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K Y B E R N E T I K A — VOLUME 31 ( 1995) , NUMBER 3, P A G E S 2 5 1 - 2 6 8 

THE HAJEK ASYMPTOTICS FOR FINITE POPULATION 
SAMPLING AND THEIR RAMIFICATIONS 

PRANAB KUMAR SEN 

In finite population (equal as well as unequal probability) sampling late Jaroslav Hajek's 
contributions to the general asymptotics are fundamental. In the last two decades more 
research work has been accomplished in this area with the basic ideas germinating from 
Hajek's work. A systematic review of such developments with due emphasis on some 
martingale formulations is presented here. 

1. INTRODUCTION 

1 inite population sampling (FPS) theory provides the most useful methodology for 
drawing statistical conclusions for population characteristics based on a representa
tive sample from it. The simple random sampling with replacement (SRSWR) is the 
precursor of other relatively more complex (and yet useful) sampling designs which 
are adopted in FPS. Simple random sampling without replacement (SRSWOR) re
tains the equal probability sampling (EPS) structure but violates the independence 
of the sample observations. There are various unequal probability sampling (UPS) 
schemes which may have distinct advantages over SRSWR/SRSWOR. Although the 
underlying probability structure for such FPS schemes are well defined, their com
plexities increase with the increase in the size of the population and sample, so that 
asymptotics become indispensible for obtaining simplified (manageable) expressions 
for the sample inclusion probabilities and for studying various statistical properties 
of sample statistics. In particular, in order to set a confidence interval for a suitable 
population characteristic or to test for a plausible hypothesis on the same, we need 
to estimate from the sample the mean square error (MSE) of the estimator of this 
population characteristic. Then suitable large sample theory (generally leading to 
normal laws) can be incorporated to draw the desired statistical conclusions. The 
estimation of such MSE's usually involves estimation or simplification of inclusion 
probabilities which may require some nonstandard asymptotics. Moreover, lack of 
independence may preclude the use of standard central limit theorems (CLT) for 
establishing the asymptotic normality results. In fact, lack of independence, un
equal probabilities for inclusion and complex sampling designs all add complexities 
in the treatment of general asymptotics. Hajek's ingenuity lies in the general for-
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mulation of FPS asymptotics in a rigorous probabilitistic framework which allows 
diverse modern tools to accomplish the needed task. 

Hajek [12] contains a novel and basic probabilistic approach to FPS covering both 
EPS and UPS schemes in a common vein. While most of these works were accom
plished in the sixties and published in contemporary journals, the publication of 
this impressive monograph was considerably delayed due to Hajek's serious health 
problems in early seventies culminating with his premature and unexpected death 
in 1974. Several colleagues and former students of Hajek voluntarily took up the 
pending task of put t ing the finishing touches to the material left behind by him. 
Needless to comment that as in nonparametrics, in FPS asymptotics too, under the 
pioneering guidance of Jaroslav Hajek, the Czech school of probability and statistics 
has made an outstanding contribution, and the flow of research is still on. Ji tka 
Dupacova, J an Amos Visek and Zuzana Praskova are all among the other disciples 
of Hajek whose contributions to this field are noteworthy, and their efforts have led 
to extensions of the basic results of Hajek [5], [8],[11] in various directions. Sampling 
theory (for Poisson sampling and rejective sampling) with varying probabilities (in 
FPS) developed by Hajek [8] immediately caught the attention of prominant statis
ticians from all over the world. Rosen [31]-[33], Sampford [34], [35] and Karlin [18] 
have significant contributions in this vein. In course of this study, certain generalized 
occupancy models cropped up in a natural way, and this led to some further inter
active research in the area of capture-mark-recapture (CMR) methodology. Some 
martingale characterizations in this context have also evolved and led to further 
developments of asymptotics in successive (sub-) sampling with varying probability 
schemes (viz., Sen [38], [40]). Section 3 is devoted to the exposition of these works 
in FPS . 

Invariance principles in FPS has been one of the areas of recent research interest. 
The main inspiration came from the basic work of Hajek in the mid-sixties, although 
most of these developments took place some ten years later on. Section 4 deals with 
these developments. The concluding section is devoted to some general remarks. 

2. SRSWOR AND PCLT 

Consider a finite population HAT = {ait..., aN} of size N (where the aj need not 
be all distinct), and let Xn = {x\,... ,xn} be a sample of size n drawn from n ^ 
according to a probability \awPNn. In SRSWR, this probability law is given by 

P{X1 = aix,...,Xn = ain} = N-n, (2.1) 

for every ij = 1 , . . . , N, j = 1,..., n, and n > 1. Therefore, the Xi are indepen
dent and identically distributed random variables (i.i.d.r.v.) with the probability 
distribution 

P{Xi = ak} = N~\ fovl<k<N;i>l. (2.2) 

In SRSWOR, we have 

P{X1 = ah,...,Xn = ain} = N-M = {N ... (N - n + l ) } " 1 , (2.3) 
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for every 1 < i\ ^ ... ^ in < N, n < N. Although, marginally each x,- has the 
same probability distribution in (2.2), they are no longer independent. The x,- are 
interchangeable (or exchangeable) r.v.'s, but their intra-class dependence pattern 
depends on {N, n}. 

