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K Y B E R N E T I K A — V O L U M E 31 (1995), N U M B E R 3 , P A G ES 2 2 1 - 2 3 7 

T H E ROLE OF H A J E K ' S CONVOLUTION T H E O R E M 
IN STATISTICAL THEORY 

RUDOLF BERAN 

Hajek's [17] convolution theorem was a major advance in understanding the classical 
information inequality. This re-examination of the convolution theorem discusses historical 
background to asymptotic estimation theory; the role of superefficiency in current esti
mation practice; the link between convergence of bootstrap distributions and convolution 
structure; and a dimensional asymptotics view of superefficiency. 

1. INTRODUCTION 

In 1970, Hajek established sharp, general criteria for asymptotically efficient estima
tion in locally asymptotically normal parametric models. His Zeitschrift paper that 
year characterized, through the convolution theorem, the structure of possible limit
ing distributions for regular estimators of a parameter. His talk that summer at the 
Sixth Berkeley Symposium formulated the local asymptotic minimax bound for all 
estimators of a parameter. Both of Hajek's papers built on a pre-history; and both 
stimulated important further work by LeCam, by the Russian school, and by others. 
A quarter of a century later, the convolution theorem sheds light on topics such as 
bootstrap consistency, model selection, and signal recovery. This paper describes 
how. 

F i s h e r ' s P r o g r a m . As a model for the sample Xn — ( x n , i , • . . , xn,n), suppose 
that the {Xn>i} are iid with distribution P$. The value of 9 is unknown but lies in 
0 , an open subset of Rk. The distribution Pg has a density pe with respect to a 
dominating er-finite measure that does not depend on 9. Suppose that the gradient 
\7pg of pg with respect to 9 exists. In this classical setting, the information matr ix 
is defined to be 

1(9) = Cove\pJ1(Xn)Vpe(Xn)}, (1.1) 

provided the covariances on the right side exist. Savage [47 p. 456] gave historical 
background for this information concept. 

Consider the problem of estimating a differentiable parametric function T(9). For 
simplicity of exposition, suppose that T(9) = 9. Let Tn be an unbiased estimator of 



222 R- BERAN 

9 and let | • | denote Euclidean norm in Rk. The information inequality, formulated 
by Frechet [16], Darmois [12], Rao [44], and Cramer [11], implies that 

nE9\Tn - EeTn\
2 > tr [rl(9)] V0 e 0. (1.2) 

This variance inequality assumes that the information matr ix is nonsingular and 
tha t the model meets certain other regularity conditions (cf. Lehmann [36, p. 128]). 

Two other strong notions existed in estimation theory earlier this century. First 
was the idea tha t a good real-valued estimator has a bias that is much smaller 
than its variance when the sample size is large. Second was the belief that the 
maximum likelihood estimator Tn<ML of 9 is asymptotically normal and that the 
limiting distribution of nll2(TniML — 6) is N(0,1~l(9)). Combining these ideas with 
inequality (1.2) leads to two conjectures: 

A. For any estimator T„, 

\\mminEB\Tn-9\2>tr[r1(9)} M 9 £ 0 . (1.3) 
n >-oo 

B. The maximum likelihood estimator Tn<ML satisfies 

lim nEe\Tn>ML - 0\2 = tr [I~1(9)] V0 G O. (1.4) 
n—t-oo 

This pair of s tatements is sometimes called Fisher's program, in recognition of 
Fisher's [15] influential paper on estimation in parametric models. The program 
implies the conjecture tha t maximum likelihood estimators are asymptotically ef
ficient, in the sense of at taining the asymptotic lower bound in A at every 9. P ra t t 
[43] drew attention to related previous work by Edgeworth and others. Pfanzagl 
[39, pp. 207-208] summarized the history of early work on maximum likelihood 
estimation, from Laplace and Gauss onwards. 

Supereff ic iency and O t h e r Surpr ises . As stated, both conjectures A and B are 
false. Possible difficulties with uniform integrability in B may be resolved by a con
tinuous, monotone, bounded transformation of the loss function. Deeper, however, 
is the possibly bad behavior of maximum likelihood estimators in regular parametric 
models. 

E x a m p l e 1 . Suppose tha t the distribution of log (x ; — 7) is N(//,cr2). This is 
a model for the t ime at which disease symptoms are first observed in a patient 
who was exposed to infection at time 7. Here the unknown parameter 9 is the 
triple (n,a2,j). The distribution of X{ is called the three-parameter lognormal 
distribution. The information matr ix for this model is finite and is continuous in 
9. However, it was not noticed for many years that the likelihood function climbs a 
ridge to infinity as 7 tends to the smallest observation (Hill [20]). While maximum 
likelihood estimation thus fails, the model has the LAN property to be discussed in 
Section 2. Consequently, LeCam's [29, pp. 138-139] one-step estimator achieves the 
asymptotic efficiency that eludes maximum likelihood in this example. 
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Deeper still is the possible failure of inequality (1.3) at some values of 9, called 
points of superefficiency. LeCam [28] and Bahadur [1] showed that superefficiency 
points necessarily constitute a Lebesgue null set in Rk. While "null set" sounds 
innocuous, it is not, as we will see in the next two examples. 

