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K Y B E R N E T I K A — VOLUME 3 3 ( 1997) , NUMBER 3, P A G E S 2 7 1 - 2 7 7 

ON FUZZY / j-COMPACT SPACES AND FUZZY 
/9-EXTREMALLY DISCONNECTED SPACES 

G A N E S A N B A L A S U B R A M A N I A N 

The concept of fuzzy #-open set is introduced. Using fuzzy /?-open sets the concepts 
of fuzzy /^-compact spaces and fuzzy /?-extremally disconnected spaces are introduced and 
some interesting properties of these spaces are investigated. 

1. INTRODUCTION 

Pre open sets were introduced by Mashour [5]. And using fuzzy sets the above 
concept is introduced and studied in fuzzy setting by Bin Shahna [4]. The concept 
of /J-open sets was introduced in [1] and studied also by Allam and El Hakeim [2]. 
In this paper we introduce and study this concept in fuzzy setting. 

2. PRELIMINARIES 

A fuzzy set A in a fuzzy topological space X is called fuzzy semi open [4] if for some 
fuzzy open set u vve have v < X < cl (u) and the complement of a fuzzy semiopen set 
is called a fuzzy semiclosed set in X. A fuzzy set A is called preopen if A < Inte l A 
and the complement of a fuzzy preopen set is called fuzzy preclosed set. A fuzzy set 
A is exiled fuzzy a-open [4] if A < Int c l lnt A. 

A fuzzy topological space X is product related [4] to a fuzzy topological space Y 
if for any fuzzy set u in X and C in Y whenever X' (= 1 — A) >[ u and / / ( = 1—//) >\ C 
imply A' x 1 V 1 x / / > u x C, where A is a fuzzy open set in X and ^ is a fuzzy open 
set in y , there exist a fuzzy open set Ai in X and a fuzzy open set fii in Y such 
that 

X[ >u or p[ > C and X[ x 1 V 1 x ji[ = A' x 1 V 1 x yl. 

For two mappings f\ : X\ —* Yi and / 2 : X2 —* Y2, we define the product / i x f2 

of / i and f2 to be a mapping from Xi x x2 to Y\ x Y2 sending (x\, x2) in X\ x X2 

to (fi(xi), f2(x2)). 
A function / from a fuzzy topological space I to a fuzzy topological space Y 

is said to be fuzzy /^-continuous if the inverse image of each fuzzy open set in Y is 
fuzzy /?-open in A . / i s said to be M-/3- fuzzy continuous if the inverse image of 
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each fuzzy /?-open set in Y is fuzzy l3-open in X. Also / is called M-/?-fuzzy open 
if the image of each fuzzy /?-open set in X is fuzzy B-open in Y. / i s called fuzzy 
precontinuous [4] i f / - 1 (A) is fuzzy preopen set in X whenever A is a fuzzy open set 
in Y. 

3. FUZZY /?-OPEN SETS 

Definition. Let X be a fuzzy topological space. A fuzzy set A of X is called fuzzy 
/?-open if A < cl Intel (A). The complement of a fuzzy /?-open set is called fuzzy 
/^-closed. 

The family of all fuzzy /?-open sets of X is denoted by F /30(X). The fuzzy 
/^-closure of A will be denoted by F 0 — cl (A). 

The following are the properties of fuzzy /?-open sets and fuzzy lJ-continuous 
maps. 

1. Arbitrary union of fuzzy /?-open sets is a fuzzy /?-open set. 

P r o o f . Follows from 

(VAf) < VclIntcl(Af) < dlntcl(VAj). 

2. Arbitrary intersection of fuzzy /?-closed sets is fuzzy /^-closed. 
3. The implications contained in the following diagram are true. 

Fuzzy open (Fuzzy closed) 
1 

Fuzzy preopen (Fuzzy preclosed) 
I 

Fuzzy /?-open (Fuzzy /^-closed) 

The following example [2] shows that the reverse need not be true. 