To introduce a permutational (conditional) probability measure (Vn), let us con
sider a set Yi,... ,Yn of i.i.d.r.v.'s with a continuous distribution function (d.f) F on 
JR. Let Zn = {Yn:\ < • • • < Yn.n} be the collection of the ordered r.v.'s (order statis
tics) y n : 1 , . . . , Yn:n corresponding to Y\,..., Yn. Then given Zn,Yn = (Y1,...,Yn) 
takes on each permutation of the coordinates of Zn with the common (conditional) 
probability (n! ) - 1 . This is the genesis of permutational probability laws. To deal 
with the case of possibility discrete distributions and to encompass the SRSWOR 
schemes as well, by reference to (2.3), we let 

Xi=aRi, t> l , (2.4) 

so that (Hi,..., Rn) is a sub-vector of (1,..., N), such that 

l<Ri^...^Rn<N, V 1 < n < N. (2.5) 

Suppose now that our interest lies in the estimation of the population mean 
aN = N_1 J2i<N a«- T n e sample mean Xn = n - 1 YU<n xi is a natural estimator 
of aN having some optimal properties (viz., Nandi and" Sen [22] covering the more 
general case of U-statistics in SRSWOR). We may then write equivalently 

-t» = J];**"•*! (2-6) 
. < J V ;--..-. 

where 
f 1/n, 1 < x < n, 

6i= n " •" J (2J) 
[ 0 , n <i< N; 

{Rn+1,...,RN} = {l,...,N}\{Ru...,Rn}. (2.8) 

Recall that RN = (H i , . . . , H/v) takes on each permutation of { 1 , . . . , N} with the 
common probability (N ! ) - 1 (independently of the aj, j < N), so that we have a 
completely specified probability measure. We denote this permutation law by VN. 
Then, for every n: 1 < n < N, it follows that 

EVN(Xn) = aN and nVVN(Xn) = [(N - n)/(N - l)]A2
N, (2.9) 

where 
A2

N = N-1J2iai-aN}2- (2.10) 
i<N 

Madow [19] used the representation in (2.6) and incorporated the classical Wald-
Wolfowitz [50] PCLT to establish that 

nl'2(Xn - aN)/{AN ((N - n)/(N - 1))1/2} £ Af(0,1), (2.11) 
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whenever N and n are large. The regularity conditions underlying the Wald-
Wolfowitz PCLT were rather stringent, and later on, these were relaxed by Noether 
[23], Hoeffding [16], Motoo [21], and others. The final say in this context is due to 
Hajek [6]. We present this evolutionary picture in a proper perspective. 

Let HN = {«jVi, • • •, aNN} and TN = {bNi, • • •, bNN} be two sequences of real 
numbers, and define aN, bN, AN and BN as in (2.9) and earlier. Then a linear 
permutation statistic is defined as 

LN = 2_j bmaNRi, (2.12) 
i<N 

where RN = (Hi, • • •, RN) takes on each permutation of ( 1 , . . . , N) with the com
mon probability (N ! ) - 1 . Side by side, we may also introduce a bilinear permutation 
statistic as 

QN = Y,dN(i,Ri), (2-13) 
i<N 

where DN = {dN(i,J)'l < i,j 5. N} is a double sequence of real numbers. A 
condition, known in the literature as the Noether condition, that arises invariably 
with PCLT states that for a sequence, say UN, as N —* oo, 

max (a.Ni — O.N)2 / 2j(«Atj — «TV)2 —* 0. (2-14) 
j<N 

Noether [23] replaced one of the Wald-Wolfowitz conditions by (2.14) and showed 
that the PCLT holds. Hoeffding [16] extended this result for QN- Both the ap
proaches are based on the so called "method of moments", and thereby relate to 
sufficient (but not necessary) regularity conditions. 