Example 2. Suppose that the {xn , t} are iid random variables, each distributed 
according to N(6,1). Here the parameter dimension k — 1. Let Xn to be the sample 
mean and let Tn<H be the Hodges estimator of 9, given by 

f bXn if\Xn\<n~1^ 
Tn,H=\ - (1-5) 

[ Xn otherwise, 

where b2 < 1 (LeCam [28]). Note that, when b is zero, Tn>H is a model selection 
estimator that chooses between fitting the N(0,1) and N(0,1) models on the basis 
of the data. 

The limiting distribution of nll2(TntH - 9) is N(0,1) when 9 £ 0 but is N(0, b2) 
when 9 = 0. Moreover, 

{ b2 if 0 = 0 
lim nEe(TntH ~ 0)2 = { (1.6) 

»-« I 1 if ft # 0 
while the Fisher information bound is 1. Thus, the origin is a point of superefficiency. 
For fixed n, the risk of Tn>H is less than 1 in a neighborhood of the origin, then rises 
steeply above one, and subsequently drops slowly towards 1 as \9\ tends to infinity 
(cf. Lehmann [36, Chapter 6]). The neighborhood of improved risk narrows as n 
increases, so that the asymptotic picture is (1.6). At finite n, the Hodges estimator 
has larger risk than the sample mean for most values of 9. Such poor risk near points 
of superefficiency is characteristic of one-dimensional estimators (LeCam [28], Hajek 
[18]). 

From this example, one might form the impression that model selection estimators 
are to be avoided. This impression is wrong. Consider model selection estimators 
for $ £ Rk that, as in Potscher [42], select among submodels indexed by proper 
subspaces of Rk. Under asymptotics where parameter dimension k is fixed while 
n increases, the points of superefficiency are the union of proper subspaces of O. 
Though uncountable, these superefficiency points form a Lebesgue null set. However, 
under asymptotics where k increases while n is fixed, model selection can improve 
risk over the entire parameter space (Beran [5]). The next example makes the role 
of dimension clearer. 

Example 3. Let Ik denote the k x k identity matrix. Suppose that the {xn t-} are 
iid random fc-vectors, each distributed according to Nk(9,h), where 9 £ Rk. This 
is a simple model for n repeated observations on a discrete time series measured at 
k time points. The goal is to estimate the unknown signal 9. Let Xn be the sample 
mean and suppose that k is at least 3. The James and Stein [23] estimator is 

TntS= [l-(k-2)/\nXn\
2]Xn. (1.7) 
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This celebrated estimator is a sharp early example of what are now called regulariz-
ation methods for signal recovery (cf. Tit terington [51]). For k > 3, limn—oo nEe\Tn<s 
—6\2 equals the information bound k when 9 -£ 0 but is strictly smaller when 9 = 0. 
Thus, the origin is a point of superefficiency under quadratic loss. 

Unlike Example 2, the risk nEe\Tn<s — 0\2 is uniformly smaller than k for all 
values of 9 and n (James and Stein [23]). Moreover, as k —* oo and ,lc-1n|i9|2 —* c, the 
normalized quadratic risk k~1nEg\TTlts — 0\2 converges to c / ( l + c). For details, see 
Casella and Hwang [9]. Consequently, when k is large and n is fixed, the estimator 
Tns improves substantially upon the sample mean Xn over compact balls about 
9 = 0. The superefficiency at 8 = 0 that is detected by asymptotics in n alone is a 
ghost of what actually happens for finite k and n. 

As an extension of this example, consider the Stein estimator that shrinks each 
component of Xn = (X n , i , • • •, Xntn) towards the average component m n = n _ 1 531=l 
Xn>i. Let e denote the vector in Rk whose components each equal 1. Define 

TU,SM = rhne + [1 - (k - 3 ) / ( n | X n - m n e | 2 ) ] ( x n - m n e ) . (1.8) 

This estimator is superefficient at every 9 ~ Rk whose components are equal, an un
countable Lebesgue null set. Moreover, the estimator TU)SM dominates Xn over the 
entire parameter space, substantially so when k is much larger than n (cf. Lehmann 
[36, p. 305]). 

As these examples suggest, the possibility of superefficiency is at heart of modern 
estimation theory. Current signal estimators or model selection estimators tacitly 
create points of superefficiency, though usually without articulating this strategy; 
and they do so because superefficiency points can reduce risk over the entire param
eter space when k and n are finite. Tha t points of superefficiency form a Lebesgue 
null set does not make them unimportant . 

