

3.3 Computation of the TFMM of GSSM 

The transfer function matrix G(X) of a given GSSM {XE — A, B, C} can be com­
puted by the following method [8]. An element gtj(X) of G(X) is computed by evaluat­
ing 

gij(X) = ci(XE-A)-1bj, 

where ct and bj are the ith row of C and the y'th column of B, respectively. The 
transfer function gtj(X) is determined in the form 

k[\(X - ^ 

ДО - QJ) 

where k is the gain, Qj are the poles and pLt are the zeros of an irreducible GSSM 
of the system {XE — A, bj, ct}. For the computation of such an irreducible GSSM 
we used in [9] the IRP with Algorithm 1 specialized to single-input systems. The 
poles and zeros computations are performed via the QZ algorithm [10], 
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4. EXAMPLES 

We present several numerical examples to illustrate the performance of the IRP. 
The computations were carried out on an IBM PC/AT with floating point co­
processor. All computations were performed in double precision. The computation 
of poles has been performed using the QZ method [10]. For the computation of zeros, 
the algorithm proposed in [11] was used. 

Example 1. 

This example shows the applicability of the IRP for determining a minimal order 
GSSM of a DSSM. Consider the DSSM with 

M^-JJ'^-t^V]'--[2 3= •--[?-?] 
A 8th order GSSM {IE - A, B, C} is constructed using (15) and (16). The resulted 
system matrices are: 

0 0 0" 
1 0 0 
0 0 0 

h 0 0 0 
- 1 0 0 

0 1 0 
2 0 1 

C = 

The original system has a pole at Q — — 1 and has no zeros. 
The non-minimal system has no poles in the origine, so that, for the computation 

of the irreducible GSSM given below, only Steps 1, 3 and 4 of the IRP were performed. 
The resulted system matrices given with 7 exact decimal digits are: 

"00000000" 10 0 0 -1 
0 0 0 0 0 0 0 0 0 10 0 0 

0 0 0 0 0 0 0 0 0 0 10 0 

0 0 0 0 0 0 0 0 
A = 

0 0 0 1 0 

10 0 0 0 0 0 0 
A = 

0 0 0 0 -1 

0 10 0 0 0 0 0 0 0 0 0 0 

0 0 10 0 0 0 0 0 0 0 0 3 

0 0 0 1 0 0 0 0_ 0 0 0 0 0 

0 0 0 0 0 0-1 0" 
0 0 0 0 0 0 0 -1 

~-l г 
0 0 

0 0 

B = 
0 0 

1 -2 

-2 3 

0 0 

з - 3 _ 

_«, = 

вr 

•2603253 --6392563' 

•1136153 --2789943 

•4816018 0 

1-1389931 1-1624764 

•6480740 

3-8183766 

•1-9442221 

4-3840620 
C,„ = 

-•5422824 
•7431277 

•4931969 
0 

The computed finite pole of the resulted minimal order system is 

Q _ --9999999999999984 
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Example 2. 

This example shows the usage of the IRP to compute an irreducible GSSM for 
a TFMM having only polynomial part. Let us consider the transfer-function matrix 

D(Я) = D0 + DiЯ + D2Я
2 

where 

Dr, = 

1 2 - 2 1 3 0 1 4 2 
0 - 1 - 2 D. = 1 4 2 D2 = 0 0 0 

0 0 0 0 - 1 - 2 1 4 2 

This system has a finite zero at \i = 1. 

An observable 9th order realization of D(X) is given by (18), where 

E = 

"0 0 0" 7 o o" D2 

I 0 0 A = 0 / 0 B = Dt 

0 I 0 0 0 I D0 

c = [0 0 - I ] 

Each submatrix of the above matrices has order 3. 
An irreducible 4th order GSSM has been computed using Algorithm 1 on the 

system [XA — E, B, C). The resulted minimal order GSSM has the following matrices 
(given with 7 exact decimal digits): 

--1587301 --0591461 --0815578 -0968908" 
•8436106 -0720390 -2615623 --3107361 
•3602503 --5490416 --2996273 -3559573 
•2323367 . 0 -0579613 --0688580 

F — 

A.„ = 

Crn = 

1 0 0 o" 
0 1 0 
0 0 1 

0 
0 

Bco = 

0 0 0 - 1 

•2-1417986 -7-9372539 -3-0237158 
•6424161 0 -3-8544964 

0 0 0 
0 0 0 

•2519763 --7165410 -4188871 --4976185 
•1259881 --4200413 --2665541 -3166664 

0 0 -7650448 -6439769 

The computed finite zero of the reduced system is accurate to full machine precision. 

