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K Y B E R N E T I K A — VOLUME 31 (1995), NUMBER 3, P A G E S 3 0 3 - 3 1 4 

ON HAJEK'S CONJECTURE 
IN STRATIFIED SAMPLING 

ZUZANA P R Á Š K O V Á 

In the paper a conjecture by Jaroslav Hajek, concerning asymptotic relations between 
including probabilities in conditional Poisson sampling and parameters of Poisson sampling 
in the case that a finite population is divided into strata, is verified. An alternative proving 
method to that proposed by Hajek is used. 

1. INTRODUCTION 

Let S be a population of N units, s C S a sample and P a probability distribution 
defined on the set of all subsets of 5 . Let Jf(fi) be the including indicator of the unit 
i, i.e. a random variable with value 1 if s B i and 0 otherwise, let -Ki = Eli denote 
the probability of inclusion of the unit i into the sample. 

One of the most important probability sampling scheme is Poisson sampling with 
parameters 0 < pi < 1, i = 1 , . . . , N defined for any s C S by probabilities 

p(s)=i[pi n p-w)-
i£s i£S — s 

The indicators of inclusion in this case are independent random variables satis
fying P(Ii = 1) = pi = 1 — P(U = 0) and for including probabilities the identity 
7Tj = pi holds for i = 1 , . . . , N. The size of sample K(s) = J2i=i -*(*) 1S a random 
variable. 

The main role of Poisson sampling is to help to define and analyze other sampling 
procedures. It si known tha t sampling methods as simple random sampling, stratified 
or not, rejective sampling, stratified or not, two-stage sampling and others may be 
described as conditional Poisson sampling. 

If we define a sampling plan as conditional Poisson sampling, the problem arises 
how to evaluate probabilities of inclusion, because the parameters p\,... ,p^ may 
not yield exact values of TTI, . . . , TTM- For example, rejective sampling of size n can 
be defined as conditional Poisson sampling under the condition tha t the sample size 
is fixed and equal to n. Then only asymptotic approximation of 7r.- by means of 
Pi, • • • ,PN is available (see Hajek [3], Chapter 7 for more detail). 
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The same problem has to be solved if the population S is divided into strata 
S\, • • •, Sm. Hajek [3] dealt with conditional Poisson sampling given fixed strata 
sample sizes I<h = size(s f] Sh),h = l , . . . , m and pronounced a conjecture in which 
an asymptotic relation between including probabilities 7Tj and parameters of Poisson 
sampling is formulated. The strata are assumed to be disjoint as well as overlapping. 
Hajek proposed to solve the problem by means cf multivariate quadratic regression 
and by using normal approximation for the vector of regressors. 

Here we use another approach based on the Bayes theorem and on refined multi
variate local limit theorem. 

2. HAJEK'S CONJECTURE 

Let the population S is divided into strata Si,... ,Sm, S = \Jh
n

=1Sh. Let s C S be 
the sample and let I<h denote the sample size in Sh • Consider a conditional Poisson 
sampling with parameters p\,... ,pn given the condition that the sample sizes I<h 
are fixed and equal to n^ = EI<h, 1 < h < m where nj are integers. Let L be 
including indicators in Poisson sampling. 

Define - ; = E(Ii\I<h ~ nh, 1 < h < m), 1 <• i < N and 7r,j = E(IiIj\I<h = 
nh, 1 < h < m), 1 < i 96 j < N. In Hajek [3] the following conjecture (Conjecture 
14.1) is pronounced: 

Hajek's Conjecture. For 1 < i < N 

*. = Pi [ l - ^(1 " Pi) [(1 - 2Pi) v'iD-'vi 

~ Y^=i(viD~lvA(v,JD~lvA^^ as d-00 , (1) 

where D~l is the inverse (or the generalized inverse) of the matrix 

D 
N 

^VhjVkjPj^-pj) 

i = i 

(2) 

h,к = l 

d is the minimal nonzero eigenvalue of D and Vj is the vector (v\j,..., vmj)' with 
values 

/ : ieSh m 
vhj - i n , . \6) 

^ 0 otherwise. 
Furthermore, for 1 < i ^ J < N 

-,-j - TTtj ~ (1 ~ A.) (1 - *j) ^i^iv'iDllVj as d -+ oo, 

where 

Dx = 

N 

^2vhjVkjTTj(l - \j) 
j = l 

(4) 

(5) 

J h,k = l 
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and the coefficients 1 — Xj, 1 < j < N are solutions of 

(1 - A,-) [1 - TT^I - A,) v'jDlW = 1 - TS. (6) 

Relation (4) is uniform in 1 < i < j < N. 

