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K Y B E R N E T I K A — У O L U M E 31 ( 1 9 9 5 ) , N U M B E R 3, P A G E S 2 9 7 - 3 0 2 

FINITE SAMPLE OPTIMALITY OF EXTREMES 
AND MID-RANGE 

CHRIS A . J . KLAASSEN1 

Consider es t imat ion of the location of the center of a uniform distr ibution by a transla­

tion equivariant es t imator . It is shown t h a t for a broad class of loss functions and for each 

sample size t h e sample mid-range is an opt imal est imator. Similarly, t h e sample m i n i m u m 

is opt imal in es t imat ing the s t a r t of a nonincreasing density. 

1. HAJEK AND EFFICIENT ESTIMATION 

This paper is the outgrowth of a lecture held at the Minisymposium in Honour of 
Jaroslav Hajek, June 8, 1994. It was entitled "Hajek and Efficient Estimation" and 
it discussed shortly two papers of Hajek's, which are great milestones in the develop­
ment of the asymptotic theory of efficient estimation. Of course, these are the famous 
papers on the Hajek-LeCam convolution theorem and Local Asymptotic Minimax 
theorem; see Hajek [2,3]. In fact, these results formulate asymptotic bounds on the 
performance of estimators and determine the limit behavior of asymptotically ef­
ficient estimators. A nice paper discussing these results as consequences of Le Cam's 
theory on "Limits of Experiments" is van der Vaart [9]. 

In both papers of Hajek the argument is based crucially on the assumption of 
Local Asymptotic Normality. If one has n observations stemming from i.i.d. ran­
dom variables then LAN occurs if one has a regular parametric model. Then good 
estimators estimate the parameter at rate 1/y/n. In nonregular i.i.d. models, often 
LAN does not hold and a much faster rate like 1/n, is possible, typically. So, for 
applications the regular case is by far the most important one, since in nonreg­
ular cases one may estimate the parameter at a better rate anyhow. Moreover, the 
predominant case is the regular one. 

Nevertheless, we will discuss a couple of very specific nonregular situations in 
this paper, two of which are parametric and one semiparametric. As we will see 
it is possible there to formulate bounds on the performance of estimators, and to 
construct estimators attaining these bounds. It should be stressed that these bounds 

1 Part of this research was done at the Department of Probability and Mathematical Statistics of 
the Charles University at Prague, while the author was visiting in the framework of the exchange 
program of the Charles University with the University of Amsterdam. 
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are valid for finite sample sizes, that the proofs are extremely simple, but that they 
apply only in a few specific models. Therefore, they might contribute to a proper 
appreciation of the profoundness of the convolution and LAM theorem. 

2. AN ELEMENTARY INEQUALITY 

Let X\,... ,Xn be i.i.d. random variables with density /(• — 9) with respect to 
Lebesgue measure on R, and with 9 6 R. In this classical location problem we 
will consider the natural class of translation equivariant estimators. The estimator 
Tn = tn(X\,..., Xn) is called translation equivariant if the law of Tn — 9 under 9 is 
the same for all 9; or more strictly, if 

tn(xi + a,..., xn + a) = tn(xi, ...,xn) + a (2.1) 

for all x\,..., xn, a 6 R. Many papers have been written on this topic, most of them 
considering the regular case essentially, in which /(•) has finite Fisher information 
for location f(f'/f)2f- To mention, but a few: Stone [8], Klaassen [4]. 

Here we will consider some irregular cases, in which the density /(•) has a jump at 
the boundary of its support. Our approach will be based on an elementary inequality 
which involves two functions. One is the distribution function 67n(

-) of the normed 
estimator, more precisely, 

Gn(y) = Pf(._e)(n(Tn - 9) < y) = Pf(nTn <y), ye R (2.2) 

The other depends only on the density /(•) of the observations, and may take the 
value oo ; 

c(r7) = s u p | ^ = ^ | / ( x ) > o } ) neR. (2.3) 

Clearly, we have for all y,9 £ R, 

l-Gn(y-9) = Pf(nTn>y-9) = Pf (ntn (Xx + °- ,.... ,Xn + ~J > y) 

= / • • • / i[nt.(,1,...,».)>y] n / ( ; | ~ ) " } n / M d*»- (2-4) 

+ / • • / 1 [ n t , ( r 1 ^y^ni^itO^llf (Xi ~ n) dXi 

S^(J)(l--^W) + -P/(n/(* + J)-OJ. 

