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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 5 

Optimal Control 
of a Linear Discrete System 

JAN ŠTECHA, ALENA KOZÁČIKOVÁ, JAROSLAV KOZÁČIK, JIŘÍ LIDICKÝ 

Optimal control of linear discrete dynamic systems with quadratic performance index is 
discussed. The optimal controller uses all states of the system. An additional constraint of using 
only the measurable output of the system is imposed. A suboptimal controller using only the 
measurable output of the system is derived. The tracking problem for a discrete system is also 
solved. 

1. INTRODUCTION 

Recently, increasing attention has been paid to the theory of systems; this is 
manifested by the great number of articles published all over the world. Application 
of this theory to the problems of control has led to the construction of new algorithms 
for the synthesis of dynamic systems which could not be obtained by classical methods 
in control engineering. Moreover, implementation of these algorithms necessitates 
utilization of digital computer. 

In the well known literature [1], [2], [15], discussion is given of the synthesis of a 
continuous linear dynamic system (CLDS), i.e. determination of a feedback such that 
the control circuit fulfils our demands given by the specific performance criterion. 

In recent literature [4], [5], [16], [13], a great deal of attention has been paid to 
the problems of synthesis of a CLDS using performance criterion formed by the 
integral of quadratic form of state and control of the system. 

The present paper deals with the synthesis of a discrete linear dynamical system 
(DLDS). For determination of optimal discrete control we can use the dynamic 
programming approach [19] or the discrete maximum or minimum principle [20]. 
For determination of dynamic properties of a DLDS we shall use a state model which 
has state equation in the form 

(1A) xk+1 = Mxk + Nuk, 



(i.2) y* = c*k
 3 7 5 

where 
xk, uk, Yk are n, r, m vectors of state, control, and output respectively at time k, 
M, N, C are (n x n), (n x r) and (m x n) matrices of system, control, and output 
respectively the elements of which may be functions of time, and 
k is discrete time, 0, 1,2. . . 

For finite time K of control we assume that the performance criterion has the form 

(1-3) JK = i*ISxK + i £ (xTQxk + uTRuk) 
& = o 

where Q, S, R are symmetric positive semidefinite matrices of dimension (n x n), 
(n x n), (r x r) respectively (S is a constant matrix). For infinite time of control, the 
performance criterion has the form 

(1-4) J = it(xlQxk + uTRuk) 
k = 0 

where Q, R are constant symmetric positive semidefinite matrices. 
In the second part of the present paper we shall derive relations for optimal feedback 

assuming that all states of the system are obtainable — we have so-called complete 
information about the state of the system. In the third part we discuss the track­
ing problem in the case of complete information. 

In practical applications we cannot measure all states of the system and offen it is 
not even economic to do so. In such case the designer can choose from various 
possibilities: 

1. use reconstruction of state by observer-see [6], [7], 
2. use reconstruction of state by Kalmann-Bucy filter - see [2], 
3. use only the output of system for control and thus control the system in a sub-

optimal way. 

The first and second cases utilizing reconstruction of the state of system have the 
disadvantage in increasing the order of the whole system. 

The fourth part of this paper deals with the problem mentioned under item 3. 
A new algorithm is derived for solution of optimal feedback from the output of the 
system. In the fifth section, the tracking problem is solved in the case of incomplete 
information about the state of the system. 

2. SYNTHESIS OF A DLDS WITH COMPLETE INFORMATION ABOUT 
THE STATE OF THE SYSTEM-CONTROL OF STATE 

Given a DLDS described by state equations (1.1) and (1.2) and performance crite­
rion (1.3). Using dynamic programming or the discrete minimum principe [8] we can 



376 derive the optimal control law 

(2.1) ut = -GK_kx*k 

where 

(2.2) GK_k - (R + ^K^^.N)1 NTKK_k_,M 

is time dependent matrix of linear feedback and matrix KK_k satisfies the discrete 
form of Riccati equation 

(2.3) KK_k = Q + MTKK_kM -

- MTKK_k_tN(R + NXc- fc -xN) 1 N 7 * * - * - ! * ! . 