R e m a r k . Assumption d —* oo in (1) was not pronounced by Hajek explicitly but 
it follows from a context. 

T h e o r e m 1. Under assumption that D is regular the Hajek's conjecture holds. 

3. P R O O F S 

It can be easily seen tha t 

O/T u r, r, s P(K\ = n1,...,Km=nm |L- = 1) 
•Ki = P(Ii = 1 Ai = n i , . . . , Km = nm) = p{ —— - , 

P(Ki = m,...,Km = nm) 

where P is the probability measure induced by the Poisson sampling. Recall tha t 
in Poisson sampling LL- = pi, Var L- = p2( l — Pi) and L are independent. For any 
1 < h < m we have 

At 

Kh = __ -j =^2hvhj 
j£Sh j = l 

N 

EKh = _ _ Pj vhj, Var (K\,..., Km) = D, 

where the matr ix D is defined by (2). If m = 1, the conditional Poisson sampling 

described above reduces to the rejective sampling and the Conjecture holds with 

L) — d = J2j=iPj(^ ~ Pj)> I^A = J2j = i7rj(^- — - \ J ) ( s e e Hajek [3], Theorem 7.3, 
Theorem 7.4 and approximation (7.28)). 

If m > 1 and the s t ra ta are disjoint, the sample sizes K\,.. . ,Km in Poisson 
sampling are independent and 

nm P(Kh = nh\U = 1) 
BTF \ • 

h=i P(Rh = n ^ ) 

Thus, we can apply rejective sampling in each s t ra tum independently. Proceeding 

as in the proof of Theorem 7.3 in Hajek [3] we get (1) with D = diag [d\,..., dm] 

where dh = ]Cj=i PjO- ~ Pi) vhjt h = 1,... ,m. Further, we have 

TT P(Ki = njji,- = 1 
%ij = P(U = 1, Ij = l\Ki = ni,...,Km = nm) = piPj | | _ — 

;—1 v ' ' 

P(Ki = ni\Ii = \Jj = Г 

řc=l 
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If i ~ Sh, j £ Sk, Sh ^ Sk, the independence of Ij yields 

P(Kh ~ nh\Ii = 1) P(Kk = nk\Ij = 1) 

*« = W - P ^ f c = nfc) * P(Kk = SO = «*' 

and ~ij—~i~j = 0. In this case (4) holds as identity since D\ = diag [di(A),... , dm(X)] 

with dh(X) = J2j=i **(! — -\?) u&i a n d u(D^ t>j = 0. 
For i,j £ S^ we have 

~ij = PiPi 
P(Kh = ^ 1 ^ = 1 , ^ = 1) 

P(Kh = nh) 

and we can apply rejective sampling to the stratum Sh- The approximation (4) 
holds with D\ as above. 

Now, let us turn to the general case. First we introduce some notation. Denote 

^ = N_1L) = 
ІV 

^2Pi(l-Pj)vhjVkj 
І = l 

JV 

h,k = l 

and suppose that D (and V) is regular. Put 

Wj ~ (wxi,.. •, wmj)' = V~1/2Vj 

(8) 

(9) 

with the vectors Vj defined by (3). 
For t = (ti,... ,tm)' let (p(t) denote the characteristic function of the random 

vector sample sizes (K\,..., Km)', i. e. 

(p(t) = Eexp{i(tiK! + . . . + tmKm)} 

and for j = 1, . . . , N denote 

«3; = P i ( l - P i ) ( l - 2 p j ) , 

K4J = p i ( l - P i ) ( l - 2 p i ) ( l - 6 p j + 6 p J

2 ) . 