As we will see in the subsequent sections, this simple inequality may be used to 
derive optimality properties of the mid-range and sample extremes. Therefore, we 
state this inequality and an analogue of it explicitly in a 
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Propos i t ion 2 .1 . Under condition (2.1) and notation (2.2), (2.3) the following 
inequalities hold 

1 - Gn(y -e)<cn (~\ (1 - Gn(y)) + Pj (f[ f (x{ + £\ = 0 J , y, 9 6 R, (2.5) 

Gn(y + e)<cn(-^JGn(y) + Pf [f[f (xt-^j =QJ , y,0€R. (2.6) 

3. FINITE SAMPLE EFFICIENCY OF SAMPLE MID-RANGE 

Consider estimation of the midpoint 6 of arbitrary uniform distributions. In the 
notation of the preceding section this means that we parametrize their densities by 

/ c ( z - 0 ) _ l l ( _ C i O ( z - 0 ) , 9GR,(>0. (3.1) 

Fix C, call /((•) = /(•) and note that c(rj) = 1(_2<,2C)(^)- Consequently, applying 
(2.5) with 0 < 2y = 9 < 2(n we obtain 

Gn(y)-Gn(-y)<l-(l-^j , y > 0 . (3.2) 

We will say that the distribution F is at least as concentrated symmetrically as 
the distribution G if 

G(y)-G(-y)<F(y)-F(-y), y > 0, (3.3) 

and we will denote this ordering by 

G > , F. (3.4) 

With 

. i-H1-*)"' ÿ>0' 
(3.5) Fn(y) = { 

inequality (3.2) just states 
Gn > . Fn. (3.6) 

A maximum likelihood estimator 9n for 9 is the mid-range $n = 4 (x(i) + ^(n))', 
here x(i) < X^) < • • • < -^(n) a r e the order statistics of X\,.. .Xn. Some com­
putation shows that n(9n — 9) under 9 has distribution function Fn from (3.5). 
Consequently, the mid-range is optimal in the sense of (3.2) and (3.6), and these 
inequalities are sharp. In other words, the distribution of the mid-range is at least 
as concentrated symmetrically as any other translation equivariant estimator of the 
midpoint of a uniform distribution. 
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The asymptotic behavior of the mid-range under symmetric densities with boun­
ded support is treated in Bingham [1]. 

To conclude this section we interpret (3.4) in terms of risks for the classical class 
Cs of symmetric loss functions £(•); £ : R —> [0, oo) belongs to Cs if ^(0) = 0, £(x) = 
£(\x\) and £(•) is nondecreasing on [0, oo). Since for each distribution function F and 
£(•) e Cs 

/•OO 

EF£(Y)= {l-F(y) + F(-y)}d£(y), (3.7) 
Jo 

it is clear that (3.3) and (3.4) are equivalent to 

EG£(Y) > EF£(Y), all £(•) 6 Cs. (3.8) 

Of course, folklore says that the mid-range is optimal in estimating the midpoint of 
a uniform distribution, but (3.2), (3.6) and (3.8) make this claim precise. 

4. FINITE SAMPLE EFFICIENCY OF SAMPLE MINIMUM 

First we will consider estimation of the starting point 6 of an exponential density, 
i.e. we will take 

f(x) = \e-Xxl{QtO0)(x), xeR. (4.1) 

Here c(n) = eAr?, n £ R, and for 6 > 0 inequality (2.5) of Proposition 2.1 yields 

l-Gn(y-e)<exe(l-Gn(y)). (4.2) 

Choosing 0 < u < v < 1, y = C7 -1(T;), 9 = A - 1 log((l - u)/(l — v)), this reduces to 

1 - Gn (G~\v) - 9) < i ^ (1 - Gn {G~\v))) < 1 - tt, 

and hence to 

G~\v) - G~\u) > - I log(l - v) - f - j log(l - u)Y 0<u<v<l. (4.3) 

Defining the spread ordering between distributions F and G as 

C 7 > i F iff \G-\v)-G-\u)\>\F-\v)-F-\u)\, 0<u,v<l, (4.4) 

we see that (4.3) means that Gn is at least as spread out as the exponential distri­
bution F\ with parameter A, i.e. 