Example. Let I = [0,1] and define fuzzy sets on I as 

0 0 < x < \ 

\<x<l 

0<x<\ 

D 
• • • 

Put T = {0,fj,3,l}; a = {0,JJI,/J.2,/ii V/i2,1}. Then fii in (I,T) is fuzzy preopen 
but not fuzzy open and /i3 in (I, a) is not fuzzy preopen but it is fuzzy /?-open. 
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4. Suppose A is fuzzy /?-open in X and /i is fuzzy /?-open in Y. Then A x /i is 
fuzzy /?-open in X x y if x is product related to Y [4]. 

5. Let // be a fuzzy set in X and A is a fuzzy preopen set such that A < /i < cl Int A. 
Then /i is a fuzzy /9-open set. 

P r o o f . Since A is a fuzzy preopen set we have A < Intel (A). Then 

/i < cl Int A < cl Int [Int cl A] = cl Int cl A < cl Int cl (/i). n 

6. Let X\, X2, Y\ and y2 be fuzzy topological spaces such that X\ is product 
related to x2

 a n d /1 : X\ —• Y\, / 2 : x2 —* Y2 he mappings. If /1 and / 2 are 
fuzzy /^-continuous, then so is f\ x / 2 . 

P r o o f . Let A = Vij(A« x /ij) where A.- and /ij are fuzzy open sets in Y\ and y2 

respectively, be a fuzzy open set in Y\ x y2. Now 

(/1 x h)-\\) = V(/i x /2)-
1(A1- x W )=V/r 'M x z,-1^). 

since /1 and / 2 are fuzzy /^-continuous /:/" (A,-) and /2~
1(Afj) are fuzzy /?-open. And 

so (/1 x /2) - 1(A) is fuzzy /?-open by (1) and (3). That is /1 x / 2 is fuzzy /^-continuous. 
D 

7 Let x, xi and x2 be fuzzy topological spaces and pi : X\ x X2 —* Xi (i = 1, 2) 
be the projection mappings. If / : X —• xi x X2 is fuzzy j3-continuous, then 
so is pi o / . 

P r o o f . This follows because projection maps are fuzzy continuous. D 

8. The implications contained in the following diagram are true: 

fuzzy continuity 
i 

fuzzy precontinuity 
I 

fuzzy /^-continuity. 

The following example shows that the reverse need not be true. 
Define / : (I, r') -> (I, a) by f(x) = f, where r' = { 0 , ^ , 1 } . Then / is fuzzy 
precontinuous but not fuzzy continuous. 

4. FUZZY /^-COMPACT SPACES 

Definition 1. A space X is called fuzzy /^-compact (Lindelof) if every fuzzy /?-open 
cover of X has a finite (countable) subcover. 

If (X,T) is a fuzzy topological space, then Tp stands for the fuzzy topology on 
X having F/30(X,T) as a subbase. 



274 G. BALASUBRAMANIAN 

P r o p o s i t i o n 1. (X,T) is a fuzzy /^-compact <-> (X,Tp) is fuzzy compact. 

P r o o f . lf(X,Tp) is fuzzy compact, then (X,T) is fuzzy /^-compact since FfiO(X,T) 
C Tp. The converse is a consequence of ihe famous Alexander's subbase theorem 
for fuzzy topological spaces. D 

Def in i t ion 2. A function / : (X, T) —> (Y, S) is called (f)p-fuzzy continuous 
((^-continuous) if / : (X, Tp) —> (Y, S) (f : (X, Tp) —* (Y, Sp)) is fuzzy continuous. 

E x a m p l e 1 . T^-fuzzy open ^> 0-fuzzy open. 
Let X = {a,b,c}; T = {OxAx,9} where g : X —* [0,1] is such that g(a) = 

g(b) = 1; g(c) = 0. Let / : X -> [0,1] be such that f(a) = f(b) = 0; f(c) = 1. 
Then / is Tp -fuzzy open and / is not (3- fuzzy open. 

The following proposition follows from the definitions. 

P r o p o s i t i o n 2. If / : (X, T) —> (V, S) is fuzzy /^-continuous then / is ^ - f u z z y 
continuous. 

E x a m p l e 2 . The converse of the above proposition is not true. Let 

X = {a,b,c} 

Ti = {Ox, lx,f} where / : X -> J is such that f(a) = /(&) = 1; f(c) = 0 

T2 = {Ox, lx,f,g} where g : X —> I is such that g(a) = g(b) = 0; g(c) = 1. 