Example 3. 

This example shows the applicability of the IRP for the computation of minimal 
order inverses. We consider the transfer matrix 

G(s) = 
s + 1 

-s + 1 
s - ł 

s - 2 
•s + 3 

This is the same system as in Example 1. It has a pole in Q 1 and no zeros. 

103 



A non-minimal state-space realization of G(s) is for example 

sE - A = 
\s + 1 

L 0 
0 

s + 1 
B [ІÏ]. «-[-.-& "[Ч-Я 

The inverse system is computed as the minimal order GSSM of the system having 
the matrices in (19). This system has no poles in the origine, so that only Steps 1, 3 
and 4 were performed in the IRP. The resulted irreducible inverse system has the 
following matrices (up to 7 exact decimal digits): 

E = 

AľЛ = 

0 0 •8498366" 

0 0 •5214359 Bco = 

0 0 •0766965 

•2357022 -4714045 
-•5061710 --6869464 

•8295994 --5530663 

-•2357022 0 0 
•8315667 --9761870 0 

4-1905409 -4-2118127 -13-0384048 
C,„ = 

pool 
|_oioJ 

The computed zero of the inverse system is 

fl = -1-000000000000003 

Example 4. 

This example illustrates the usage of the IRP in an algorithm for computing the 
transfer function of a GSSM [8]. Consider the 15th order GSSM {XE - A, b, c] 
with 

E - и 0 
0 E IЧí- ".]• Ч::} c = \cx c 2 ] 

where 

A, 

"0 0 0 -24 

1 0 0 -50 

0 1 0 -35 

0 0 1 -10 

0 0 

0 

0 0 0 -30 

1 0 0 -61 

0 1 0 -41 

0 0 1 -11 

0 

0 0 
0 0 -15 

1 0 -23 

0 1 -9 

bг = 

~ 18" 
42 

30 

6 

10 

17 

8 

1 

Õ 
-10 
-2_ 

[0 0 0 0 0 0 0 1 0 0 0] 
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"o 0 o o" 
0 0 0 0 
1 0 0 0 A2 = 
0 1 0 0 

1 0 - 1 0~ Гil 
0 1 0 0 0 
0 0 0 0 b2 = 0 
0 0 1 1 0 

E? = 

c2 = [ 0 0 0 - 1 ] 

The system is both uncontrollable and unobservable, has a pole in the origine 
as well as infinite poles. The minimal order GSSM was computed by performing 
all steps in the IRP. The resulted minimal order GSSM has the following matrices 

0 0 1 
•061038403342540 - -998135418326288J 

["•705788322840989 - -0431606689163141 
[-183115210029681 2-994406254985376J 

•999999999999258^ 

-íi/-/. — [ 
•Arn — 

brn = \ -
[23-: 

cco = [--708427702497790 0] 
426041449126810 

The transfer function corresponding to this GSSM is 

9(A) = IT"3-
The computed values of the zero \i and pole Q, are 

ji = -4-000000000011713 , Q = -3-000000000006627 

5. CONCLUSIONS 

In this paper we have presented a numerically stable and computationally efficient 
algorithm for the computation of irreducible generalized state-space realizations. 
The algorithm uses exclusively orthogonal similarity transformations. The main 
application of the proposed algorithm is the reliable computation of minimal order 
GSSM of TFMM or DSSM. Examples have been given to illustrate the numerical 
performance of the algorithm. It has been successfully implemented on the computer. 

(Received November 8, 1988.) 
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