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K Y B E R N E T I K A — V O L U M E 12 (1976), N U M B E R 5 

Statistics and Computability 

TOMÁŠ HAVRÁNEK 

In the present paper conditions under which statistical procedures with definite probabilistic 
meta-properties (such as unbiasedness, uniformly most powerfulness, etc.) can be identified with 
realizing computational procedures are investigated. 

"Perhaps neither mathematicians specialized in probability theory or statistics nor 
experts in electronic data processing will look on computational statistics as a serious 
scientific subject". This is the first sentence of COMPSTAT 74 — Proceedings 
in Computational Statistics [3]. On the other hand, perhaps nobody can deny the 
practical meaning of the connection between computer applications and statistics. 
The above mentioned proceedings can serve as an excellent example of the practical 
power of computer techniques in statistics. Another field of such interactions between 
statistics and computers is the mechanized Hypothesis Formation or similar methods 
of Artificial Intelligence (see [9], [7] or a systematic approach in [10]). 

But already in the first book that has the words "Computational Statistics" in its 
title (Freiberger and Grenader [5]), the possibility of theoretical problems of this 
topic is mentioned. The aim of the present paper is to give some suggestions concern­
ing their solution. 

Some of the results of this paper were published in a very sketchy form in [11]. 
The present paper is highly influenced by the authors cooperation with P. Hajek 
in writing [10]. I wish to express my gratitude to P. Hajek for many discussions, 
suggestions and friendly help. 

The theory of computable functions ( = recursive functions, cf. [18]) is well known 
in the mathematical foundations of computer science. The class of computable 
functions covers the class of functions computable in real time on a real computer. 
More deep investigations of such functions leads to the theory of concrete computa­
tional complexity (see, e.g. [19]). Clearly, before one considers concrete computa-



tional complexity of some functions it is necessary to know whether they are com­
putable in principle. 

Statistical theory constructs statistics (statistical decision functions) without any 
respect to their computational properties. In usual statistics this fact is not very 
dangerous from practical point of view, because the practical statistician, guided 
by his intuition, uses only decision functions that are computable in the informal 
sense. Fortunatelly, various statistics optimal w.r.t. various statistical criteria are 
intuitively computable. Nevertheless, from the logical point of view, the question of 
computability of statistics (in a formal sense) deserves serious investigation. 

Note the following fact: all data obtained as a result of experiments, measurements, 
etc. are rational numbers. All our computational procedures which realize our 
statistical estimates, tests, etc. work with these rational numbers. But statistical 
procedures are constructed mainly with respect to all real numbers. 

The theory of computability has been developed on functions whose arguments 
and values are natural numbers. It is rather trivial to change it as to apply to functions 
whose arguments and values are rational numbers; but there is no obvious way how 
to define computability for real-valued functions. Thus, speaking on computable 
procedures, we shall mean procedures dealing with rational numbers. Probabilistic 
properties of such procedures are not specified. But using appropriate restrictions, 
we shall guarantee that each computable procedure determines uniquely a statistics 
(on real numbers) whose probabilistic properties are well defined. 

This situation is typical in the mechanized hypothesis formation. 

We can illustrate our problems by two examples. It is clear that these examples 
are rather artificial but from the logical point of view they cannot be ignored. 

(1) We investigate samples of independent and identically distributed random 
variables having normal distribution. As an estimate of expectation we use the 
arithmetical mean which has some optimal statistical properties. Suppose that our 
samples are of the cardinality m. Then the mean / maps Rm into R, where R is the 
set of real numbers. What we really deal with, is a result of measurement, i.e. values 
in Qm, where Q is the set of rational numbers. Consider a statistic / ' : Rm -* R 
such that / ' |x Qm -> c. where c is a rational constant and / ' N (Rm — Qm) = / Is 

p (Rm — Qm). The statistic / ' has the same optimal statistical properties as / and 
for all results of measurement it gives the value c. 

(2) We consider in the same situation an optimal test statistic t for testing one­
sided hypothesis about expectation. If we put f. f" Qm = 0 and tx \ (Rm - Qm) = 
= t |x (Rm - Qm), tt is an optimal (e.g. uniformly most powerful) test for this situa­
tion, but it never rejects the hypothesis on the base of experimental data. 

One of the aims of the present paper is to find such features of statistical procedures 
which help to avoid such paradoxa. It means to find a good relation between proba­
bilistic properties of statistics and computational procedures operating on rational 
numbers and realizing these statistics. The second aim is to establish clear logical 



foundations to mechanized formation of hypotheses based on statistical data (this 
point of view is developed in [10]). The third motivation is the following: the investi­
gation of the relation between computability and probabilistic properties is the 
necessary first step towards the construction of statistical procedures optimal with 
respect to computational complexity — and this could be a very practical task. 

Some other problems arise if we choose an exact frame for our considerations. 
We shall use the usual Kolmogorov probability; we use probability in theoretical 
and meta-level, where we need no computations. 