2. HAJEK'S CONVOLUTION THEOREM 

For what class of parametric models is Fisher's program pertinent? LeCam [30] made 
a fundamental advance on this question by formulating the concept of a locally 
asymptotically normal model. For simplicity, we will assume that the parameter 
space O is an open subset of Rk and that the rate of convergence is n 1 ' 2 , as in 
classical iid models. 

Def in i t ion . For 9n = 90 + n~ll2h, where h E Rk, let P$ n denote the absolutely 
continuous part of Pen,n with respect to Pe0,n- Let Ln(h, 90) denote the log-likelihood 
ratio of P£ n with respect to Pe0,n- Suppose there exist random vectors Yn(90), 
depending on the sample as well as on 90, and a nonsingular, nonrandom matr ix 
I(90) such tha t 

Ln(h, 90) = h'Yn(90) - 2~ltil(90)h + op(l), (2.1) 

the remainder term tending to zero in E0o,n-probability. Suppose in addition that 

£[Yn(ljo)|P*0ln] => -V(0.1(h)) . (2.2) 



The Role of Hajek's Convolution Theorem in Statistical Theory 225 

Then the model {Po,n- 9 G ©} is said to be locally asymptotically normal (LAN) at 

The LAN property, which redefines the information matrix, is possessed by clas
sical models such as smooth exponential families. Hajek and Sidak [19] and Hajek 
[18] included convenient sufficient conditions for LAN that developed LeCam's earlier 
work. For an LAN model, the log-likelihood ratio behaves asymptotically like the 
log-likelihood ratio of N(h, I~1(00)) with respect to N(0, 7_1(ljo)). This suggests 
tha t good statistical procedures in the normal limit experiment may have counter
parts tha t are approximately good, for large n, in the model Po,n. Hajek's papers 
on the convolution theorem [17] and on the local asymptotic minimax bound [18] 
gave substance to this idea. 

The summary paragraph at the start of Hajek [17] states: "Under certain very 
general conditions we prove tha t the limiting distribution of the estimates, if properly 
normed, is a convolution of a certain normal distribution, which depends only of the 
underlying distributions, and of a further distribution, which depends on the choice 
of the est imate. As corollaries we obtain inequalities for asymptotic variance and for 
asymptotic probabilities of certain sets, generalizing to some results of J. Wolfowitz 
[54], S. Kaufman [26], L. Schmetterer [48] and G. G. Roussas [45]." This describes 
the content and historical setting with admirable succinctness. 

Let us consider now what Hajek did in this paper, specializing for convenience to 
the case where the rate of convergence is n1'2. For any estimator Tn of 9, let 

Hn(9) = C[nl'2(Tn-9)\Pe,n]. (2.3) 

Def in i t i on . Let 9n = lj0 + n~1l2h, where h £ Rk. A sequence of estimators 
{Tn: n > 1} is regular at ljo if 

Hn(6n)=>H(90) VheRk (2.4) 

for some limit distribution H(90) tha t does not depend on h. 

Suppose tha t d is a metric for weak convergence of distributions on Rk. A little 
stronger than regularity is the property 

lim sup d[Hn(9),H(60)] = 0 (2.5) 
n - ° ° n i / 2 | 0 _ 0 o | < c 

for every finite positive c. Prior to Hajek [17], papers on asymptotic estimation typ
ically imposed a requirement such as uniform weak convergence of the distributions 
{Hn(9)} to a weakly continuous limit over some fixed neighborhood of 90—an as
sumption considerably stronger than (2.5) or (2.4). Such was also the case for 
Inagaki's [22] independent discovery of the convolution theorem. We will see, in 
the course of this paper, how Hajek's weaker regularity assumption is important for 
statistical theory. 
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Theorem 2.1. (Convolution theorem) Suppose that the model P#jn is LAN at 
90. If {Tn: n > 1} is a sequence of estimators regular at 90, then 

H(90) = N(0,r1(90))*v(80) (2.6) 

for some distribution v(0o) on 77*. Moreover H(90) = N(0,I~1(90)) if and only if 

n1/2(Tn - 90) = r1(9o)Yn(90) + op(l), (2.7) 

the remainder term tending to zero in Pe0^-probability. 

Not long after Hajek's announcement of the convolution theorem, P.J. Bickel sent 
him a letter that sketched a shorter characteristic function proof for the result. This 
writer saw a copy of the letter a few months later. Even though the characteristic 
function argument is now well-known, we give a version here because the argument 
leads to further insights. 