Hajek [6] had a completely different approach, and he obtained a necessary and 
sufficient condition for the PCLT to hold for LN- For this (without loss of generality), 
we let awi < • • • < a.VAt, a n d introduce a quantile function CIN(-) = {«iv(A): 0 < A < 
1} by letting 

aN(X) = aNi for (i - 1)/N < A < i/N, 1 < i < N. (2.15) 

Also, let U\,..., UN be i.i.d.r.v.'s having the uniform (0,1) d.f., and let 

L°N = X .> lv . " bN)aN(Ui) + NbNaN. (2.16) 
»<iV 

Then, Hajek [6] succeeded in showing that under minimal regularity conditions, as 
N —» oo, 

E(LN - LN)2/V(LN) -> 0. (2.17) 

When TN satisfy (2.14) and aN() is square integrable, the CLT applies to L^, so 
that (2.17) and the Slutzky theorem lead to the CLT for LN as well. Some further 
simplifications can be made when nAr(or TN), N > N0, are defined in a special 
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way (as is usually done in nonparametrics). Let UN:\ < • • • < UN:N be the order 
statistics corresponding to Ui,..., UN, and define 

a*Ni=E<t>(UN:i), \<i<N, (2.18) 

where <j>: (0,1) —* M, is assumed to be square integrable and without loss of gener
ality, we set a = f0 <f>(u) dtt = 0 (=>- a*N = 0, V N > 1). Also, let 

, i , N 

A2= <f>2(u)du (<oo) and A% = -J—J^a*. (2.19) 
JO IV - 1 i = 1 

In (2.12), replacing the aNi by a*Ni, we define L^ (in place of Ljv)- Further let 
BN = B(RN) be the sigma-field generated by the rank vector RN, N > 1. Then, 

E(L°N)\BN) = L*N, V N > 1 , (2.20) 

so that 
E(L*N - L^)2 = E(L%2) - E(L*N

2) = NB2
N(A2 - A*N

2), (2.21) 

and it is easy to verify that A*N is | in N with lini/v—oo A*N = A2. Therefore, (2.17) 
follows readily from (2.21). Moreover, note that for an arbitrary UN, we have 

EVN(LN - L*N)2/EVNL*2 < ( £ > „ , - a*Ni]
2 ) / ( ] T a& ) , (2.22) 

\i<N J I \i<N J 

so that for an arbitrary LN, whenever, 

N"1 Y,(aNi ~ aNi)2 — 0, as N -> co, (2.23) 
«<jv 

(2.17) can be verified through (2.22) and (2.23). Hajek [6] has an elegant math
ematical treatment of this quadratic mean equivalence results in PCLT. In fact, his 
treatment goes far beyond this basic result; the genesis of martingale characteriz
ations in nonparametrics and FPS lies in this treatise. 

With our primary focus on the FPS asymptotics, we discuss only briefly some 
relevant martingale characterizations for LN and some related rank statistics. As in 
(2.6), often, the TN arise from a single sequence {bn; n > 1} of real numbers (e.g., 
bNi = (bi — bN)/BN, 1 < i < N). Also, the Ri depend on N, and hence, we write 
them as RNi, 1 < t < N; N > 1. As such, we write 

L*N = Y,(bi~bN)a*N(RRi), N > 1, (2.24) 
i<N 

where aNi is written as a*N(i), 1 < i < N. As in Hajek [12], we may relate the 
SRSWR to a superpopulation model, and assume that this superpopulation has a 
continuous distribution. Then, along the lines of Sen and Ghosh [46], it is easy to 
very that 

E{LN+I\BN} = L*N a.e., V N > 1, (2.25) 
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where BN = B(RN) is nondecreasing in N. Therefore, 

{L*N,BN; N > 1} is a zero mean martingale. (2.26) 

A similar martingale characterization holds for signed-rank statistics and some other 
related ones. Such martingale characterizations (and approximations for other II jv) 
provide access to general asymptotics, and these are presented in a systematic man
ner in Sen [41]). In passing, we may remark that in a multivariate setup (i.e., when 
the elements of n^v are themselves p-vectors, for somep > 1), the treatment of PCLT 
is a little bit more complex: Chatterjee and Sen [2] formulated the rank-permutation 
approach which extends (2.3) in a natural way (to column permutations of a (p x N) 
rank collection matrix). In this setup too, the Hajek [6] quadratic mean equivalence 
plays a basic role, and a martingale approach to such multivariate PCLT has been 
formulated in Sen [44]. 