Initial conditions for relations (2.2) and (2.3) are 

(2.4) Go = 0, K0 = S. 

Detailed derivation of these relations can be found for instance in [9]. 
In the case of infinite time of control with performance criterion in the form (1.4) 

and for a time invariant DLDS (IT) and (1.2) relations (2.1) to (2.3) can be used in 
the limit for K -»• oo. 

As shown in [8], matrices GK_k, KK_k may converge to finite values G and K. They 
really converge if the system is stabilizable. Then we have the following relation for 
optimal feedback 

(2.5) u* = ~Gx* 

where 

(2.6) G = (R+ tfKN)1 NTKM 

and Kis a symemtric positive definite matrix satisfying the discrete version of algebraic 
Riccati equation 

(2.7) K= Q + MTKM - MTKN(R + tfKN)1 NTKM. 

Equation (2.7) has only one positive semidefinite solution if the pair (M, QU2) is 
observable. 

These relations can be solved only using a digital computer especially in the case 
of systems of a higher order. Relations (2.2) and (2.3) can be programmed without 
difficulties if initial conditions (2.4) are known. If S = 0, we can use the initial 
condition in the form 

(2.8) G 1 = 0 , 

K, = Q. 

From the point of view of practical use it is more convenient to consider infinite 



time of control. In that case we must solve the nonlinear matrix algebraic equations 
(2.6) and (2.7); there are two ways of solving them: 

1. We can use relations (2.2) and (2.3) for the initial condition K0 = 0 and G0 = 0 
and solve these relations for time K -» oo. As a terminal condition we can use the 
relation 

(2-9) \\KK_k - Kx_k_,|| g e 

where e is a preset number of the order of 1 0 - 3 to 10~6. Normally 30 to 40 iterations 
are sufficient to satisfy relation (2.9). 

2. Relations (2.6) and (2.7) can be solved using the following algorithm mentioned 
in [10]. 

Theorem 1. Let Vk, k = 0 ,1 , 2 , . . . , be the solution of the equation 

(2.10) Vk = M\VkMk + L[RLk + Q 

where 

(2.H) Lk = ( R + N T Y r t _ 1 N Y 1 N T V 1 M , fc = l , 2 , . . . , 

(2.12) Mk*=M-NLk, 

The matrix L0 must be chosen such that M0 be stable. This implies that the pair 
(M, N) must be stabilizable. Then 

(2A3) KZVk+l£Vk 

and 

(2.14) l i m V t = K . 
Ji-00 

The proof of this algorithm is given in [10] where it is shown that the convergence 
rate is quadratic, i.e. 

(2-15) \\K-Vk+1\\^C\\K-Vk\\> 

where C is a constant which does not depend on the iteration index k. 
This algorithm can be easily implemented on digital computer; for solving the 

linear matrix equation (2.10) the algorithm derived in [11] can be used. Solution of 
many examples on a digitial computer has shown rapid convergence of this algorithm. 
Usually 4 or 5 iterations are sufficient for the difference \\Vk - Vk+l\\ to be less then 
io-3 . 

The only remaining problem is that of choosing the stabilization matrix L0. 
Evidently for a stable system L0 = 0 can be chosen. Matrix L0 can also be chosen 
on the basis of physical interpretation of the problem. In general we can use al­
gorithms for computation of the feedback matrix L0 such that eigenvalues of the 
matrix M0 be arbitrary. Practical algorithms and programmes are described in [12]. 



3. TRACKING PROBLEM FOR A DLDS WITH COMPLETE 
INFORMATION ABOUT THE STATE OF THE SYSTEM 

In section 2 we assumed that the aim of control is the state vector x = 0. In 
practical cases we often have to solve a problem with the target of control not in the 
origin of coordinates and it is demanded that the output y* of the system should 
track a given vector zk which may be either constant in time or time-dependent. For 
a CLDS this problem is discussed in [1], [12], [13]. For a DLDS we give here 
analogous algorithms, the derivation of which can be found in [9]. 