P r o o f . Fix h 6 Rk. The LAN assumption implies that the sequences {Pen,n} 
and {Pe0,n} are contiguous (LeCam [30]). In particular, the total variation norm of 
the singular component of Pen,n relative to Pe0,n tends to zero as n increases. Let 
<f)n(u,9) and <f)(u,9) denote, respectively, the characteristic functions of Hn(9) and 
H(9). Then 

(j>n(u, 9n) = E6o[iu'n1/2(Tn - 90) - iu'h + Ln(h, 90)} + o(l). (2.8) 

Because of (2.4) and (2.2), by going to a subsequence we can assume, without 
loss of generality, that 

(n1'2(Tn-9o),Yn(9o)) => (S,I1'2(90)Z) (2.9) 

under Pe0>n. Here S has marginal distribution H(90) while Z has a standard normal 
distribution on Rk. Let n —> oo in (2.8). Then (2.9) and a uniform integrability 
argument establish 

(j)(u, 90) = Eexp[iu'S - iu'h] exp[h'I^2(90)Z - 2-1h'I(90)h}. (2.10) 

Equation (2.10) holds for every h 6 Rk. Since the right side of (2.10) is analytic 
in h while the left side does not depend on h, equation (2.10) continues to hold for 
all h £ Ck. Setting h = -U~1(9o)u in (2.10) yields 

<j)(u, 90) = Eexp[iu'(S - r1l2(90)Z)} exp[-2-1u /7-1(lj0)u], (2.11) 

which is equivalent to assertion (2.6). 
The if and only if part: Suppose that (2.7) holds. By the LAN property and 

contiguity reasoning, 

C[Yn(90)\Penin] ==> N(I(90)h, I(90)). (2.12) 

This and (2.7) imply that Hn(9n) = > N(0, 7 -1(#0)), as asserted by the theorem. 
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Conversely, suppose that H(90) = N(O,I~1(0O)) but the approximation (2.7) 
does not hold. By going to a subsequence, assume without loss of generality that 

^ 0 ,n[ |n 1 / 2 (T n - 90) - r1(60)Yn(9o)\ > e] > 6 (2.13) 

for every n and some positive e and 6. By going to a further subsequence, as in the 
first part of the proof, assume without loss of generality that (2.9) holds. From this 
and (2.13), 

P[\S-r1/2(90)Z\>e]>6. (2.14) 

At the same time, (2.11) also holds and implies that 

S = r1/2(90)Z w.p.l. (2.15) 

The contradiction between (2.14) and (2.15) establishes (2.7). Q 

The convolution theorem supports a portion of Fisher's program. Suppose that 
w is a symmetric, subconvex, and continuous loss function on Rk. If {Tn} is any 
sequence of estimators whose limiting distribution at #o has the convolution structure 
(2.6), then 

liminf E0ow[n1/2(Tn - 90)} > Ew{r1'2(9o)Z] (2.16) 
n—»-oo 

by Fatou's lemma and Anderson's lemma (cf. Ibragimov and Has'minskii [21], p. 157). 
TJ~e particular choice w(x) = |.c|2 establishes (1.3) for values of 9 at which {Tn} is 
regular. If the loss function w is also bounded, then any estimator sequence {Tn} 
that satisfies (2.7) attains the bound (2.16) in tly sense that 

lim E6ow[n1/2(Tn - 90)} = Ew[r1/2(0O)Z}. (2.17) 
n—*oo 

The assumption of regularity in Theorem 2.1 can be weakened technically with
out changing the conclusions. This observation, recorded in Corollary 2.2 below, 
was made by Droste and Wefelmeyer [13]. Deeper is the result that an almost every
where variant of the convolution theorem holds without the regularity assumption 
(Theorem 2.3 below). We will see that both extensions of Theorem 2.1 have impli
cations for Fisher's program and for the convergence of bootstrap distributions. 

A subset D C Rk is called a uniqueness set if any analytic function defined on an 
open, connected set that contains D is uniquely determined by its values in D. For 
example, D could be Rk, as in the proof of Theorem 2.1, or a ^-dimensional box in 
Rk with edges parallel to the coordinate axes, or a dense subset of these. 

Definition. A sequence of estimators {Tn:n > 1} is essentially regular at 9Q if 
the following holds: There exists a uniqueness set D C Rk and, for every h € D, a 
sequence {hn £ Rk} converging to h such that 

Hn(9o + n1/2hn)=>H(9o) (2.18) 

for some limit distribution H(9Q) that does not depend on h. 
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Corol lary 2 .2 . The assumption of regularity in Theorem 2.1 may be replaced by 
essential regularity without changing the conclusions. 