For u = (tt i, . . . ,-im)' put 

(10) 

(И) 

(12) 

Pi(«0 = 3Í^S«3i(«S) 3 . (13) 
i=i 

i4 I N 1 
p2(^) = ^ j v E ^ s r + šW™))2 (i4) 

i=i 

and for x = ( x i , . . . , xm)' let č.h(z), Qi(x) be polynomials in x such that for v = 1,2 

(27r)"m / exp J - i u ' a - -u 'u j P„(i«) du = Qv(x) f(x), (15) 
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where / ( _ ) — ( 2 7 r ) - m / 2 exp{—£'.r/2} is the normal density. Especially, we have 

m , At 

'wlj 1 1 
Qi(z) - - g ^ ^ - ^ j - E ^ ' ' 

6*1 ;'=l 
1 1 N 

~ ~ S ( X h - ^^)~FZ_ . / Í 3 ^^ ' u ; ^ 
l</i9~fc<m j ' = l 

1 N 

+ 22 XhXkXl—^^K^jWhjWkjWij. (16) 

l</i<ifc</<m J = l 

Finally, denote 
At 

j = i 

Now, we are able to prove the following theorem. 

T h e o r e m 2. Suppose that D is regular and rjiN < d < d2N for positive constants 
_ i , (-2. Then for any integers k1}... ,km 

\D\*P(K1 = k1,...,Km = km) = 

= ( 2 7 r ) - ^ e x p j - i _ _ j [l + N-iQ1(x) + N-1Q2(x)\ -ro(N-1), (18) 

where \D\ is the determinant of D and for k = ( & i , . . . , &m)' we put a: = ( z i , . . . , .cm)' 
— D~^(k — fi). The result holds uniformly in k. 

P r o o f . According to inverse formula for lattice vectors (see e.g. Bhat tacharya 
and Rao [1], Chap. 5) 

P(K1 = k1,...,Km = km) = (27r)-m f ... r e-it,k<p(t)dt 
J —IT J— IT 

= (2ir)-m\D\-* [ exrj(-iu'D-h)ip(D-iu)du, (19) 
In 

where Q = {u £ Rm '• D~^u £ [— w, TT]"1} and <p is the characteristic function 
defined by (10). 

Now, notice that 

{ m ^ ( At m "I 

i E_ thKh }> = Eexp < i~^ Ij ~ ^ thvhj > 
&=l J I j=i ft=l I 
£««•-,->=n [i-»+»-*"]-n 
j= i J J = I j= i 

I /V I JV iV 

- 7_ exp i î j ^ i j <S | - n [1 "Pi + _¥«*'•'] = I l w ^ i ) . (2°) 
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where (pj(r) = 1 — pj -f pj exp( t r ) is the characteristic function of the zero-one 
distribution with cumulants 

/c 1/ 

"VJ 

Pj, 

PÁl -Pj) 
d.Kyj-1 

dPj 
v>2. 

Obviously, K3j and KAJ defined by (11) and (12) are the third and the fourth cumu

lants of the random variable with the characteristic function (pj. 

Thus, for \\t\\ < m~~ we get 

N 

\og<p(t) = ~~~\ogtpj(t'vj) 

J - 1 

= гj2pЛ^j)-ІJ2p^-pj)(t'vJ)Чг-ìү^к3j(t'vJr+ 
І І J ' І 

= гt^-^Dt + ţ^к^ťv.f + ^^2^'^^ + R{t), 
i i 

where | H ( t ) | < cN | |£ | |5 for a positive constant c. 

For i = D~~u we have |(tj| < | |u | |c/~2 and for [|u|| < d$m~~, ft < \ we get 

<£> f D 2 u ì = exp < ш'L) 2 / І — - « ' « \ 

i i 2 1 i 
X GXP { V Z2K-3(U'D"-Vif + T\lsK4i(utD~ -"') + R(D~'U) 4! 

If we insert D~?Vj = N~?Wj (according to (8) and (9)) into the second exponent, 

use the Taylor expansion and order terms in the powers of N~~, we get for | |u[ | < 

m~^dp, (3 < | 

<p ÍD 2 u ) = exp < iu'D 2/2—-u'u> 

1 + N~2pi(z'u) + N~1P2(iu) + Z(\ (21: 

where \Z(u)\ < cN~f-? i ( | |« | | ) and Zi( | |« | | ) is a polynomial in ||u|| of degree at 

most 9. Denote 

Ql = {u : ||u|| < m~l~dp, (3 < 1/6}, 

Q2 = {u • ||«jj < ~m~~d~}. 