Let i : (X, Tip) —> (X, T2) be the identity mapping. Then since T\p is the discrete 
fuzzy topology, i is fuzzy continuous; but i is not fuzzy /^-continuous since g £ 
T2, i_1(</) = g and 0 is not fuzzy /?-open in x. 

P r o p o s i t i o n 3 . If / : (X, T) —> (Y, 5) is M-/?-fuzzy continuous, then / is </>o-fuzzy 
continuous. 

P r o o f . Follows from the definitions of M-/3-fuzzy continuity and <^-fuzzy con
tinuity. D 

E x a m p l e 3 . The converse of the above proposition is not true. In Example 2, 
/ is (̂ >o-fuzzy continuous but / is not M-0-fuzzy continuous. 

E x a m p l e 4 . c^-fuzzy continuity 7^ ^ -con t inu i ty . Let X = {a, b, c}. Define fuzzy 
topologies Ti and T2 on X as follows: 

Ti = {Ox, lx, Ai} where Ax :X -> [0, 1] is such that Ai(6) = Ax(c) = 0; Ai(a) = 1 

T2 = {Ox, lx, A2} where A2 : X -> [0,1] is such that A2(a) = A2(&) = 1; A2(c) = 0. 

Let i : (X .T i^ ) -* (X, T2) be the identity function. Then t is fuzzy continuous. Tha t 
is i is (ftp-fuzzy continuous. But i : (X,T\p) -> (x ,T 2 / 3 ) is not fuzzy continuous. 
Since A3 : X —> / is such that A3(6) = A3(c) = 1; A3(a) = 0 belongs to T2p but 
z-1(A3) = A 3 G T ^ . 
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P r o p o s i t i o n 4 . If / : (X, T) —• (Y, S) is a (frp-iuzzy continuous surjective function 
and (X,T) is fuzzy ^-compact , then (Y, S) is fuzzy compact. 

P r o p o s i t i o n 5 . For a fuzzy topological space X, the following are equivalent. 

(i) X is fuzzy /^-compact 

(ii) For any family of fuzzy /^-closed sets {A;};ej with the property t h a t / \ j e F Xj 
/ 0 for any finite subset F of J, we have /\i£j A; ^ 0. 

P r o p o s i t i o n 6 . A fuzzy /^-closed subset of a fuzzy /^-compact space is fuzzy j3-

compact. 

P r o p o s i t i o n 7 . If / : (X,T) -+ (Y,S) is M-/?-fuzzy continuous and A is fuzzy 
/^-compact, then /(A) is fuzzy /J-compact. 

P r o o f . Let libea fuzzy /?-open cover of / (A). Then /(A) < V M € s At- A n d 

A<r1(/(A))<r l(v /z) = v^1(/ i)-

As / is M-/?-fuzzy continuous / _ 1 ( / i ) is fuzzy /?-open for all n € B. As A is fuzzy 

/^-compact / - 1 (Vue^A t) > ^ where J7 is a finite subcollection of B. Hence /(A) < 

\ / j - / . . Tha t is /(A) is a fuzzy /^-compact. D 

P r o p o s i t i o n 8 . Let / : (X, T) —• (Y,S) be an M-/?-fuzzy continuous surjective 
function of a fuzzy /^-compact space X onto a space Y. Then Y is fuzzy /^-compact. 

P r o p o s i t i o n 9 . Let / : (X, T) —* (Y, 5) be an M-/?-open bijective function and Y 
be a fuzzy /^-compact space. Then X is fuzzy /^-compact. 

R e m a r k s . In view of Proposition 1, Proposition 5 and Proposition 6 (Proposition 7 
and Proposition 8) remain valid if fuzzy /3-closed (M-/?-fuzzy continuous) is replaced 
by T/j-fuzzy closed (0«-fuzzy continuous). Also Proposition 9 remains valid if M-/3-
fuzzy open is replaced by ^o-fuzzy open. 

P r o p o s i t i o n 10 . Let X be a fuzzy B-compact space, Y be a fuzzy Hausdorff space 
[3] and / : (X, T) —• (Y,S) be a (^-fuzzy continuous function, then the image of 
each T^-fuzzy closed set in X is fuzzy closed in Y. 