Let us define the error vector 

(3.1) ek = zk-Yk-

We shall try to find a control vector uk giving the minimal value of performance 
index in the form 

(3-2) JK - WKSeK + it(eTQek + uT
kRuk) 

k = 0 

where S, Q, R are symmetric, positive semidefinite real matrices (m x m), (m x m) 
and (r x r) respectively, S is a constant matrix, and K is the time of control. 

Using the discrete minimum principle or dynamic programming we can derive the 
optimal control law 

(3.3) u* = -(R + NTKk+1N)~i (NTKk+lMx*k + NTgk+1) 

where matrix Kk satisfies the discrete version of Riccati equation 

(3.4) Kk = CTQC + MTKk+1M - (NTK/t+1M)T(R + NTKk+1N)1 NTKk+1M 

and vector gk satisfies equation 

(3.5) gk = CTQzk + [MT - MTKk+1N(R + NTKk+1N)~i NT] gk+1 

with boundary conditions 

(3.6a) KK = CTSC , 

(3.6b) gK = CTSzK . 

It is obvious from the form of the equations (3.4) to (3.6) that they can be solved 
starting from k = K to k = 0. It means that this procedure can be used only if we 
know the values of the desired vector zk in the whole interval in advance. Moreover 
we are limited to finite time of control only. 

In some cases, the tracking problem can be transformed into the problem of 
control of state. Let us suppose that the desired vector zk equals the solution of the 



difference equation 

(3-7) 2,+ 1 = F z f c . 

Let us define the extended vector wk of dimension n + m 

M -.-ft 
which will be a state vector of the system described by state equations 

(3.9) wk+1 = Mwk + Nuk, 

Yk = Cwk 

where matrices M, N, C of dimensions (n + m) x (n + m), (n + m) x r, m x 
x (n + m) respectively have the form 

(3-io) * - n H°} e-[co]-
Tracking problem with performance criterion (3.2) can be transformed into a problem 
of control of state of the system (3.9) with the performance criterion 

(3.H) JK = iw£w, + i I WQwk + uZRuk) 
k = 0 

where matrices S, Q, R are defined by 

If system (3.9) is not stabilizable, functional (3.11) does not converge for K -* oo 
and this procedure cannot be used for infinite time of control. When F = M and 
rank (C). = m = n, the tracking problem can always be transformed into a control-
of-state problem even for infinite time of control. 

4. SYNTHESIS OF A DLDS WITH INCOMPLETE INFORMATION 
ABOUT THE STATE OF THE SYSTEM 

In sections 2 and 3 we assumed that all states of the system are measurable. It is 
often not possible in praxis and it is not even economic. In such a case one of the three 
possibilities mentioned in the introduction can be used. 

In this and the following section we derive some new algorithms utilizing, for linear 
feedback, only the measurable output of the system. 



380 Let us have a DLDS described by equations (1.1) and (1.2) and the performance 
riterion in the form criterion in the form 

(4.1) JK = i t W Q * * + ulKUk) 
fc = 0 

where matrices Q, R are positive semidefinite. 
Optimal control is assumed in the form 

(4-2) u t = -Fkyk~ -FkCxk 

where Fk is the feedback matrix in the fe-th step of control. Performance criterion (4.1) 
can then be written in the form 

(4.3) JK = i l xk(Q + CTFkRFkC) xk. 
fc = 0 

Solution of the state equation (1.1) with control (4.2) can be written in the form 

(4.4) xk = <j\x0 

where the state transition matrix has the form 

k - l 

(4.5) &k = Y\(M- NFtC), k = l,2,...,K 
i = 0 

and x0 is the initial state of the system. 
From (4.5) it is obvious that matrix 4>k satisfies the equation 

(4.6) *k+1 = (M-NFkC)&k, <P0 = / . 

Substituting relation (4.5) into (4.3) we obtain 

JK = l'£*l*I(Q + CrFkRFkC) * k x 0 
k = 0 

and utilizing relation (xTAx) = tr (XXTJ4) 

(4.7) JK = | tr K£ xox
T

o0k(Q + CrFkRFkC) 4>k . 
k = 0 

Functional (4.7) depends on state transition matrix <Pfc, feedback matrix Fk and also 
on initial state x0 . 