P r o o f . By reasoning like that in the previous proof, equation (2.10) holds for 
every h ~ D. Since the right side of (2.10) is analytic in h and D is a uniqueness 
set, (2.10) again holds for every h ~ C . The rest of the proof is unchanged. • 

T h e o r e m 2 . 3 . Suppose that Pg>n is LAN at every 0 ~ 0 . Let {Tn:n > 1} be a 
sequence of estimators such that 

Hn(0)=>H(9) VOeO. (2.19) 

Then there exists a distribution v(0) and a Lebesgue null set N C 0 such tha t 

H(0) = N(0,r\e))*v(0) V 0 E 0 - N . (2.20) 

Suppose in addition that both H(0) and 1(0) are continuous at 90, the former in a 
metric for weak convergence. Then the convolution structure (2.20) holds at BQ. 

Remarks on pages 169 and 176 of LeCam [32] imply Theorem 2.3. Jeganathan [24] 
and Droste and Wefelmeyer [13] gave characteristic function proofs of the theorem. 
The proof below combines Theorem 2.1 with the following lemma, which is due to 
Droste and Wefelmeyer [13, pp. 140-141] and extends Lemma 4 in Bahadur [1]. See 
also Pfanzagl [39, pp. 285-286]. 

L e m m a 2 .4 . Let {/n: n > 1} and / be Lebesgue measurable real-valued functions 
on Rk such tha t 

lim fn(x) = f(x) a.e. Lebesgue. (2.21) 
n—• oo 

Then, for every sequence {yn £ Rk} converging to zero, there exists a subsequence 
M such tha t 

lim fn(x + yn) = f(x) a.e. Lebesgue. (2.22) 
n£M 

P r o o f of Theorem 2.3. Let <i>n(u,0) and <j)(u,0) again denote the characteristic 
functions of Hn(0) and H(0) respectively. Let D be a countable dense subset of Rk. 
Fix (h,u) G D2. By the hypothesis (2.19) and Lemma 2.4 with yn = n~ll2h, there 
is a subsequence M(h, u) and a Lebesgue null set N(h, u) such tha t 

lim <f>n(u,0 + n1/2h) = <f)(u,0) V0 eS-N(h,u). (2.23) 
n£M(u,h) 

Let 

N= (J N(h,u). (2.24) 
(h,u)£D2 

By reasoning like that for Theorem 2.1, equation (2.10) holds for every (h, u) ~ D2 

and for every 6 ~ 0 — N. Because TO is a uniqueness class, this implies that equation 
(2.11) holds for every u 6 D and for every 0 £ 0 — N. Conclusion (2.20) follows 
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because a characteristic function is determined by its values on the dense subset 
DGRk. 

The last assertion of the theorem already holds if 60 £ 0 — N. Suppose that 
0o £ N and that {9n £ G —N} converges to 0o. Let ip(v, 9) denote the characteristic 
function of 1/(0), defined for 0 £ 0 - N. Then, from (2.20), 

xf>(U) 0n) = <f>(u, On) exppT V/(0„)u] . (2.25) 

Continuity of 1(6) and weak continuity of H(0) now imply that 

lim ^(u,0n) = 0(w,0o)exp[2-V/(0oH. (2.26) 
n—+oo 

Since the right side of (2.26) is continuous in u, it must be a characteristic function. 
Consequently, (2.20) holds at 0O. • 

What does the theory of this section entail for Fisher's program? Let w be a 
symmetric, subconvex, and continuous loss function of R . We say that {Tn} is 
superefficient at 0o for loss function w if 

limsupE9ow[n1/2(Tn - 00)] < Ew[r1/2(00)Z], (2.27) 
n-+oo 

where Z has a standard normal distribution on Rk. 
Inequality (2.16) shows that superefficiency cannot occur when the limit distri

bution H(90) has the convolution structure (2.6). Consequently, lack of regularity 
at 0o is a necessary condition for superefficiency there (Theorem 2.1). Discontinuity 
of H(0) or 1(9) at 0o is also a necessary condition for superefficiency there (Theorem 
2.3). The Hodges and the Stein estimators illustrate both necessary conditions. 

Example 2 (continued). By (1.6), the Hodges estimator Tn>n is superefficient 
at 0O = 0 for w(x) = x2. Let 9n = 90 + n~ll2h. Then 

f N((b-l)h,b2) if 0o = O 
Hn(9n)=>{ (2.28) 

{ } \ -V(O.l) if 0 o / 0 . \ ' 

This shows directly that {TUIH} is not regular at 0o = 0. Moreover, the pointwise 
limit distribution is ' 

HO(0Q)=\ (2-29) 
1 N(0,1) ifflo/O, 

which has the expected discontinuity at 0o = 0 in the topology of weak convergence. 

Example 3 (continued) . As discussed in the Introduction, the Stein estimator 
TUis is superefficient at 0o = 0 for w(x) = \x\2. In this instance, 

f C[Z -(k- 2)(Z + h)/\Z + h\2] if 0O = 0 
Hn(0n)=>{ (2.30) 

I N(0,Ik) if 0O #"0 
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so tha t {Tnis} is not regular at the origin. Let Z be a random vector with s tandard 
normal distribution on Rk. The pointwise limit distribution in this example is 

f C[Z-(k-2)Z/\Z\2] if fjo = 0 
Ho(0o) = \ (2.31) 

I N(0,Ik) if flo/O. 
It has the foreseen discontinuity at 0Q = 0. 

