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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 5 

On Generalized Credence Functions 
PETR HÁJEK, DAGMAR HARMANCOVÁ 

The aim of the present paper is to show that Carnap's conditions of rationality of credence 
functions can always be satisfied for a generalized notion of credence functions. 

INTRODUCTION 

In recent years a great deal of interest in the area of artificial intelligence and 
robotics was directed towards a logical representation of facts about the external 
world as a basis for robot's reasoning and acting in it. In the development of computer 
programs capable of acting intelligently, sooner or later the need will arise to reckon 
with the degree of credibility of various facts about the world and of their con­
sequences. One of the possible approaches is to introduce certain functions assigning 
a value, the credence, to each formula of a formal system. Carnap [1] introduced and 
analyzed the notion of rational credence functions (subjective probabilities) and 
demonstrated their existence under certain simplifying assumptions about the 
language (see [2]). However, there exist language systems (theories) for which 
Carnap's conditions of rationality cannot be satisfied (see [3]). 

The aim of the present paper is to show that Carnap's conditions can always be 
satisfied for generalized rational credence functions; the generalization consists in 
allowing the values of a rational credence function to be elements of an ordered field, 
not necessarilly the field of real numbers. 

It is shown in the Appendix that all Carnap's conditions can be satisfied within the 
framework of the theory of semisets when we do not require the rational credence 
function to be a set (i.e. if we admit semiset credence functions).* 

* The results of this paper were presented at the seminar on applications of Mathematical 
Logic at the Faculty of Mathematics and Physics of the Charles University, Prague, partly in 
January 1971 and fully in October 1972. We thank to Dr. I. M. Havel for a valuable discussion 
and to Professor Dana Scott for his information about his work [7]. 



1. PRELIMINARIES 

In this section we shall recall Carnap's notions and several notions of logic. Our 
(re)-formulation points out formal rigour and ignores nearly completely any informal 
derivation of the notions introduced. (For the latter see [1].) 

By Carnap, subjective probability is "the probability assigned to a proposition or 
event H by a subject X, say a person or a group of persons, in other words, the degree 
of belief of X in H". Carnap supposes that the degree of belief is a real number. 
(Nevertheless, it seems he presents no arguments in favour of this assumption.) 

Thus, we have the following 

1.1. Definition. Let T be a non-contradictory theory in the first-order predicate 
calculus. FormT denotes the set of closed formulas of T. For q> e FormT we define 
[<p]T = {i^; T h cp = \j/}. LindT denotes the Lindenbaum-Tarski algebra of T, i.e. 
the Boolean algebra of classes of equivalent formulas of T with operations defined 
as usually. Re denotes the field of real numbers. N is the set of all positive natural 
numbers. Cr is a credence function for T if Cr is a mapping of FormT into Re. 

We take the first Carnap's requirement of rationality for the definition of a rational 
credence function: 

1.2. Definition. Cr is a rational credence function for a theory T if Cr is a credence 
function for T and the following conditions hold for any <p, \j/ G FormT: 

1) 0 = Cr(<p) = 1, 

2) T r l(cp A \jj) => Cr(cp V f) = Cr((p) + Cr(ij/), 

3) T r q> => Cr((p) = 1, 

4) Cr(<p) = 0=>Th1q>. 

1.3. Remark. It follows from the conditions l)to 3) that T h (<p = \jj) => Cr(q>) = 
= Cr(\]j). Consequently, given Cr, we can define a function Cr on LindT putting 
Cr([())]) = Cr(q>). We can now reformulate 1.2 as follows: Cr is a rational credence 
unction iff Cr induces a strictly positive normalized measure on LindT. 

1.4. Definition. Given a credence function Cr, Carnap defines the conditional cre­
dence function in the usual way: 

1 1 ' Cr(E) 

provided that Cr(E) > 0. 

The second Carnap's requirement of rationality does not refer to a single credence 
function but to a system of credence functions. 