Let us assume that the vector of initial state x0 is a random variable which satisfies 
the relations 

(4.8) £{x0} = 0 , £{x0xT} = I. 



Criterion (4.7) is now a random variable. Evaluating the expected value of the 
performance criterion we obtain the modified performance measure in the form 

(4.9) JK = \EJ:*l(Q + CTFTRFkC) 4>k. 

In this way we have transformed the problem of minimizing criterion (4.1) from the 
space of states to the matrix space where matrix <Pk corresponds to the state of the 
system, matrix Fk corresponds to the control of the system and the system is described 
by equation (4.5). Instead of performance criterion (4.1) we shall minimize the 
expected value in (4.9). 

This problem can be solved using dynamic programming [13]. Here we use the 
matrix minimum principle [17]. In the following derivation we use the identities [17] 

(4.10) tr [ABC] = tr [CAB] = tr [BCA] , 

f tr[AX] = AT, 

i « [ « r i - - . 

£ * [ * ] " . 
— tr [AXBXT] = AXB + ATXBT . 
dX 

Let us define the Hamilton ian function by 

(4.11) H = i tr [#J (Q + CTFTRFkC) tfj + tr [PT
+1(M - NFkC) * J . 

The minimum of the Hamiltonian satisfies the condition 

(4.12) f-0. 
dFk 

From here it follows 

(4.13) 0 = RFkC$k$
TCT - NTPk+i®

TCT . 

Matrix Pk is solution of the adjoint system 

(4.14) Pk = ~ = Q&k + CTFTRFkC$k + (M - NFkC) Pk+i . 



382 Let us assume that the constate matrix Pk has the form 

(4.15) Pk = Kk$k 

and also 

P*+i = Kk+1$k+1 . 

Equaling the expressions (415) and (4.14) we get a difference equation for Kk 

(4.16) Kk=Q+ CTFTRFkC + (M - NFkC)T Kk+1(M - NFkC). 

Substituting (4.15) into (4.13) we can write 

(4.17) 0 = RFtC<*>t _>JCT - NTKk+ ,(M - NFkC) _>t_>JC . 

Let us introduce a matrix Lk defined by the equation 

(4.18) Lk=$k<l>T. 

From this (considering 4.6) the difference equation for Lk can be obtained as 

(4.19) Lk - (M - NFk_,C) Lk_,(M - NFk_,C)T. 

Substituting relation (4.18) into (4.17) the equation for optimal feedback matrix Fk 

is derived Fk = (R + ^K^.N)'1 NTKk+1MLkC
T(CLkC

Tyl. From here follows 
a theorem giving a necessary condition for optimality. 

Theorem 2. Let F* minimize the functional (4.9). Then 

(4.20) F* ={R+ NTKk+1N)i NTKk+1MLkC
T(CLkC

T)^ 

where 

(4.21) Kk = Q + CTFFRFl*C + (M - NF*kC)T Kk+1(M - NF*C) 

and 

(4.22) Lk = (M- NF;_. C) Lk_ t(M - NF*_. C)T . 

Initial conditions for equations (4.21) and (4.22) are 

(4.23) L0 = / , K ^ ^ Q , FK_, = 0. 

Equations (4.21), (4.22) and (4.20) are nonlinear matrix difference equations 
whose solution is difficult. Convenient algorithm for digitial computer has not been 
found yet. 

Let us derive simple algorithms which would enable us to solve approximately 



equations (4.20) and (4.21). Equation (4.17) for the feedback matrix Fk has the form 383 

(4.24) A.B = 0 

where 

(4.25) A = RFkC - NTKk+1M + NTKk+1NFkC, 

Equation (4.24) has dimension (r x m) and has the solution for (r x m) elements 
of the feedback matrix Fk. Matrices A and B are divisors of zero but relation (4.24) is 
satisfied whenever A = 0. This is a special solution of relation (4.24). According to 
[14] we can write a matrix equation 

(4.26) A = A 

where A is the error matrix. We want the error matrix to be minimal. Let us choose 
the criterion in the form 

(4.27) Jt = tr (AAT). 