Let us return to the SRSWOR asymptotics in a more general setup. The sample 
mean Xn, in (2.6), is a special case of a U-statistic. Based on the sample Xn and a 
symmetric kernel g(x\,..., xk) of degree k(> 1), we define 

Un = U(Xn) = Г\ £ g(Xil,...,Xik), 
^ ' l < i 1 < - - . < i f c < n 

(2.27) 

and by (2.3), we obtain that Un is an unbiased estimator of 

0* = S(nN) = U(IiN) (2.28) 

= AT[n] E 9(an,...,aik). 
{Ki^-jtik^} 

Nandi and Sen [22] established the minimum variance property of Uv (in a nonpar-
ametric setup), obtained a compact expression for the variance of Un, and through 
detailed combinatorial arguments showed that as N —+ oo, n —>• oo (but n/N need 
not go to a positive limit), 

n1/2[Un - 0TV]/(1 - n/N)l/2 is asymptotically normal. (2.29) 

If we define gi(x) = E-pn{fif(xi,.. • ,Xk) \ X1 = x}, and let 

^1} = ££><*-). »>-. (23°) 
i = l 

then it follows from Nandi and Sen [22] that as n —• oo, 

nE[Un -eN- k{uP - eN}]2 - 0. (2.31) 

On the other hand, Un is a linear statistic for which the Hajek [6] PCLT applies, so 
that (2.31) extends the PCLT for general U-statistics. For some related results, we 
may refer to Puri and Sen [30], Ch. 3. We may even extend the PCLT for SRSWOR 
in a more general setup as follows. Let Tn = T(Xn) be an arbitrary statistic, such 
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that QN — ETn exists and the second moment of Tn is also finite. Let us define for 
n < N- 1, 

?» = ̂ £^ „ | *1 -§ I^W (2.32) 
n = l 

Then, it follows by some standard steps that 

E(Tn -fn)
2 = E(Tn - SN)2 + E(fn - eN)2 - 2E{(Tn -eN)(fn-SN)} (2.33) 

= E(Tn-e^)2-E(fn-0 J V)2 , 

so that whenever 

lim E ( f n - O i V ) 2 / E ( T n - 0 N ) 2 = 1, (2.34) 
n,N-+co 

the Hajek [10] projection applies to Tn, and as Tn is a linear statistic, Hajek's [6] 
PCLT applies to Tn under minimal regularity conditions, the PCLT holds for general 
Tn under (2.34) and the same regularity conditions (on Tn). In particular for U-
statistics, (2.34) follows from Nandi and Sen [22]. It is clear from the above discussion 
that the impact of Hajek's [10] projection and quadratic mean approximation on 
PCLT in a SRSWOR setup goes far beyond linear statistics. 

If we go back to the superpopulation model introduced just after (2.24) then 0 ^ 
in (2.28) can be regarded as a U-statistic (say, UN) based on a sample of size N 
from this superpopulation. This enables one to incorporate the reverse martingale 
property of Un, n > k, for i.i.d. sampling, to conclude that for every N(> n > k), 

{Un — OAT; k < n < N} is a reverse martingale. (2.35) 

Actually, in FF 3, SRSWOR schemes, this reverse margingale characterization of U-
statistics (due to Sen [36]) follows directly by using the permutation probability law 
VN, without necessarily appealing to any super-population structure. The past two 
decades have witnessed the phenomenal growth of research literature on asymptotics 
based on martingales and reverse martingales, and (2.35) provides the access to in
corporating such asymptotics in SRSWOR schemes for a broad class of statistics. In 
particular, using the Chow-extension of the celebrated Hajek-Renyi [13] inequality, 
we obtain that for a nondecreasing sequence {cn} of positive numbers and for every 
(k <) n< N, t>0, 

P< max cm\Um-eN\>t} (2.36) 
[n<m<N J 

< r2lc2E(Un-eiv)2+ __. ( c ^ - c ^ J E ^ - O i v ) 2 ! , 
V. m = n + l ) 

where we know that 

E ( U m - 0 i v ) 2 = O ( ( N - m ) m - 1 ( N - l ) - 1 ) , V m > k. (2.37) 
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In particular, letting cm = C = 1, V m > I and 2 = e > 0, we obtain from (2.36) and 
(2.37) that for n 6 [k,N], 

P\ max \Um-QN\>e\<e-2E[Un-eN]2 = 0(e-2n-1{l-n/N)). (2.38) 

This Kolmogorov-type maximal inequality (in SRSWOR) implies that whenever 
n (< N) increases (without necessarily assuming that n/N converges to a positive 
limit), 

6N\ -> 0, in probability. (2.39) max \Un 

n<m<N 
This mode of convergence is stronger than the usual stochastic convergence result 
that Un — 0jv —+ 0, in probability, as n increases, and this result is referred to in 
the literature as the strong convergence in FPS (SRSSWOR). In sequential analysis 
relating to SRSWOR schemes, (2.39) is quite useful (see, for example, Sen [41]). We 
shall consider some allied results in the last section. 