Further, notice that 

| ^ . ( r ) | = [1 - 2pj(l - Pj) (1 - cos r ) ]^ < exp{-Pj(l - Pj) (1 - cos r ) } . 
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Thus, 

tp(D~*u) < e x p i - ^ p i ( l - p i ) ( l - - o s ( « / L > ~ ^ i ) ) I . 

In our next considerations we will use the inequality 1 — cosx > 2£27r~2 valid for 
\x\ < 7T. Obviously, for « £ Q2 we have \u'D~~Vj\ < ||«|| ||i>j||c/~~ < 7r and thus 

Í 2 , ) 
ip(D -•«) < e X p ^ - — « ' £ ) ^ P ; ( l - P , ) ^ p -«> exp < ;г« « 

7Г^ 

(22) 
Furthermore, 

Y^Pi(1~Pj)(1~cos(u'D~-vi)) = ^JPJ^-PJ)- R e [exp{i«'ir-"vj} 

> ^.Pjii-Pj) 1-\J2^ex^iu'D~-v^ 

where qj = pj(l - p.-) ( £ ( p , ( l - Pj) ) _ 1 • 

Hence, "^ qj exp{»VL)~ "«,} is the characteristic function of a vector Y taking 
values Vj with the probabilities qj,j= 1 , . . . , N, calculated at the point D~~u. The 
lattice character of Y yields that there exists 8 < 1 such that for « ~ Q, — Q2 

N 

^2qjЄxp{iu'D Ц } 

І=l 
< 6 

(see (22.13) in Bhattacharya and Rao [1]) and thus 

tp(D _ *«) | < exp {-(1 - 5 ) ^ p j ( l - pj)} • 

Since c/||«||2 < «'.D« < m| |« | | 2 ]Ppj(l—p,-) and since we have assumed that d > dyN, 
we can conclude that there exist positive constants C and j such that YlPjft—Pj) — 
C N and 

¥>(£>--«) <e~lN f o r « G ^ - ^ 2 . (23) 

Now, combining (19), (15) and (21) we can write 

|D |*P(K l = *i,..- -.Km = km) - f{x) [l + N~^Q1(x) + N~lQ2(x) 

= (2x)-m(J1 + J2 + J3), 

where 

Jj = exp < —iu'x — -« ' « f -£(«) d«, 

I2 = exp < — iu'D-~k > <p (L)~_«) d«, 
J i2—iQi 

j 3 = - / exp i - i « ' ~ - - « / « U l + N-2p1(z-w) + N~1p2(z-M)] d«. 
JRm~ i*i v. y 
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Further, it follows from (21) that 

|I l |<C-V~* / exp{-u'u/2}Z1(\\u\\)du = o(N~1). 
JR™ 

Similarly, if we utilize the assumption d> d\N and the fact that P\(iu), p2(iu) are 
polynomials in u with bounded coefficients, we get 

II3| ^ ( N - 1 ) . 

To estimate I2, write 

h = \ l . x . + / )exp{-tVD---.fe}^(D---t.)d« = Ii+J2-
\Jm~~d^<\\u\\<nm~~d~ Jfl-fl2J 

Obviously, (22) yields, with a constant M, 

|J i | < expl -u'u\ du 
Jm~ ~d?<\\u\\<TTm~ 2 d% I ^ ) 

< / exp < ^u'u > du = o(N~1). 