P r o p o s i t i o n 1 1 . Let U C (X,T) be such tha t xu is fuzzy a-open. Let A be a 
fuzzy /?-open in X. Then A A xu is fuzzy /?-open in (U, T/U). 

P r o p o s i t i o n 12 . Let U C (X,T) be such that xu is a fuzzy a-open in (X,T). 
Then xu is fuzzy /^-compact in (X, T) <$• (U, T/U) is fuzzy li-compact. 
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5. FUZZY /?-EXTREMALLY DISCONNECTEDNESS 

Definition. Let (X,T) be any fuzzy topological space. X is called fuzzy (3-
extremally disconnected if the /^-closure of a fuzzy /?-open set is fuzzy /3-open. 

The following proposition gives several characterizations of fuzzy /?-extremally 
disconnected spaces. 

Proposition 13. For any fuzzy topological space the following are equivalent. 

(a) X is fuzzy /?-extremally disconnected. 

(b) For each fuzzy closed set A, (3 — Int (A) is fuzzy /^-closed. 

(c) For each fuzzy open set A, we have (3 — cl (A) + 0 — cl (1 — ft — cl (A)) = 1. 

(d) For every pair of fuzzy open sets A, /i, in X with (3 — cl (A) + // = 1, we have 
0-c\(\) + 0-c\(ii) = l. 

Proof , (a) => (b). Let A be any fuzzy closed set. Now 1 — f3 — Int (A) = 
/? — cl (1 — A). Since A is fuzzy closed, 1 — A is fuzzy open and therefore 1 — A is fuzzy 
/3-open. By (a) (3 — cl (1 — A) is fuzzy /?-open. That is /? — Int (A) is /3-closed. 

(b) => (c). Let A be any fuzzy open set. Then 

(3-c\(\) + (3-c\(l-/3-c\ (A)) = (3 - cl (A) + (3 - cl ((3 - Int (1 - A)) 

= = $ - cl (A) +/3 - Int (1 - A) = (3 - cl (A) + (1 - (3 - cl (A)) = 1. 

(c) => (d). Assume for any fuzzy open set A, (3 — cl (\) + /3 — cl (1 — (3 — cl (A)) = 1. 
Suppose A and [i be any two fuzzy open sets such that 

/ ? - c l ( A ) + / . = 1. 

Then 
/?-c l (A) + // = 1 = /?-cl(A) + / ? - c l ( l - / ? - c l ( A ) ) 

^fi = (3-c\(l-(3-c\(\)) = l - / ? - c l ( A ) . 

Thus we find /i = 0 — cl (fjt). Then from (A) we have (3 — cl (/i) = 1 - (3 — cl (A). 
That is 1 = (3 - cl (A) + j3 - cl (,a). 

(d) => (a). Let A be any fuzzy open set and put (3 — c\(\) + fi = 1. That is 
fi=l-/3-c\(\). By (d) (3 - cl j>) + /? - cl (A) = 1. Therefore /? - cl (A) is fuzzy 
/?-open in X. That is X is fuzzy /3-extremally disconnected. 

(Received December 18, 1995.) 



On Fuzzy p-Compact Spaces and Fuzzy /3-ExtremalIy Disconnected Spaces 211 

REFERENCES 

[1] M . E . Abd El-Monsef, S. N. El -Deeb and R . A . Mahmould: /?-open sets and ß-
continuous mapping. Bull. Fac. Sci. Assiut Univ. (1982). 

[2] A . A . Aliam and K. M. Abd El-Hakkim: On /?-compact spaces. Bull. Ca lcu t ta Math . 
Soc. 81 (1989), 179-182. 

[3] G. Balasubramanian: On extensions of fuzzy topologies. Kybernet ika 28 (1992), 239-
244. 

[4] A. S. Bin Shahna: On fuzzy strong semicontinuity and fuzzy precontinuity. Fuzzy Sets 
and Systems 44 (1991), 303-308. 

[5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb: On precontinuous and weak 
precontinuous mappings . Proc . Phys. Soc. Egypt 15 (1981). 

Dr. Ganesan Balasubramanian, Madras University P. G. Centre, Salem-636 011, Tamil 

Nadu. India. 


		webmaster@dml.cz
	2012-06-06T07:38:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