Hajek [9] considered an interesting Kolmogorov-type inequality for dependent 
summands (relating to FPS), and that is allied to (2.36). This inequality, discussed 
in detail in Chapter 5 of Hajek and Sidak [14], plays a vital role in nonparametri.es 
asymptotics. Let d\,..., drq be a set of real numbers. R\,... ,Rn be defined as in 
(2.5) and let dN = N"1 J2i=i * . DN = £.Ii(<*i " dN? and DN = Y^l(di ~ <M4-
Then, for every n(< N), , 

E J2dRi nd N 
L г ' = l 

П{N-П)Џ(N-П-I)(n-1)D% 
NW 

+(N 2 - 6nN + 6n2 + N)DN} 

Using (2.40), Hajek [9] showed that for every e > 0, n < N, 

(2.40) 

P қ max 
Kk<n 

^ - ì 
2 J dRi - kdN | > eDN > 
І=I J 

á Ň \ i5S8r(* - ÍN?'D» + 77} £"4(1 - ^ r 3 ( 1 + w ) ' 

(2.41) 

where nN -* 0 as N —• oo. 
The main utility of (2.41) relates to the case where n/N is small, and for this 

the 4th moment in (2.40) is utilized. However, the 4th moment condition may not 
be necessary. Recall that n _ 1 ]T^_1 dRi is a U-statistic (of degree 1), so that letting 
cn = n, n > 1, we obtain from (2.36) that for every n < N, e > 0, 

\ max Y^dRi - kdN\ > eDN > 
v — i=i J 

(2.42) 

< 
n - l 

E k n(N — n) 

T - T + Lfc = i 
A; + l N 

{ e 2 ( N - l ) } 
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< 
n — 1 n(N — n) 

N-l N(N-1)J 

This inequality (Sen [36]) has further been strengthened by incorporating higher 
order moments or moment generating function of U-statistics in a FPS setup. With 
due emphasis on FPS asymptotics, we may allow N to be large, and, as in Sen [37], 
consider the following. 

Let us define YN = {YN(t), 0 < t < 1} by letting 

YN(t) = DN
l Y, (dm ~ <M, 0 < t < 1, 

i<[Nt] 

where conventionally, YN(t) = 0, V 0 < t < 1/N. Then, 

Y/v —• W°, in the Ji-topology on D[0,1], 

(2.43) 

(2.44) 

where W° = {W°(t), 0 < t < l } i s a standard Brownian bridge on [0,1]. A direct 
consequence of (2.44) is that for every a (0 < a < 1): lim^^co n/N = a, and c > 0, 

lim P \ sup \YN(t)\ >e\=P\ sup \W°(t)\ > e\ . (2.45) 
N-*oo {o<t<a J Lo<l<a J 

V Recall that by the Doob [3] construction, {(t + l)W°(t/(t + l)):t > 0} = {W(t), t > 
0}, where W(t) is a standard Wiener process on [0,oo). As such, for every e > 0, 
0 < a < 1, we have 

P{ SUp \W°(t)\>€ 
.0<í<a 

(2.46) 

= P\ sup (l + u)-1\W(u)\>c\ . 
[o<w<a/(l-a) J 

One may then use the basic results of Anderson [1] to obtain an algebraic expression 
for (2.46) (albeit in an infinite series form). Alternatively, as in Sen [37], we may 
bound (2.46) from above by 

l -Ф^a-Ҷl-a ) ) 1 / 2 ) (2.47) 

where $(ar) is the standard normal d.f. For small a, (2.47) provides a good approxi
mation for (2.46). Whenever a is not so small, one may even use the Kolmogorov-
Smirnov bound: 

pjsup \W°(t)\>A=2j2(-l)k-1e 
U<.<i J jr ; 

- 1 -2ifcV (2.48) 

so that the left hand side of (2.45) is bounded from above by (2.48). Since by the 
Mills ratio, 1 - <&(x) < x~l<j)(x), where <p(x) = $'(x), comparing (2.47) and (2.48), 
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we gather that for small values of a (i.e., e/yjot large), (2.47) provides a better 
bound that (2.48). 

The Hajek-type inequalities in FPS discussed above have found their ways to 
mingle with other applications as well. Again, martingale characterizations play a 
basic role in this context. Let us define the {dn} and the Ri as in before. Also, let 
q = {q(t): 0 < t < l } b e a continuous, nonnegative, U-shaped and square integrable 
function inside (0,1). Then, for every N (> 1), A > 0, 

P< max q(k/N) 
Kk<N 

f^(dRi - ďN)\ >DN\\< A"2 / q2(t) dt. (2.49) 

The proof (Sen [39]) exploits martingale characterizations and the Hajek-Renyi [13] 
inequality. Some applications of these probability inequalities will be considered in 
the concluding section. 

3. UPS ASYMPTOTICS 

Hajek ([12], Ch.3) contains an elegant formulation of probability sampling covering 
EPS as well as UPS schemes. We define a sample s as an arbitrary subset of the 
population S = {1,..., N}, so that there are 2^ subsets (including the empty set 0 
and the whole set S). A Sampling design is specified by a probability law 

P={P(s); seS}, (3.1) 

which characteristingly defines the inclusion probabilities: 

*W,= E P(*)' (3-2) 

for 1 < t"i < • • • < ii < N; / > 1. The most important entities relate to the case of 
/ = 1 and 2. 