Finally, according to (23) 

II2I < / exp{-7N} du < exp{-7N} du < const N^ exp{-7N} = o(N~1). 
Jf2_S72 Jfl 

Now, combining all these results we can conclude that (18) holds true. • 

Corollary. If n i , . . . , nm are the strata sizes, then 

P(K l = m , . . . , Km = nm) = (2TT)-?\D\-HI + N"1C?2(0) + o(N'1)]. (24) 

P r o o f . It follows easily from the fact that nh — /-/., h = 1 , . . . , m and x is 
the zero vector and further, from the fact that Qi(x) is the polynomial without an 
absolute term (see (16)). • 

Theorem 3. Under the assumptions of Theorem 2 it holds 

P(K, = n 1 , . . . , Km=nm\Ir = l) = (2-)-^\D\-*ll-^(l-pr)(l-2pr)v'rD-1vr 

+ \(- - Pr) E " = 1 ^(v'r-D-'vj) (V'JD-'VJ) + ^ £ ( 0 ) + ofN" 1)} . (25) 

P r o o f . If we denote n = ( n i , . . . , nm)' and utilize the independence of indicators 
Es we can write 

P(I<i = n i , . . . , Km = nm \Ir = 1) = P(I<i = ni - ViГ ł..., Ќm = nm- vmr) 

/

Ҡ rҠ 

... i exp{-iť(n - vr)} ф(t) dt, (26) 
•Ҡ J — Ҡ 
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mj 

where 

\i£r j^r f 

and 

<p(t) = Y[<Pj(t'vj) = <p(t)/<pr(t'vr) 
j^r 

is the characteristic function of the vector (Ylj^r IjVij, •• •, YLj^r Ijvmj)' • 

Now, proceeding as in the proof of Theorem 2, we obtain that 

P(Ki = ni - vlr,..., Km = nm- vmr) 

= (2-K) "-" \D\ 2 exp \ —~x'x 1 + iV--ði(äв) + iV-^ðaW + o(N_ 1) . (27) 

where 

L> = Var ( K i , . . . , A'm) = L> - p r(1 - Pr) vrvr, 

x = (pr-l)D~ivr, 

and polynomials Q i , Q2 are obtained from (15) with Pu(iu), v = 1, 2 replaced by 

At 

Pi(мi) 

Hз^м) = 

f l 
3!N 

! І1 
4!N 

22rZ3j(u'wj)3 - K3r(w'tyr)3 

; ' = i 

' At 

2^ K4j(u'wj)4 — K4r(u'wj)A 

i = i 
+ \(h(iu))2 

for lyy = V iVj, where V = N lD. 

Now, let us introduce the following convention: For matrices A, B of the same 
cype, the notat ion A = B + o(-) means that the asymptotic relation holds for each 
element of A,B, respectively. 

According to Rao ([4], pp. 54-55), 

LT-l = D-1 + Pr(l - Pr) D~lVrv'rD-1 [1 -pr(\- pr) v'.D^Vr] ~% • 

For m fixed and N sufficiently large we get from here that L>-1 = D " 1 + o ( N - 1 ) . 

Moreover, 

\D\=\D\(l+pr(l~pr)v'rD-1Vr)-1 

and thus 

\D\~2 = \D\~^ (l+Pr(l~Pr)v'rD-íVr+0(N-1)ý 

= IDI""§ ( l + Íp r ( l - pr) VrD-lVr + O ^ " 1 ) ) . (28) 
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Furthermore, notice that 

D = D*[E - pr(l-Pr) D-%VrVrD~h} D* = D*[E ~ B\ D*> 

where E is the identity matrix and B = pr(l - pr^D-hvr
v'rD~^ i s regular and 

symmetric. After some algebra we have D~* = D~ *(E - B)~* and if we use the 
Taylor expansion for (E - B)~* (see i.e. Gantmacher [2], Chapt. V.) we get 

Ź Г * = JJ-^ + o^N- 1 ). (29) 

Finally, we obtain 
x = (pr-l)D-2vr + o(N-1). (30) 

If we insert (28) and (30) into (27) and apply the Taylor expansion to the exponential 
function we get 

P(Ki = ni - vír,..., Ќm = n 

= ( 2 Î Г ) - * | D | - * 

VГm) — 

l + ^Pr(l-Pr)v'rD-1vr + o(N-1) 

1 
ì - ^(pr - l)2 v^D^Vr. + o(N-v 1 + N-*Qi(x) + N_1Q2(ж) + o(N-

= (2*)~*\D\--

+ OÍN-1)! 