1.5. Let S = <T0, {E;};ew, {Cr;}i60)>, where EieFormTo and Cr; are mappings 
of FormTo into Re. (co = JV u {0}) Denote T ; = (T0, /\ Ej). S is an evolving credence 

j < i 

system, if E; is a non-contradictory formula of the theory T ; for any ;'. We shall 
call Cr0 the initial credence function of S. 

The second Carnap's requirement of rationality reads: If an evolving credence 
system is rational then 

1) Cr; is a rational credence function for T ;, 

2) Cri+1(<p) = Cr'i((p | E,) for any i e co (equivalently, Cri+l(cp) = Cr'0(<p | A Ej)) 

for any i e co). J~l 

Remark. It is evident from the definition that the initial credence function of an 
evolving credence system S (together with the sequence {E;},e(0) determines uniquely 
all the credence functions of S. Hence, the next requirement of rationality makes 
limitations just on initial credence functions. 

1.6. Definition. A permutation p of the alphabet of T is said to be a substitution 
permutation if the following holds: 

1) {s; s =t= p(s)} is a finite set, 

2) if s is a constant, then p(s) is a constant, 

3) if s is an n-ary functor, then p(s) is an n-ary functor, 

4) if s is an n-ary predicate, then p(s) is an n-ary predicate. 

If <p is a formula of T, then p(cp) denotes the formula which is obtained from cp by 

replacing all constants, functors and predicates by their p-images. 

A permutation is called T-conservative if 

(Vp e FormT) (T V cp *> T r p(cpj). 

A credence function Cr for T is called T-symmetric if 
- ••, 

(Vcp e FormT) (Cr(cp) = Cr(p(cp)) 

holds for any T-conservative permutation p. 

1.7. The third Carnap's requirement of rationality requires the initial credence 
function of a rational evolving credence system to be T0-symmetric. 

We shall not introduce any other requirements of rationality. Hence, we make the 
following 

1.8. Definition. A credence function Cr0 for T0 is a rational initial credence 
function for T 0 if Cr0 satisfies conditions 1) to 4) of 1.2 and if Cr0 is T0-symmetric. 



346 1.9. If p is a T-conservative permutation, then 

(V<jo, i> e FormT) ( T f - < p s i / < o T h p(cp) = p(ip)). 

Hence, we can define p[<p] = [p(<p)], i.e. T-conservative permutations induce auto­
morphisms of LindT. Put ConsvT = {p; p is a T-conservative permutation}; ConsvT 

is a locally finite group of automorphisms of LindT. 
We have the following evident assertion: Cr0 is a rational initial credence function 

for a theory T0 iff Cr0 induces a strictly positive normalized measure on LindTo 

which is symmetric with respect to ConsvTo. Consequently, we can study measures on 
Boolean algebras instead of functions defined on closed formulas of some theory. 

2. INITIAL CREDENCE FUNCTIONS 

The theory T of linear ordering with countably many constants a0, at, ..., and with 
axioms a ; 4= a_ for i 4= / is an example of a theory for which no rational initial cre­
dence function exists. Let <pk be the formula (Vx) (ak -g x) ("ak is the least element") 
and let Cr be a rational initial credence function for T. Then clearly Cr(cpk) > 0 for 
any k, Cr(<p;) = Cr(<p,) for any i, j and T h ~l(<j9; A <p;) for i 4= j . As a consequence, 

i - i fc-i 

Cr(/\(Pi) — k . Cr(q>0), which is a contradiction: we obtain Cr( A <?>;) > 1 for 
;=o i = o 

k > 1/Cr(<p0). 
Thus, when studying rational initial credence functions in a general way it is 

inevitable to weaken the requirements on Cr0. There are the following possibilities: 

(i) It is possible to give up the requirement of strict positiveness. This possibility 
was investigated by Carnap and Kemeny. 