3. BOOTSTRAP CONVERGENCE AND CONVOLUTION 

Matters such as estimating the risk of Tn or constructing confidence sets for 9 around 
Tn lead to the question of estimating Hn(9), the distribution of nll2(Tn— 9). Suppose 
that 9n is an est imator of 9, possibly Tn itself. The implied plug-in estimator of 
Hn(9) is then Hn(9n). 

The random probability measure Hn(9n) can also be interpreted as a conditional 
distribution. Let Xn be an artificial sample of size n whose conditional distribution, 
given the observed sample Xn, is the fitted model Pn g . Let T* = Tn(Xn) denote 
the recalculation of Tn from Xn. Then 

Hn(9n) = C[nl'2(T*n - 9n)\Xn}. (3.1) 

Efron [14] called Hn(9n) the parametric bootstrap estimator of Hn(9), gave the 
interpretation as conditional distribution, and drew attention to Monte Carlo ap
proximations for this conditional distribution. 

Suppose tha t Hn(9) converges weakly to a limit distribution H(6) as n increases. 
When does the boots t rap distribution Hn(9n) converge in probability to the correct 
limit H(9)l A substantial literature has grown around this question; two early 
papers are Bickel and Freedman [6] and Beran [4]. The next theorems link bootstrap 
convergence with convolution structure. As in the previous section, d is any metric 
for weak convergence on Rk. 

T h e o r e m 3 . 1 . Suppose tha t {Tn:n > 1} is a sequence of estimators for which 

(2.5) holds. Suppose that {9n:n > 1} is a sequence of estimators such that 

C[nll2(9n - 90)\Pe0,n] -=> J(90) (3.2) 

for some limit distribution J(9Q). Then 

d[Hn(9n),H(90)]^oo (3.3) 

in p0Oln-probability. 

P r o o f . Let Vn = nll2(9n—9o). By aSkorokhod construction, there exist random 
vectors {Vn(to)} and V*(UJ), defined on a common probability space, such that 
C(V*) = C(Vn), C(V*) = J(90) and l i m n _ 0 0 V*(u) = V*(w) for every elementary 
event to. Assumption (2.5) implies that 

lim Hn(90 + n~l'2V*) = H(90) w.p . l . (3.4) 
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Conclusion (3.3) now follows. • 

If the conditions for Theorem 3.1 hold and the model PgjU is LAN at 9Q, then 
the limit distribution H(9Q) must have the convolution structure (2.6), because of 
Theorem 2.1. The next theorem shows that bootstrap convergence itself can imply 
convolution structure in the limit distribution. 

T h e o r e m 3 .2 . Suppose that the model PQJXX is LAN at 9Q, tha t (3.2) and (3.3) 
hold, and tha t the support of J(9Q) contains a uniqueness set. Then 

H(9o) = N(0,r1(60))*is(6o) (3.5) 

for some distribution U(9Q) on Rk. 

P r o o f . In the notation of the preceding proof, (3.3) implies that 

d[Hn(90 + n~l'2V:), H(9Q)] - 0 (3.6) 

in probability. Hence, there exists a subsequence M such that 

lim d[Hn(9o + n-l>2V*), H(90)] = 0 lim 7n* = V* w .p . l . (3.7) 
n&M n£M 

Since the possible values of V* are dense in the support of J(9Q), they also form a 
uniqueness set. Corollary 2.2 thus implies (3.5). • 

Coro l lary 3 .3 . Suppose that Pg>n is LAN at e ery 9 £ 0 . Let {9n:n > 1} be a 
sequence of estimators such tha t 

C[nll2(9n - 9)\P9>n] = > J(9) V!j G 6 , (3.8) 

for some limit distribution J (9). Let {Tn:n > 1} be a sequence of estimators such 
tha t 

d[Hn(9n),H(90)]^0 (3.9) 

in Pe0]n-probability. If both J(9) and 1(9) are continuous at 9Q or if {9n:n > 1} is 
regular at 9Q, then (3.5) holds. 

P r o o f . Applying, respectively, Theorem 2.3 or Theorem 2.1 to the estimators 
{9n} shows that the support of J(9Q) is Rk. Theorem 3.2 then completes the proof. 