For SRSWOR, we have P(s) = (N) if size of s = n, and 0 otherwise. We define 
the inclusion indicators by 

Ii(s) = 1 or 0 according as i £ s or not, 1 < i < N. (3.3) 

In Poisson Sampling the indicators J,- are taken as independent r.v.'s. For any 
sequence of positive numbers pi, • • • ,PN'J2i=iP* = 1) ^ n e corresponding Poisson 
sampling is defined by 

Pw=n** n u-w)- (3-4) 
ie* ies\s 

The sample size of s, denoted by (#«) is therefore a r.v., and 
N N 

E(#5) = X>> Var(#5) = Z)P.-(I - P 0 ; (3-5) 
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7T. = Pi] TTij = PiPj , i ^ j = 1, . . . , N. (3.6) 

The Poisson Sampling leads to a unified way of presenting some other sampling 
methods including the rejective sampling and successi /e sampling schemes. Professor 
Hajek made outstanding contributions in this field too (see Hajek [8]). 

Rejective Sampling (Hajek [8]) may be defined either as conditional Poisson Sam
pling or as conditional sampling with replacement. We let here 

f « * n , e . « ( . i f # S = n; 
P ( s ) = n ti, ( 3 7 ) 

[ 0, otherwise, 
where oc\,..., a AT are positive numbers and £)i-_i a i = T c* > 0- The probability 
a; of selecting the unit i in individual draws has been termed by Hajek ([12], p. 67) 
the drawing probability. For some unified treatment of rejective sampling, we refer 
to Hajek ([12], Ch. 7). In the Sampford-Durbin modification of rejective sampling 
there is a two-phase scheme: The first unit is drawn with the drawing probabilities 

a,-(1) = n_ 17ri, 1 < i < N, (3.8) 

while the remaining n — 1 units are drawn with drawing probabilities 

ai(t) = \7Ti(l - Hi)'1, 1 < i < N, A > 0. (3.9) 

In this scheme, the inclusion probabilities are exactly equal to 7r,- if A is so chosen. 
Successive Sampling consists of a sequence of independent draws of one unit with 

some constant probabilities a i , . . . , a^: J2i<N a* ~ 1* -f a draw yields an unit al
ready selected in an earlier draw it is ignored, and the sequence stops as soon as 
there are n distinct units in the sample s. The advantage of successive sampling is 
that the average number of draws may only moderately exceed the sample size n, 
and the disadvantage is the methodological complications that may generally arise 
when the sar pie size is not small. Rosen [33] has made a fundamental contribution 
to general asymptotics, and Hajek ([12]; Ch. 9) has a unified treatise of the same. 
Some martingale characterizations (viz., Sen [38], [40]) add more flexibilities to such 
asymptotic methods. We intend to present a broader review of these asymptotics. 
For a population IIN = ( a i , • • •, O-N) with drawing probabilities PN = ( p i , . . . , PN), 
in a SSVPWOR (successive sampling with varying probabilities (without replace
ment)) , let A(r , n) = P(r _ s), the probability that unit r is included in a sample of 
size n. Then the well known Horvitz-Thompson estimator of the population total 

(* = £ ; < J V a i ) i s 

HTn = J2wnrar/A(r,n) (3.10) 
r = l 

= ] ^ a r / A ( r , n ) , 
r£s 

where 

w nr 0, otherwise, for 1 < r < N. 
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The varying probability structure introduces additional complications in the study of 
asymptotics for such estimators. Rosen [32], [33] considered an alternative approach 
(via the coupon collector's problem) and presented deeper results. Let {Jfcj k > 1} 
be a sequence of i.i.d.r.v.'s where 

P{Jk = r}=pr, l < r < J V , V f e > l . (3.12) 

Let then 
( aJk/A(Jk,n), if Jfc ^ { J i , . . . , Jfc-i} 

Ynk = { . (3.13) 

[ 0, otherwise, for k > 1; 

vk = inf{m(> k) : number of distinct J\,... ,Jm = k}, k > 1. (3.14) 