(ii) Another possibility is to surrender symmetry. For this case the problem of 
existence of rational credence functions is solved by Kelley's result [4]. From this 
result it follows that a strictly positive finitely additive real measure exists on any 
countable Boolean algebra. 

(iii) The third possibility is to remove the assumption that Cr0 is a real function. 
(This solution was suggested by Kemeny [3].) 

Carnap in [1] gives no arguments for the assumption that the values of credence 
functions are real numbers. Thus, we shall study generalized credence functions 
defined on any (not neccessarilly Archimedean) ordered field. 

2.1. Definition. A generalized credence function for a theory T is a mapping of 
FormT into an ordered field. A generalized measure ^ on a Boolean algebra B is 
a mapping of B into an ordered field F, for which 

(V«e*)(M«)^ °r)> 
(Vw, v e B) (u A - v =- 0B-* n(u v B v) = n(u) + f fi(v)). 



Quite similarly, generalized normalized measure, strictly positive measure etc. are 

defined. A generalized measure with values in an ordered field Tis called an F-measure. 

We say "measure" instead of "R«?-measure". 

2.2. Remark. The whole Carnap's discussion about the rationality of credence 

functions can be performed without complications for functions with values in any 

ordered field. 

2.3. Theorem. Let B be a non-degenerate Boolean algebra, let P be a locally finite 

group of automorphisms of B. Then there exists an ordered field F and a strictly 

positive normalized r-measure fx* on B such that 

(VpeP)(VueB)(fi*(u) = lx*(p(u))) 

(i.e. n* is symmetric with respect to P). 

The proof is a modification of the proof in [5]. First we prove the following lemma: 

2.4. Lemma. Let B and P satisfy assumptions of the foregoing theorem; let u<,.. . 

..., u„ e B , ut > 0B, ...,u„> 0B, pu ..., pke P. Then there exists a real measure \i 

on B satisfying the following conditions: 

(Vj)(n(uj)>0), u(lB) = l 

(Vi,j)(n(Pi(uJ)) = n(uJ)). 

Proof. Put U = {Pi(uj); i = 1, ..., k, j = 1,..., n). Without loss of generality 

we can suppose VU = 1 B (otherwise we add w„+1 = 1„ - \/U). Similarly we can 

suppose that pu ..., pk constitute a group (since P is locally finite). We define U0 = 

= { A Bij Pi(uj); eu e {1, -1} , A Bij Pi(uj) * 0B). For any w e U0 let B \ w be the 
i.J Uj 

partial algebra determined by w. Let j w be an ultrafilter on B | w. Let U0 contain q 

elements. We define nw on B I w as follows: 

MwK) = 
- if w' єjv 

ч 
0 if w'фjц 

The measure ^(M) = ]T fiw(u A W) satisfies the requirements of the lemma. 
weUo 

P r o o f of T h e o r e m 2.3. 

Put D = {u; n is a normalized measure on B}. For any uu ...,uneB, ut > 

> 0B, ...,un > 0B, pt,..., pkeP we define Dl\'-;;'"p

n

k as a set of all /ie D satisfying 

conditions of the lemma 2.4. By this lemma Dp\";;'p"k 4= 0. The set a0 = {Dp\';;;;"Pk; 



348 n,keN, «., ..., w„e B, pu ..., pk e P} generates a filter on D (because D"p\]\,u
Pl n 

n -'S!",".",*T - -,pV.V.V,wt
,r«i',".'.'r«i)' L e t J De a n ultrafilter containing the filter generated 

by <r0. Let F be the ultrapower ReDjj. 
(On the set of all functions / : D -» jRe we define an equivalence relation 

f ~j9 = {M;/(J«) = 0(At)}ej. 

Let f = {g; g ~jf}. Then F = {/; / : D -> /?e} i.e. elements of F are equivalence 
classes of the equivalence relation ~;.. We define algebraic operations on F as 
follows: 

h=f+g = {n; h(n) = f(p) + g(fi)} ej , 

h=f . g = {n;h(n)=f(p) . g(p)}ej, 

?£§ = {ii;f(n)£g(n)}ej. 