• 

I m p l i c a t i o n s . In the setting of Theorem 3.2, superefficiency of {Tn} at 9Q ensures 
that , under Pe0,n, the bootstrap distribution Hn(9n) cannot converge in probability 
to the correct limit distribution H(9Q). Whether the superefficiency is beneficial to 
the risk of Tn at 9 / 9Q, as in Example 3, or detrimental, as in Example 2, has 
no effect on the question of bootstrap convergence. The necessary conditions for 
superefficiency mentioned at the end of Section 2 — lack of regularity at 9Q or a 
discontinuity in H(9) or 1(9) at 9Q — both signal possible bootstrap failure at 9Q. 
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Example 2 (continued). Let ljn be the sample mean Xn. Condition (3.2) is 
satisfied and J(ljo) has full support for every ljo. By simple extension of (2.28), the 
Hodges estimator Tnji satisfies (2.5) for every ljo ̂  0. Thus, by Theorem 3.1, the 
bootstrap distribution Hn(Xn) for Tn H converges correctly, in probability, whenever 

By Theorem 3.2, Hn(Xn) cannot converge properly at ljo = 0, because the origin is 
a superefficiency point for the Hodges estimator. In this exceptional case, reasoning 
related to (2.28) shows that Hn(Xn) converges in distribution, as a random element 
of the space of all probability measures on Rk metrized by weak convergence, to 
the random probability measure N((b — l)Z,b2). Here Z has a standard N(0,1) 
distribution. 

Example 3 (continued). By extension of (2.30), the Stein estimator TUjs satisfies 
(2.5) for every ljo i=- 0. By Theorem 3.1, the bootstrap distribution Hn(Xn) for Tn>s 
converges correctly whenever ljo ^ 0. At the superefficiency point lj0 = 0, the failure 
of the bootstrap distribution to converge correctly (Theorem 3.2) can be clarified as 
follows. Let Z be a random vector with standard normal distribution on Rk and let 

ir(h) = C[Z -(k- 2)(Z + h)/\Z + h\2}. (3.10) 

An argument akin to (2.30) shows that Hn(Xn) converges in distribution, as a 
random probability measure, to the random probability measure 7r(Z). 

The behavior at the origin of the Hodges and Stein estimators, as well as other 
examples, motivates the following abstraction. 

Definition. A sequence of estimators {Tn} is locally uniformly weakly convergent 
at ljo if there exists a family of distributions {7r(ljo, h): h £ Rk} such that 

Hn(0o + n " 1 / 2 ^ ) ==> 7r(lj0, h) (3.11) 

for every h £ Rk and every sequence {hn G Rk} converging to h. 

Theorem 3.4. Suppose that the estimators {Tn} are locally uniformly weakly 
convergent at ljo. Let {ljn} be a sequence of estimators that satisfies (3.2). Let V 
be a random vector whose distribution is J(ljo)- Under Pe0,n, Hn(9n) converges in 
distribution, as a random probability measure, to the random probability measure 
7r(lj0, V). In general, this limit differs from H(60) = 7r(ljo, 0). 

P r o o f . Let Vn, V* and V* be as in the proof of Theorem 3.1. Condition (3.11) 
implies that 

Hn(90 + n-xl2V:) => 7r(lj0, V*) w.p.l. (3.12) 
The result follows. • 

This theorem on possible bootstrap failure also suggests a remedy: use a boot
strap sample size mn much smaller than n. The idea of the cure is due to Bretagnolle 
[8]. 
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Corollary 3.5. Suppose that the conditions for Theorem 3.4 hold. Let {mn: n > 
1} be a sequence of integers such that 

n—<-oo 

Then 

lim mn/n = 0 lim mn = 0. (3.13) 
l—.oo n—»oo 

d[Hmn( n),H( 0)}-*0 (3.14) 

in PeQín probability. 

P r o o f . Observe, in the notation of the previous proof, that Hmn(0n) has 
the same distribution as Hmn(^o + mn ' W*), where W* = (mn/n)1/2V*. Since 
limn_oo W„ = 0 and limn_oo mn = oo, 

Hmn(e0 + m~1/2W:) - ir(90,0) = H(60) w.p.l. (3.15) 

as in (3.12). The corollary follows. • 

The best choice of mn in this subsample bootstrap is the subject of current 
research. One difficulty is that Hmn(9n) can be highly inefficient as an estimator of 
Hn(90) when (3.13) holds and 90 is a regularity point (cf. Beran [3]). 

4. LAM VIEWS OF SUPEREFFICIENCY 

For estimation in the normal model of Example 2, Chernoff [10] stated a local asymp
totic minimax (LAM) bound that he attributed to unpublished work by C. Stein 
and by H. Rubin. This bound, like Theorem 14 in LeCam [28], brings out what 
is wrong with the Hodges estimator in small neighborhoods of its superefficiency 
point. Only years later, in Hajek [18], was the LAM approach formulated for gen
eral LAN parametric models. A convenient version of Hajek's result is the following 
(cf. Ibragimov and Has'minskii [21, p. 162]: 

Theo rem 4 .1 . Suppose that the model Pe>n is LAN at 60. Let w b e a symmetric, 
subconvex, and continuous loss function. Let Z be a random vector with standard 
normal distribution on Rk. Then 

lim liminf inf sup Eew[n1/2(Tn - 6)] > Ew[r1/2(90)Z], (4.1) 
C-.OO n^OO Tn n l / 2 | 0 _ 0 o | < c 

the infimum being taken over all estimators of 9. 