Now we derive the equation for feedback matrix Fk giving minimal value of criterion 
(4.27). Substituting (4.25) and (4.26) into relation (4.27) we obtain 

(4.28) Jt = tr {[(R + NTKk+1N) FkC - NTKk + 1M] . 

[CTFk(R + NTKk+1N) - MTKk+1N]} . 

Denote 

(4.29) D = R + NTKk+1N, 

£ =NTKk+1M. 

Equation (4.28) now has the form 

J1 = tr (DFkCCTFTD - DFkCET - ECTFTD + ££T ) , 

or 

J , = tr (DFkCCTFkD) - 2tr (DFkCET) + tr (££T). 

From the condition for J2 to be minimal in every step of control it follows 

(4.30) g i = 0. 
dFk 

Using relations (4.10) we obtain DFkCCT - £CT = 0. 
From here it follows 

(4.31) Fk = (R + NTKk+1N)1 NTKk+1MC\CCTy> . 



384 Utilizing criterion (4.27) in the form 

(4.32) J t = tr (AVAT) 

where V is a symmetric positive definite weighting matrix of dimension (n x n) we 
obtain the optimal value of the feedback matrix in the form 

(4.33) Fk = (R+ NrKk+lN)> NrKk+lMVCr(CVCryl . 

Relations (4.31) ro (4.33) for feedback matrix Fk with relation (4.21) for matrix Kk 

are easy to solve. 
Theorem 2 gives only a necessary condition and so the uniqueness of the solution 

of equations (4.20)-(4.22) remains an open problem just as in the continuous version 
of this problem [18]. Results obtained using relations (4.31) or (4.33) do not guarantee 
the minimal value of criterion (4.10). Equation (4.31) is satisfied as nearly as possible 
in accordance with criterion (4.27)'or (4.32). 

5. TRACKING PROBLEM FOR A DLDS WITH INCOMPTLETE 
INFORMATION ABOUT THE STATE OF THE SYSTEM 

As in section 3 we shall now discuss the problem of tracking a given vector zk. Let us 
define the error vector 

(5.1) ek = zk-yk. 

The control law has the form 

(5.2) uk = -Fkyk = -FkCkxk. 

The performance criterion for this problem has the form 

(5.3) JK = WK*eK + * £ (erQek + urRuk) 
k = 0 

where matrices Q, R satisfy the same conditions as in section 3. After substitution and 
modification criterion (5.3) has the form 

(5.4) Jk = i(zrSzK - 2xr4>rCrSzK + xr
04>r

KCrSC<I>Kx0) + 

+ ^(zkQzk - 2xr^r
kC

rQzk + xr^r
kC

rQC€>kx0 + xr<l>rCrFrRFkC<l>kx0) 
* = o 

where matrix <Pk satisfies-relation (4.6), 

(5.5) 4>k+l=(M-NFk)<l>k, 4>0 = l. 

We shall now evaluate the expected values for n linear independent initial vectors x0 



satisfying the relation 

(5.6) i x0 ;x
T

; = I . 
i = l 

The modified performance criterion has now the form 

(5.7) 3K = ~ {nzT
KSzK - 2 J] xT

;$
TCTSzK + £ xT

0i^
T

KCTSC^K J xo;) + 
2n i=i ;=i ;=i 

+ f IWQ-* - 2 i; *Ti**cTQzt + i xT
Oi0

T
kc

TQc^k i Xoi + 
2n k = o ; = i ;= I ;=i 

+ i xT
0i<PT

kC
TFT

kRFkC<l>k i x0i). 
; = i i = i 

Let us assume that 

(5.8) f > T
; = [ l , l , . . . , l ] . 

; = i 

As in [13] let us define a symmetric matrix of dimension (m x m) 

(5.9) Zk = nz tz
T 

and a matrix (m x n) 

(5.10) Zk = zkix
T

0i. 
i = l 

After substitution of (5.8), (5.9), (5.10) into (5.7) the performance criterion now has 
the form 

(5.11) JK = - to [<1>TCTSC<1>K + ZKS - 2ZK<f>KCTS] + 
2n 

+ f tr [ I W C ^ Q C + c T f*R^C) ** + **<? - 2Zt«&TCTQ)] . 
2n *=o 

This modified performance criterion (5.H) must be minimized by Fk subject to the 
constraint imposed by the system equation (5.5). 