Then F is an ordered field (see e. g. [6]).) 
We define a measure p*: If u e B, then fi*(u) is the elemenet of F determined by 

the function fi*(u) which has the value p.(u) for each p e D, i.e. (v> e D) (p*(«) (/*) = 
= n(u)). Evidently fi* is a normalized F-measure. Let u > 0„. Then n*(u) (p) > 0 
for all n e D", where i is the identical permutation. D" e j , consequently p.* is a strictly 
positive measure. Finally we have the following: 

(Vp eP)(n*(p(u))(n) = »*(u) (n) for p.eD"pej), 

i.e. fi* is symmetric with respect to P. 

This completes the proof. 

2.5. Corollary. For any non-contradictory theory T there exists a generalized 
rational initial credence function Cr. 

3. PREFERENCE QUASIORDERINGS 

Let us consider the possibility of eliminating credence functions completely. We 
shall investigate in what sense a rational credence function may be replaced by 
a quasiordering. 

3.1. Definition. A linear quasiordering ^ of a Boolean algebra B is realizable by 
a generalized measure p. if 

(Vw, veB)(u=\vop(u) <: p(v)). 

A linear quasiordering ^ of a Boolean algebra B is a preference quasiordering if 



there is a normalized strictly positive generalized measure fi such that r_ is realizable 349 
by/-. 

Scott ([7]) proved the following: 

3.2. Theorem. Let B be a finite Boolean algebra and let __ be a binary relation on if. 
__; is realizable by a normalized measure on B if and only if the following conditions 
hold: 

1) 1_ > 0_, 

2) (Vx£_.)(x__0B) , 

3) (Vx, y e B) (x __ y v y _r x), 

4) (Vx0, xu...,xn,y0, yi,...,y„eB) (((Vi = 1, ..., n)(x. _̂  y.) & x0 + x_ + ... 

• • • + *_ = yo + yi + • • • + yn) -»(*o -^ yo)) for a n y « e !v. 

(The sum in 4) means the sum of characteristic functions of the sets corresponding 
to elements x0, x_, ..., x„, y0, yu ..., y„ in the Stone space of the algebra B.) 

3.3. Corollary. Any preference quasiordering _ _ o n a finite Boolean algebra B is 
realizable by a normalized real measure. 

Proof. If /_* is the generalized measure realizing _\, then 

(Vu, v £ B) (u __ v o n*(u) __ n*(v)). 

It follows from the axioms of an ordered field that __ satisfies the conditions of the 
foregoing theorem, and therefore is realizable by a normalized real measure. 

3.4. Notation. Let J? be a Boolean algebra, x e B. Then x" ls the characteristic 
function of the set corresponding to the element x in the Stone space of the algebra B. 
Put 

Sc (B, __) o (Vrt e N) (Vx0, x_, ..., x„, y0, yu..., y„ e B) 

(((Vi = 1, ..., n)(xt _: y O & E ^ = t Z*() - x0 __ y0) . 
i = 0 i = 0 

3.5. Lemma. Let _> be a Boolean algebra and let __ be a binary relation on _«. 
Then Sc (B, __) _> (VA) (A is a finite subalgebra of B -> Sc (A, __;)). 