Gn > ! Fx. (4.5) 

Consequently, for every a £ R, Tn = Xn\ + a is optimal in the spread ordering. 
Consider the class C of arbitrary (possibly asymmetric) loss functions £(•); so £ : R —+ 
[0,oo) is nonincreasing- nondecreasing and vanishes at 0. As in (2.1) of Theorem 
2.1 of Klaassen [5] we conclude 

/•OO 

i n f£e^ (n (T„ -0 ) ) - - in f / £(y + b)\e~Xy dy, (4.6) 
Tn b J0 
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and we see that xm + a is a minimum risk estimator with a depending on A, n and 
the loss function £(•). Via a more complicated proof (4.5) was obtained already in 
Corollary 2.1 of Klaassen [6]. 

Next we will consider a semiparametric problem, namely estimation of the start­
ing point of an arbitrary nonincreasing density. More specifically we take /(•) van­
ishing on (—oo, 0] and nonincreasing on (0, oo). Without the monotonicity constraint 
on the density this problem has been studied extensively in an asymptotic setting; 
see Smith [7], p. 1175, for references. Now c(n) < 1 for n < 0 and for 6 > 0, 
inequality (2.6) of Proposition 2.1 yields 

Gn(y + 9)-Gn(y)<Pf(nX(1)<9), y G R, or 

sup Pf(y < nTn < y-\-z) < Pf(0 < nX{1) < z), z > 0. (4.7) 
y 

Note that in particular 

s\ipPf(y<nX(1)<y-rz) = Pf(0<nX(1)<z), z>0. (4.8) 
y 

Let us introduce an ordering > m for distribution functions F via their maximum 
concentration function supy{F(y + z) — F(y)}, z > 0, as we will call it. Then, (4.7) 
and (4.8) mean that the maximum concentration function of Gn equals at most that 
of Fn with Fn(y) = Pf(nX^ < y), and we will denote this by 

Gn >m Fn. (4.9) 

Note that for every a £ R, Tn = X^ + a is an optimal estimator in this ordering, 
i.e. has a maximal maximum concentration function. Consequently, [x(i) — E-1(l — 
(1 — a?)1/n), x(i)) is the optimal (shortest) confidence interval for 8 with confidence 
coefficient 1 — a; here F (•) denotes the quantile function for the density /(•). 
Consider the class Ci of loss functions which are constant at the left-hand side; 
£ : R —• [0,oo], £(0) = 0, there exists a &o > 0, such that £(•) is nondecreasing on 
[—60, oo) and constant on (—00,—60) with lima;__00 £(x) = lmxr_,co £(x). Then we 
may write 

/•OO 

£(x)= / {l-l[-b0,,)(x)}dt(z)t xeR, 
Jo 

and we see that (4.7) yields 
<>oo 

inf Ef£(nTn - 6) = inf / {1 - Pf(-b0 + b < nTn < z + 6)} d ^ ) 
6 b Jo 

/•OO 

> / {1 - sup Pf (y< nTn <y+(h0 + z))}dl(z) (4.10) 
Jo y 

f {1 - PI (0 < nX{1) < b0 + z) } d£(z) 
0 

= Ef£ (nX(i) ~ b0), 

and in particular 
inf Ef£(nX(i) - b) = Ef£(nX(1) - bQ). (4.11) 
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Finally, we note tha t 1 — l[oi/S)(-) £ Ci and we conclude tha t (4.9) is equivalent to 

inf ^ / / (nr„-6)>inf i5 / / (nA'( i ) -6) J £(•) G Ct. (4.12) 
6 b 

(Received August 30, 1994.) 
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