Unlike the convolution theorem, the statement of Theorem 4.1 applies to all 
estimators at every 9 £ O. Suppose that a sequence of estimators {Tn} satisfies 
(2.7) and that the loss function w is also bounded. Then, the lower bound (4.1) is 
attained asymptotically in the sense that 

lim lim sup Eew[n1/2(Tn - 9)} = Ew[I~1/2(90)Z]. (4.2) 
c ^ o o n - + o o n i / 2 | 0 - 0 o | < c 



234 R. BERAN 

Hajek [18] proved a partial converse to this last statement. When k = 1 and w is 
nonconstant, then (4.2) implies that {Tn} must satisfy (2.7). This local asymptotic 
admissibility result is restricted to estimation of low-dimensional parameters. It 
typically breaks down for k > 3, as noted by van der Vaart [53, pp. 1491-1492]. 

E x a m p l e 2 ( c o n t i n u e d ) . Suppose that k = 1 and w{x) = x2. At every 6Q ^ 0, 
the Hodges estimator is LAM in the sense that (4.2) holds. However, at 9Q = 0, 

lim lim sup nEe{Tn H - 9)2 = oo. (4.3) 
c _+con-*oo n l / 2 |0 |< . c 

The infinite limit in (4.3) indicates dramatically the poor performance of the Hodges 
estimator near its point of superefficiency. By contrast, the limiting maximum risk 
of the sample mean Xn is 1. 

E x a m p l e 3 ( c o n t i n u e d ) . Suppose that k > 3 and w{x) = \x\2. At every 6Q E Rk, 
including the superefficiency point 9Q = 0, the Stein estimator Tn>s is LAM in the 
sense that (4.2) holds. The same is true of the sample mean vector Xn. Thus, 
the LAM criterion of Theorem 4.1 fails to detect the improved performance of Tn>s 
around the point of superefficiency oo = 0. 

This insensitivity in the LAM criterion can be overcome by suitably linking the 
value of c to the dimension k and then letting the latter increase. In place of Tn or 
9, we will write Tn_jfc or 9k to emphasize that the dimension of these quantities is 
varying. For every finite positive b, 

l iminf l iminf inf sup k-lnEBk\Tn k - 9k\
2 > b2/{\ + b2), (4.4) 

fc —oo n-+oo TB , f c„i / a |« t |< J f c l / 3 6 

the infimum being taken over all estimators TU)k. To prove this, apply Pinsker's 
[41] minimax bound for estimation in a Gaussian process to the limit experiment 
here, which is a multivariate normal location model with identity covariance matrix. 
Stein [50] pioneered dimensional asymptotics for this normal model. 

The Stein estimator Tn)k)s in k dimensions achieves the asymptotic lower bound 
(4.4) because 

lim lim sup k-1nEek\Tn)k)S-9k\
2 = b2/{l + b2). (4.5) 

fc_oon-+oonl/2|efc|^fcl/26 

For the sample mean vector, the right side of (4.5) must be replaced by 1. Unlike 
the LAM bound of Theorem 4.1, version (4.4) detects the improvement achieved by 
the Stein est imator around the point of superefficiency when dimension k is large. 

5. EPILOG 

Hajek's [17] and [18] papers inspired work by an international array of authors. 
LeCam [31] gave a deep generalization of the convolution theorem and of the LAM 
bound to models whose limit experiment need not be normal. LeCam [33] presented 
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an abstract version of Hajek's asymptotic admissibility result for one-dimensional 
estimators that extends beyond estimation and the LAN setup. Nonparametric 
forms of the convolution theorem were found by Beran [2], Millar [38], and others. 
Nonparametric versions of the LAM bound were obtained by Levit [37], Koshevnik 
and Levit [27], and others. The ideas of Stein [49] played an important role in these 
extensions. Jeganathan [25] initiated detailed study of the case where the limit 
experiment is mixed normal. More recently, van der Vaart [53] treated quadratic 
mean differentiable models whose tangent sets are not necessarily linear spaces. 
Much of what we have learned since Hajek's two papers is covered in monographs 
by Roussas [46], Ibragimov and Has'minskii [21], Pfanzagl and Wefelmeyer [40], 
LeCam [34], van der Vaart [52], LeCam and Yang [35], Bickel, Klaassen, Ritov, and 
Wellner [7], Pfanzagl [39], and in other books cited by these authors. 
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