Then Rosen showed that for every n > 1, 
n 

HTn=Y,Yn»k = Bnvn, (3.15) 
k=i 

where for each m > 1, Hnm is the bonus sum at the mth stage in a coupon col
lector's problem with the set {anr, pr; 1 < r < n}, with anr = ar/A(r,n), for 
r = 1 , . . . , N. Thus, the asymptotic behavior of randomly stopped bonus sums pro
vides the access to the general asymptotics for HTn and other related estimators. 
Rosen's formulation rests on sophisticated nonstandard mathematical analysis, and 
some simplifications and generalizations based on martingale approximations are 
due to Sen [38]. By reference to a coupon collector's model, we consider a sequence 
{QN} where for each N, QN = {(^N(l),Pi(l)), • • • ,(aN(N),pN(N))} and the non-
negative pN(s) add upto 1. Define the JNk as in (3.12) and the YNk as in (3.13) 
(with the ajfc/A(Jfc,n) being replaced by aN(JNk))- Let then 

ZNn = ^ Y n f c , n>l, ZNO = 0. (3.16) 
k<n 

Then ZNn is the bonus sum after n coupons in the collector's situation QN- If the 
aN(k) are all nonnegative then ZNn is | in n, so that if we let Un = {UN(t), t € -K+}, 
where 

UN(t) = min{A;: zT̂ fc > t}, t > 0, (3.17) 

then UN(t) is the waiting time to obtain the bonus sum t in the coupon collector's 
situation QN- Let then 

lNn 

QNП = ^2 aм(8) [1 ~ e x P (~ПPN(S))], (3.18) 

= Xľ aN(s)e~npN(s) ( l - e - n p ^ s ) ) (3.19) 
í < Л t 

- í J2-N(s)pN(s)e--P»M] , n>ì 
s<N 
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Rosen [31], [32] and Hoist [17], among others, showed that under certain regularity 
conditions, as n —* oo, 

(ZNn - QNn)/dNn Z jV(0,1). (3.20) 

Further, using the identity that for every x,t > 0, P{UN(t) > x] = P{ZN[X} < t}, 
one can derive the asymptotic normality of the normalized version of UN(t), as 
t —• oo. Note that the {ZNn,n > 0}, N > N0 may not generally be a martingale 
array, and hence, the proof of (3.20) rests on some sophisticated analysis. Martingale 
approximations provide simpler solutions. Let QNk = pN(JNk), k > 1, and let 

X^ =YNk(l + QNk)
k-1e-nQ"", k>l, X$ = Q; (3.21) 

X® = X^-E^W-O (3.22) 

= x® - ČÍŽ+EX$QN,(1+QN.)k-, 
5 = 0 

where BNk = B(JNj, j < k), k > 0, and 

rj>> = ^ aN(s)pN(s)exp (-npN(s))[l + PN(s)]k~1, k > 1; (3.23) 
s<N 

and conventionally, we let X^ = 0 = Qj*0\ V n M . Also, let 

3.# = £*lfc. «-d Cl^Ed",,', *>0- (3.24) 

Then, it can be shown that for every e > 0, as N —* oo, 

Pi&JSftl - zNn + QNn\ > e} = 0, (3.25) 

while by construction, for every (N, n), {S^l, BNk\ k > 1} is a martingale array, so 
that by martingale CLT, 

dN\S%l^ N(Q,l), (3.26) 

and (3.20) follows directly from (3.25) and (3.26). As a matter of fact, the asymptotic 
normality in (3.20) or (3.26) extends directly to suitable weak invariance principles 
for bonus sums and waiting times; these are presented in Sen [38]. The coupon 
collector's problem has important application in the generalized occupancy prob
lems with access to the classical mark-capture-release-recapture methodology. The 
number of catches needed to obtain exactly n distinct units relates essentially to the 
waiting time in the coupon collector's problem. In UPS asymptotics these play a 
fundamental role. A renewal theorem in this context is due to Sen [42]. 

Sub-sampling (or multi-stage sampling) schemes are quite popular in practice. 
Here the primary units (say, N) of a population are composed of a number of smaller 
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(sub-) units. Thus, it is customary to select first a sample of n primary units (out of 
N), and then, for each of the selected primary units, to draw a sample of subunits. At 
each stage, one may use EPS or UPS, and, as such, rejective sampling and successive 
sampling schemes are all relevant. The asymptotic distribution theory of estimators 
in successive sub-sampling with varying probabilities without replacement has been 
studied by Sen [40]. This was accomplished through an invariance principle for an 
extended coupon collector's problem wherein the basic martingale approach in Sen 
[38] has been exploited fully. These results provide a good theoretical justification 
for general asymptotics which have occasionally been adopted in survey sampling 
without proper motivation or analytical considerations. To conclude this Section, 
I may remark tha t the Hajek asymptotics in UPS opened the doors for rigorous 
theoretical treatise (often, in contrast to other heuristics in FPS) , and his basic 
ideas also paved the way for martingale characterizations which, in turn, provided 
simpler proofs of many useful asymptotic results. 