Proof. Suppose SC(J9, __;). Let A be a finite subalgebra of B and let x0, X j , . . . 
..., x_, y0, yu ..., y„e A be such that xr _; y ; for any i = 1 , . . . . n and 

(0 xi + xi + ••• + xi = z„ + xi + ••• + xt • 

Denote by „_, ..., «m atoms of the algebra A. Then there is a one-to-one correspon­
dence between functions xi a n d vectors (e_, ..., em), where _* = 1 if u_ 5_ x, and 



350 e* = 0 otherwise, and we have the following equality 

(!!) £(«?...., £ 0 - 1 (-*'•• •••-*)• 
i=0 i=0 

Clearly, /* = ejx* + ... + em%*m for all x e A and it follows from (!) and (!!) that 

1=0 i=0 

By our assumptions we have necessarily x0 r^ y0. We have proved Sc(A , ^ ) . 
Conversely, suppose that Sc (A, ^r) holds for any finite subalgebra A of 5. Let 

x0, xu ..., x„, y0, yu ..., y„e B, x- £r yt (i = 1, . . . , n) and let 

(!!') - M, = t**-
i = 0 i = o 

The elements x0, xlt..., x„, y0, yu ..., y„ generate a finite subalgebra A of B. If 
«!, M2, ..., Mm are atoms of A, we can express (!!!) (using the notation from the first 
part of the proof) in the following equivalent form: 

t « . + - +1 <';£. = t -ft*, + - +1 Ol • 
i = 0 i = 0 i = 0 i = 0 

From this we obtain 

i>?,...,e*0 = f (.*?', ...,^) 
i = 0 1 = 0 

and consequently 

ixi = ixi. 
i = 0 i = 0 

Then, by Sc (A, g:), we have x0 r^ y0. This completes the proof of the lemma. 

3.6. Lemma. Let B be a Boolean algebra and let r^ be a linear quasiordering of B. 
Suppose that for any finite subalgebra A of B there is a strictly positive normalized 
measure realizing the quasiordering r^ n (A x A) (i.e. realizing the restriction -^ 
on A). Then there is a strictly positive normalized generalized measure on B reali­
zing r£. 

Proof. Similarly as in the proof of Theorem 2.3, put 

D —{n; n is a normalized measure on 2?} . 

Let A be a finite subalgebra of B. We define DA = {fi; (i e D & /J. f A to be a strictly 
positive normalized measure on A realizing r^ on A}. DA is non-empty: By the as-



sumption, there is a strictly positive normalized measure u' on A realizing -£ on A. 
Then, if uu ..., um are atoms of A, we can define measures fiu..., ]im on partial 
algebras B\uu ..., B\um putting 

(V, = JM'("'') if veji' 
^ ' ^ (0 otherwise, 

where j ' ; is an ultrafilter on the partial algebra J5 t»( (i -» 1, . . . , m). We define the 
required measure by 

Kv) = X /"i(D A M«) • 
i = l 

The set er = {D"4; A is a finite subalgebra of B} generates a filter on D. (DAi n D"*2 2 
3 DA, where A is the algebra generated by the set A1 u A2.) Let j be an ultrafilter 
on D containing a. The ultrapower F = ReDjj is an ordered field. We now define 
a measure p* on B with values in F: If M e B, then /.*(«) is the element of F which is 
determined by the function p.*(u) having the value u(«) in any ue D, i.e. 

(Vti e B) (VM e D)(p*(w) (//) = /<«))• 

The measure p* has the desired properties. 

3.7. Theorem. Let B be a Boolean algebra and let ^ be a binary relation on B. 
There exists a strictly positive normalized generalized measure realizing ^ iff ^ 
satisfies the following conditions: 

1) (Vx e B) (x 4= 0„ -> x > 0B), 
2) (Vx, y e # ) (x ^ y v y ^ x), 
3) Sc (B, ^ ) . 

Proof. If there exists a strictly positive normalized generalized measure on B 
realizing J>r, then it follows immediately that conditions 1) to 3) hold. 

Suppose conversely that ^ satisfies contitions 1) to 3). Then (by lemma 3.5) the 
restriction of this relation on any finite subalgebra of B satisfies assumptions of 3.2, 
and consequently a strictly positive normalized real measure exists on any finite sub­
algebra of B. Hence (by lemma 3.6) a strictly positive normalized generalized measure 
realizing ^ exists on B. 