For the solution we shall again use the discrete matrix minimum principle. The 
constant l/n in (5.11) has been left out for reasons of simplicity. The Hamiltonian for 
this problem is 

(5.12) H - i tr [*T
k(C

TQC + CTFTRFkC) &k + ZkQ - 2 Z ^ T C T Q ] + 

+ tr[{M-NFkC)^kP
T

k + 1]. 

Necessary condition of optimality is 

(5.13) dJL = RFkC*k#
T

kC
T - NTPk+l4>T

kC
T = 0 



386 Matrix Pk is the solution of the adjoint systems 

ALT 

(5.14) Pk = — = (CTQC + CTFTRFkC) 4>k - 2CTQZk + (M - NFkC)T Pk+. . 

a*t 

From the transversality conditions it follows that 

(5.15) PK=CTSC$K-CTSZK. 

Let us assume that the matrix Pk can be written in the form 

(5.16) Pk = Kk<Pk - Ck 

where the unknown matrix Gk is connected with the reference input zk. Equaling 
equations (5.16) and (5.14) we get difference equations for matrices Kk and Gk. 

(5.17) Kk = CTQC + CTFTRFkC + (M - NFkC)T Kk+1(M - NFkC), 

Gk = 2CTQZk + (M-NFkC)TGk+1. 

From (5.15) we obtain the boundary conditions 

(5+8) KK=CTSC, GK = CTSZK. 

The optimal output feedback Fk follows from equation (5.13) 

(5.19) RFkC0k0
TCT - NT[Kk + 1(M- NFkC) <[>k - Gk] <2>TCT = 0 . 

From here it follows 

(5.20) Fk - (R + NTKk+ .NY1 NT(Kk^M4>k - Gk) 4>TCT(C<^TCT). 

The optimal feedback gain can thus be divided into two parts. One is identical with 
the feedback gain designed for the state regulator problem-equation (4.20), the second 
part is determined by reference input zk only. 

In case where the initial value z0 of the vector zk can be considered to be a random 
variable as well it can be shown that the tracking problem can be transformed into 
the state regulator problem. Let us assume that vector zk is a solution of the difference 
equation 

(5.21) zk+1=Hzk. 

Let us define the extended state vector 

(5.22) [::] 



Equation for the original system (l . l) and the equation (5.21) can be put together 387 
and using (5.22) we obtain 

(5.23) * - - [? y ^ + t r h 
Let the output of the system (5.23) be 

(5.24) yk -» CWk, 

where 

C = [ C , - / ] . 

It follows that 

(5-25) yfc = yk-zk = -ek. 

The tracking problem for the original system is equivalent to the output regular-
tor problem for the system (5.23) and (5.24). 

6. CONCLUSION 

In the present paper the problem of optimal control of a DLDS with respect to 
quadratic performance criterion is solved. 

When all state of the system are measurable, solution of this problem is well known 
and is discussed in section 2. Algorithms convenient for digital computer are also 
mentioned here. 

When the additional constraint of using only the measurable output is imposed we 
have the so called problem of incomplete information about the state of the system. 
Optimal solution of this problem uses state reconstrution by an additional dynamic 
system (observer or Kalman-Bucy filter) whose dimension is specified. 

In optimal solution we can use dynamic controller of a lower dimension that is 
necessary for state reconstruction. In this paper the limiting problem is solved where 
the regulator is only proportional and uses only the measurable output of the system. 
This suboptimal controller is derived assuming the initial state of the system has some 
statistical properties. Solution of this problem results in nonlinear matrix equations 
solving of which is difficult. A simplified but approximate solution of this problem is 
discussed at the end of section 4. Like in the continuous version [18] questions about 
the existence and the uniqueness of the solution of the suboptimal proportional 
feedback controller are yet to be answered. 

The discrete version of the tracking problem both for complete and incomplete 
information about the state of the system is also solved in the present paper. 

(Received January 9, 1973.) 
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