1 - ттt1 - Pr) C1 - ÎPr)vTD-lvr + N~*Qi{z) + N-1Q2(x)+ 

(31) 

Now, let us turn to the terms Q\(x) and Q2(x). 
According to (30) and (9) we can write x = (pr — l)N~^wr + o(N_ 1) and 

according to (29) Wj = Wj+o(N~a), j = 1 , . . . , N. Then the very careful calculation 
of Qi(x) (compare (16)) gives 

-V-tQi(a,) = 

c — — Г p r - 1 ) 
2 N ^ r ; 

m 1 At 1 JV 

. C w* r v -C K 3J ^^ + J2 wirN^K3j WJj 

fc=l 7 = 1 K i a í K - i 7 = 1 

it-íj + o(N-

1 1 * 
N - - - / Ä З J 

i = i 

X] WkrWkj J2 
.fc = l î=l 

+ o(N-x) 

1 1 
= ~ 2N(Pr " ^ І v E KЗJKMJ) K™i) + ^ ^ - 1 ) 

i = i 

1 -

= -Õ(^ ~x) S M<D~Ч)(»Í-~~Ч) + KN- . (32) 
i=*i 

Inverting E2(iw) by (15) we obtain after some tedious calculations that Q2(») is a 
polynomial in Z = (a?i,..., x m ) of order 6 with the absolute term Q2(0) + 0(N~1). 



On Hajek's Conjecture in Stratified Sampling 313 

Thus, we can see that for x given by (30), N-xQ2(x) = N~1Q2(0) + o(N_ 1) , which 
together with (31) and (32) completes the proof of (25). • 

P r o o f of Theorem 1. When we use (7), (24) and (25) and the Taylor expansion 
we get 

". = Pill-^l-p^Kl-^vlD-'vi 

~ E " = i "BJM-->~S) (vjD^Vj)} + N-'Q2(0) + o(N-^} 

x [l + N-iQs^ + o ^ - 1 ) ] - 1 

= P i ( 1 - | ( l - p » ) [ ( l - 2 p » ) ^ D - 1 v . 

- E^i ^W'-SIW""1^)] +o(N"1)} 

which is (1) with d = O(N). 

The same approach can be used for the general rate of convergence of d —* oo if 
we replace (21) by an expansion in powers of of"-- and notice that instead of (23) we 
;an use the inequality 

\<p(D~*u)\<e-pd 

for a constant p > 0 and u G Q — 0 2 . The difference is in technicalities, only. 

The proof of (4) runs in a similar way. It holds 

Vij = P(Ii = 1, Ij = l|Ki = n i , . . . , Km = nm) 

P(Ki = n i , . . . , Km - nm\Ii = 1, Ij = 1) 
= PiPj — ^77; ~ r 2 • (33) 

F(K1 = n i , . . . , A m = nm) 
Now, proceeding as in the proof of Theorem 3 we can establish an asymptotic ex
pansion of the nominator of (33) with the remainder of order o (N - 1 ) (respectively, 
of order d - 1 . ) Combining it with the expansion (24) we obtain 

"«j = PiPj {1 " \ [(1 - Pi) (1 ~ 2p.) uJD-1^ - (1 - pj) (1 - 2-j) ^D-S-] 

- i [2fe - 1) (Pi - 1) itfir1!/,] + o(N"1)} . 

Combining this result with (1), we get after some computations 

"0- = 7 ^ [1 ~ (1 ~ Pi) (1 " P.) v'iD~lVj + 0(N"1)] . 
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Since (1) implies 7T; = p;[l -f 0{N~1)] we can also write 

7Ci7Tj - %ij = 7Ti7rj(l - T t) (1 - Tj)v'iD~1Vj + o{N~1). 

Thus, we can conclude, that the relation (4) holds asymptotically. Moreover, Hajek's 

approximation 

7TiITj — Wij ~ ( 1 — A,) ( 1 — Xj)-KiTj V'iD^1 Vj , 

where D\ is given by (5) and the coefficients 1 — Xj are solutions of (6), is tight, i .e. 

it satisfies the condition 

£)(*'*/ - *ij) v'j = *<(! - *".) ui-

Example 14.5 in Hajek [3] shows that the relation (4) can hold with very good 

accuracy even for small size of the population (N = 20, N = 24). 

(Received February 17, 1995.) 
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