3.8. Remark. It is easy to see that the relation ^ from the foregoing theorem is 
realizable by a strictly positive normalized generalized measure which is symmetric 
with respect to a group P of automorphisms of the algebra B if and only if 

4) (Vj> e P) (Vx e B) (x ^ p(x) & p(x) ^ x) 

holds in addition to the conditions l) to 3) given above. 
What does the foregoing tell us about rational credence functions? 

351 



352 3.9. Definition. A linear quasiordering _̂  of closed formulas of a theory T is 
a (rational) preference quasiordering for T if there is a (rational) generalized 
credence function Cr such that 

(V<p, \\i e Formr) (<p < </<- <*• Cr(q>) ^ Cr(\j/)) . 

We say that ^ extends 7"-implication if 

(V<p, i/r e Formr) (Th<p->i/f=><p_^t//). 

3.10. Remark. A rational preference quasiordering of Formr extends T-impli-
cation. 

3.11. Notation. Let E" = {<£l5 ...,e„>; et is the symbol of negation or the void 
symbol}. For any (pu...,<pn, q> e Formr, <P = <<pt,..., <p„>, e — <e1 ? . . . , e„> e E" 
we put 

cf(<p)=- r if T h
4 Aw.-f l» . 

10 otherwise . 

3.12. Theorem. A linear quasiordering -^ of closed formulas of a theory T is 
a rational preference quasiordering iff the following conditions hold: 

1) <. extends T-implication. 

2) If T h ~\i// then the relation \jj -< <p holds for any non-contradictory formula 
<p e Formr. 

3) Let <£ = <9o,Vt.-..,fl»->. f = <<Ao,>Ai, •••,>„>• If (V. = 1, ..., n) (<p, £ i/r.) 

and if (Ve e £2" + 2) ( £ Cf -'(vi) = £ Cf •''(*,), then cp0 <_ ^ 
i = 0 i = 0 

Proof. As soon as 1) is satisfied we can define a quasiordering on £/«dT as follows: 

[<?] ;=* M •**• 9 S5 "A- Since the zero element of the algebra£i«dT is the class of all 

contradictory formulas, the algebra Lindr and the quasiordering <* satisfy condi­

tions 1) and 2) of the Theorem 3.7. Elements of {[Asi<P ;
 A Anj^j}l <8o> •••>£„> 

1=0 j = 0 

>/0,..., f/„>e£2" + 2} different from 0Lindj are just all the atoms of the finite sub-
algebra A of Lindr generated by the elements [<p0],..., [<p„], [i/<0], ••-, [•/<„]• Hence, 

the equality £ C f ^ . ) - £ Cf^(^j) means that the number of atoms of the 
1=0 i=0 

algebra A included in the elements [<p0], • • •, [<?„] is equal to the number of atoms of A 
included in [> 0 ] , ..., [</r„] Or that 



Hence, by Lemma 3.5, Sc(LindT, ~2z*) holds and Theorem 3.12 follows immediately 
from Theorem 3.7. 

3.13. Remark. A rational preference quasiordering -<( for a theory T is realizable 
by a rational generalized initial credence function (say, ^ is a rational initial prefer­
ence quasiordering) iff for any T-conservative permutation p the following holds: 

(V<p e FormT) (q> -£ p(q>) & p(<p) -g q>) . 

3.14. Remark. Let <T0, {E;}iem, {Cr;};eo)> be a rational evolving credence system 
(see 1.5). If - j , is a preference quasiordering realizable by a rational credence func­
tion Cr{, then the quasiordering ^ , + 1 defined as (V<p, \ji e FormT) (cp ^i+i^ <=> 
•**• <? A Ei ^ i "A A £.) is realizable by the function Cri+i. 