4. INVARIANCE PRINCIPLES IN FPS 

In FPS, traditionally, the (asymptotic) normality of (the standardized form of) es
t imators is taken for granted and the prime emphasis is laid down on the estimation 
of its sampling variance, so that large sample confidence intervals and/or hypothesis 
testing can be validly worked out. Nevertheless, this asymptotic normality itself 
remains as a vital issue of serious study. The situation may become much more 
complex when the sample size may itself be a random variable. For example, in a 
stratified sampling scheme (EPS), if the Neyman allocation is based on the sam
ple estimates of the within s t ra tum variances, the resulting s t ra ta sample sizes are 
all random variables. Thus, there may be a need for extending the CLT's in FPS 
(EPS/UPS) to the cases where the sample size may not be prefixed. In fact, in 
inverse sampling schemes the sample size is typically random and is governed by a 
well defined stopping rule. In two (or multi-) stage sampling procedures, and more 
generally, in sequential ones, stochastic sample sizes are quite commonly encoun
tered. In the literature on standard (parametric) asymptotic theory, the classical 
Anscombe theorem extends CLT's to random sample sizes. Another way of dealing 
with this problem is to formulating suitable invariance principles (weak as well as 
stronger ones) which yield the Anscombe-condition as a by-product, and, in addition, 
provide deeper asymptotic results. 

Hajek [9] (and later reported in Hajek and Sidak [14]) provided an excellent 
introduction to such weak (and almost sure) convergence results for appropriate 
rank-processes, and opened the doors for a new approach to the deeper asymptotics 
in nonparametrics. Dealing with rank statistics, the situation is more complex than 
the case of sums of independent random variables, and Hajek [9] had to import 
some finer probability inequalities to verify the "compactness" (or tightness) part 
of the related weak convergence results. In particular, the inequality in (2.41) plays 
a key role in this context. Ranks are not stochastically independent, and hence, in 
PCLT's , the "independent increment" clause may not be generally true. The weak 
convergence result in (2.44) is based on a reversed martingale characterization of 
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U-statistics in FPS (Sen [36], [37]), and for such (reversed) martingale sequences, 
convergence of finite dimensional distributions implies the tightness condition (Sen 
[41], Ch.2)). Similar martingale characterizations have been worked out for various 
rank statistics, leading to appropriate invariance principles for then, and these are 
presented in a unified manner in Sen [41]. Because of the intrinsic connection between 
PCLT's and FPS asymptotics, explained in Section 2, it is quite intuitive to note 
that such invariance principles pertain to FPS as well. 

Resampling plans (viz., jackknife and bootstrap methods) have gained a lot of 
scope for practical applications during the past fifteen years. Although most of these 
developments are related to SRSWR plans, there are some interesting developments 
relating to FPS as well. (The genesis of jackknifing lies in FPS). Invariance prin
ciples for jackknifing U-statistics for finite population sampling were developed by 
Majumdar and Sen [20], and applications to FPS schemes were also discussed. In 
this context too, reversed martingale characterizations in FPS play the key role. For 
bootstrap procedures, in FPS, the weak convergence of the normalized form of the 
bootstrap empirical distribution provides the desired key. 

Invariance principles have also been developed for UPS schemes. For example, 
the asymptotic normality result in (3.25) has been strengthened to an invariance 
principle (Sen [38]) through some related developments for the coupon collector's 
bonus sum and waiting time problems. Again, in this context, martingale approx
imations provide useful tools. Sen [40] contains an invariance principle pertaining 
successive subsampling schemes discussed in the preceding section. 

5. CONCLUDING REMARKS 

Asymptotics in FPS, whether be in EPS or UPS schemes, follow a somewhat different 
track than in SRSWR. Complications may arise due to lack of independence and, 
probably, unequal drawing probabilities, and also there may be other constraints in 
the sampling design contributing more towards this complexity. Hajek's ingenuity 
in providing a sampling design in a deterministic probability modeling has indeed 
led to subsequent developments. In this respect, he did not hesitate to borrow tools 
fiom pure probability theory and stochastic processes to nonparametrics and general 
asymptotics, and the endproduct in a solid foundation of general asymptotics in FPS. 
In this respect, not only he was instrumental in providing the basic research work but 
also successfully developed the Prague School which has made genuine contributions 
in this field. During the last five years of his life, I had a good opportunity to know 
him not only professionally but also as a friend, colleague and mentor as well. With 
my dual interest in nonparametrics and FPS, I found in him an ideal person to follow 
the footsteps. It's difficult, but I learnt a lot. In particular, the role of martingale 
theory in nonparametrics and FPS, we have tried to explore fully during the past 
two decades, might not have come out in the present form without the foresight of 
late Professor Jaroslav Hajek. I therefore take this opportunity to pay my humble 
tribute and homage to this most pioneering researcher in asymptotic methods in our 
time. 

(Received October 26, 1994.) 
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