3.15. Thus, we have a "pure" definition of rational initial preference quasiorderings 
(a definition not mentioning generalized credence functions, cf. 3.12, 3.13) and we 
know that for any non-contradictory theory T there exists a rational initial preference 
quasiordering of FormT (see 2.5). But it is easy to see that different rational credence 
functions can realize the same preference quasiordering. Hence, it is impossible to 
replace a credence function by a preference quasiordering in the case when the values 
of the function are important. (E.g., for calculation of subjective values of individiual 
acts in the course of rational decision (see [1]) a preference quasiordering is insuf­
ficient.) 

4. APPENDIX: THE THEORY OF SEMISETS AND RATIONAL 
INITIAL CREDENCE FUNCTIONS 

The purpose of this Appendix is to show that our result on generalized rational 
initial credence functions has a nice corollary in the theory of semisets. We think that 
the corollary could be of some philosophical interest and that, consequently, the 
theory of semisets might be interesting as a frame theory for some parts of philoso­
phical logic. 

The theory of semisets was introduced in [8] (for quite other purposes); there are 
some survey papers, e.g. [9], We shall not repeat here the axioms of the theory of 
semisets (hereafter denoted by TSS); instead, we shall try to evoke some intuition 
concerning semisets. 

One may say that semisets satisfy the intuitive equation 

semisets complex numbers 

sets real numbers 

in the sense that proper semisets (semisets that are not sets) are some new (imaginary) 



objects that cannot exist from the point of view of the set theory but that are intro­
duced in such a way that when speaking on semisets we cannot prove any new state­
ment concerning only sets. This can be also expressed by saying that TSS extends the 
set theory conservatively with respect to statements concerning only sets. 

In the Zermelo-Fraenkel system of set theory (ZF) one consisders only one sort 
of objects (called sets) and the membership relation e between sets. One has some 
axioms of existence of sets, some operations with sets etc. For example, for each set x 
one has the set of all subsets of x. (We use letters x, y, ... to denote sets.) It is well-
known (and provable in ZF) that there is no set having all sets as its elements (the set 
of all sets). The Godel-Bernays system of set theory (GB) considers two sorts of 
objects: sets and classes (and membership). In this theory each set is a class but not 
each class is a set. A class is a set iff it is an element of some class. We shall denote 
classes by capital letters X,Y,... It is provable in GB that each class X has the fol­
lowing property: 

for each set a, the intersection X n a is a set. 

Call classes with this property real classes; then in GB we have real classes only. It 
follows easily that each real class which is included in a set (as a subclass) is a set. 
Hence, in GB one proves: each subclass of a set is a set. Define a semiset to be a sub­
class of a set. Hence, all sets are semisets and in GB all semisets are sets. One knows 
that GB extends ZF conservatively, i.e. each statement of ZF is provable in ZF iff 
it is provable in GB. 

Imagine now a theory of three sorts of objects: sets, real classes and classes (both 
real and non-real = imaginary). The axioms assure that sets together with real classes 
behave as in GB (i.e., sets behave as in ZF) but there may be some imaginary 
classes (equivalently, there may be some proper semisets, i.e. semisets that are 
not sets). The aim is that the new theory extends both ZF and GB conserva­
tively, i.e. we cannot prove anything new on sets (and on real classes), but that we 
have some interesting proper semisets. This is the motivation for TSS (or, better, for 
various systems of the theory of semisets), at least from one point of view. We shall 
now describe some reasonable assumptions on existence of proper semisets. 

(a) First, observe that we have two sorts of collections of natural numbers: sets of 
natural numbers and (proper) semisets of natural numbers. Each non-empty set of 
natural numbers have a least element (since sets obey axioms of ZF); but there can 
be non-empty semisets of natural numbers having no least element. It can be meta-
mathematically demonstrated that the axiom "there is a non-empty semiset of 
natural numbers with no least element" can be added to the axioms of TSS and that 
the resulting theory extends ZF conservatively. 

(b) Secondly, we have two notions of cardinality. Either we consider one-to-one 
mappings that are sets or we admit one-to-one mappings being (proper) semisets. 
Two semisets a, Q are absolutely equivalent if there exists a semiset T which is a one-
to-one mapping of a onto Q. Denotation: a & Q. 



In particular, one may have sets x, y that are absolutely equivalent but not equi­
valent, i.e. no one-to-one mapping which is a set maps x onto y. We give two sorts 
of examples: 

(i) Call a natural number n absolute if the n-element set {0, 1, ..., n — 1} is not 
absolutely equivalent to the (n + l)-element set {0, 1 , . . . , n — 1, n). Let An be the 
semiset of absolute natural numbers. Of course, in set theory, all numbers are 
absolute (i.e. An = co); but in TSS we may have An 4= co, i.e., we may have an n 
such that {0, 1, ..., n - 1} can be one-to-one mapped onto {0, 1, . . . , n — 1, n} 
by a semiset-mapping. 

(ii) We can have an uncountable set x (i.e., co can be one-to-one mapped into x by 
a set-mapping but not onto) which is absolutely countable, i.e. there is a semiset 
one-to-one mapping - of co onto x. Or we may require T to be a one-to-one mapping 
of An onto x. This means that x can be enumerated by absolute natural numbers; 
the enumeration is not a set. 

One has the following metamathematical result (Balcar - Hajek - Vopenka): 

4.1. Metatheorem. If one adds the following axioms 

1) An 4= co, 

2) (Vx infinite) (x ~ An) 

to the (usual) axioms of TSS then the resulting theory TSS+ is a conservative ex­
tension of ZF and of GB. 

The theory TSS + will be called the rich theory of semisets. Recall the notions of 
a relational structure and elementary equivalence of relational structures in their 
usual set-theoretical meanings (see e.g. [6]). We restrict ourselves to structures such 
that the arities of all relations and functors are absolute natural numbers and the 
number of all relations and functors is absolute. (In fact, we are interested only in 
structures for the language of ordered fields, i.e. with two binary predicates = , < , 
two binary functors + , . and two constants 0, 1.) 

Vopenka recently proved the following important theorem in TSS+ (not yet 
published): 

4.2. Theorem (TSS+). If mu m2 are two elementarily equivalent relational struc­
tures, then there is a semiset-isomorphism of mu m2, i.e. a semiset one-to-one map­
ping of the field of mt onto the field of m2 preserving all the structure. 

Since one knows that each relational structure is elementarily equivalent to each 
of its ultrapowers, we obtain from 2.3 (better, from the proof of 2.3, which makes 
sense in TSS+) to any Boolean algebra b (a set), and to any locally finite group p of 
automorphisms of b (p a set), an ordered field /(which is a set) elementarily equi­
valent to the field Re of real numbers such that there is a strictly positive ^-sym­
metric/-measure m on b and the preceding theorem assures a semiset-isomorphism T 



between/and Re. Composing m and T we obtain a semiset-mapping JX of b into Re 

which is a strictly positive p-symmetric measure on b. 

Thus, we have the following. 

4.3. Corollary (TSS+). If b is a Boolean algebra and if p is a locally finite group 

of automorphisms of b then there is a semiset \i which is a normalized strictly positive 

p-symmetric measure on b, i.e., 

(Vu e b)(n(u) eRe&O £ /i(w) g 1), 

K-») = 1 • 
(V« e b) (ix(u) = 0 = u = Ob), 

(Vu, » 6 J ) ( « A , i ) = Ob-+ n(u vbv) = fi(u) + n(v)) , 

(VH e b) (Vi e /»)(/.(«) = /.(>(")))• 

Remark. We may prove from the preceding that if u 0 , . . . , w„ are pairwise disjoint 

elements of b and if n is an absolute natural number, then n(u0 V . . . v u„) = £ /*(«;)• 
i = 0 

4.4. Corollary (TSS+). For any non-contradictory theory t (t a set) there exists 

a rational initial credence function Cr which is a semiset. 

(Received January 31, 1973.) 
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