If now I = <-£, 3%, Py is a probability space (I — the set of states, ffl — a cr-field 
of subsets of E, and P — a probability measure) and if V ^ R, then we define 
a regular Z-random V-structure of the type <1"> as an (n + l)-tuple U = 
= <U, qif..., q„y in which each q% is a mapping of U x I into V such that, for 
each ueU, qt(u, —) is a random variate, and each sequence of n-dimensional random 
variates {(qi(uk, — ) , . . . , q„(uk, -)>}/, e N (where uk e U) is stochastically independent. 
(N means the set of natural numbers, N + = N — {0}.) Let the type n and the proba­
bility space I be arbitrary but fixed in the sequel. Now we present some denotations: 
Denote by J/v the set of all structures of the form <M, fx, ..., /„> where M is a finite 
set a n d / j , . . . , /„ are functions from M into V; J/M is the set of such structures with 
fixed domain M. The meaning of J/VnQ and J/M

nQ is clear. Now if U is a I-random 
F-structure, if M £ U is a finite sample and if a e E is a random state, we have 
a uniquely determined sample structure Ma e J/V

u, corresponding to the experimental 
data. (Pedantically we should write Ma.) For each M we define a metric on J/M, 
e.g. as 

e ( A f 1 ) M 2 ) = max \ffu) - g{u)\ 
ueM,i=l,...,n 

if Mx = <M, / j , ...,/„>, M2 = {M, gu ...,g„y. In the further, we shall suppose 
on J/M the topology given by Q. If $ is a sentence speaking about random structures 
we shall write U > ^ if $ is true in U. (We use this unusual denotation for typografi-
cal reasons.) 

One kind of statistical inference we shall consider, namely hypothesis testing, has 
then the following form: 

We have two theoretical sentences (sentences speaking about random structures, 
cf. [8; 11] and/or [10]) # and Y; we have accepted $ (and we call $ the frame 
assumption) and we ask whether to accept ¥ or not. To decide this question we first 
fix a set V0 £ Vand a function/associating with each structure Ma a value f(Ma) e V. 
Then we make observations (get a particular structure Ma) and compute f(Ma). 
Iif(Ma) e V0 we accept ¥. This procedure is justified, at least, by choosing/ and V0 

such that the following holds: if U |> $ and U W ¥ then the probability P({<?; f(Ma)e 
e V0}) is small. Thus / a n d V0 are chosen on the base of their probabilistic properties. 

What do we really observe and decide? We assume that our data are in J/VnQ. 
If V E Q no problems arise but if V n (R — Q) 4= 0 we face the following problem: 
For an arbitrary V0, we must answer the following questions: Is the probability 



P({a;f(Ma)e V0}) well defined? How is our reasoning affected by the fact that our 
observation is approximate (we restrict ourselves to rational structures)? Can we 
really compute f(Ma)l 

1. CONTINUOUS AND COMPUTABLE STATISTICS 

1.1. First we make some preliminary requirements on sets of values. A set X £ R 
is a regular set of values if (a) all boundary points of X are rational and ( b ) I n Q 
is a recursive set of rationals. Examples of regular sets: N, R, intervals of arbitrary 
kind with rational end points, finite unions of such intervals, etc. Intervals with 
irrational end points, Q and Cantor's discontinuum can serve as examples of non-
regular sets. It-is clear that in practice we need to decide whether f(Ma) is an element 
of a regular set or not. 

1.2. Lemma, (a) Regular sets form a field of sets, (b) If X is regular then X n Q 
is dense in X. (c)UX1, X2 are regular sets, t h e n ^ == X2 implies X1 n Q #= X2 n Q. 
(d) Each regular set is Borel. 

P roof is easy: (a) Denote the system of all regular subsets of R by sf. Then R e s/. 
If X e sJ then its complement Xc has all boundary point rational and Q n l ' = 
= Q - (Q n X) is recursive. Similarly for finite union of sets, (b) Note that each 
irrational point of a regular set X is an interior point of X. (c) follows easily from (b). 
(d) Each regular set X can be decomposed as follows: X = (X — Q) u (X n Q); 
X — Q is open, X n Q is clearly Borel. 

1.3. In the following we restrict ourselves to regular sets. 
A mapping j : Jtv is a cc-statistic (continuous and computable statistic) on Jlv 

if the following conditions hold: 

(a) / is invariant under isomorphism of models. 
(b) For each M finite, the function j ["" Jlv

M is continuous. 
(c) The function j \ J/VnQ is recursive (with the range included in Q). 

1.4. Consider now regular random V-siructures. If U is such a structure, and 
M s U a finite sample, then the function fM defined by the equality fM(o) = f(Ma) 
is a random variate. By DjM we shall denote its distribution function. In the following 
we shall write fM instead of fM. 

Note that if V0 S V is regular then, for each sample M £ U, the probability 
P({a;f(Ma)eV0}) is well defined. 

The assumption (a) in 1.3 guarantees that the value depends only on the structure 
but not on the particular samples. Assumption (b) guarantees, besides other proper­
ties, that small changes of values in a model M cause only small shift of j(M). If we 



accept usual equivalence between'recursivity and computability (cf. Rogers [18]) 
we can say that the assumption (c) in 1.3 gives us an answer to the computability 
question: whenever we have a rational-valued structure M we can calculate f(M) 
and since V0 is regular, we can decide whether f(M) e V0. (Note that all following 
considerations remain valid if we substitute the notion of recursivity by another 
stronger notion of computability.) 

The main paradoxon is avoided by the following theorem. 

1.5. Theorem. Let V be a regular set and / , g two cc-statistics on Jtr. Then 
/ f Jiv^ =g\ J/V"Q implies / = g. 

Proof. V n Q is dense in V, hence J^vfQ is dense in Jiv
M for each finite M. • 

1.6. Note that cc-statistics are statistics in the usual sense. Hence, for example, 
if we find an optimal (e.g. uniformly most powerfull) test in the class of all usual 
non-randomized tests and prove that this test is based on a cc-statistic and a regular 
set (i.e. it is an observational test, see [10]), then it is optimal in the class of all 
observational tests. 

On the base of previous considerations we can identify some statistical tests (or 
statistics in general) having definite probabilistic meta-properties (as optimality) 
with particular computational procedures. (For further information, particularly 
in connection with observational functor calculi in which computational procedures 
are represented for purposes of Hypothesis formation, see [10]). 

1.7. Convention. We require in all cases the invariancy of statistics under iso­
morphism of sample structures. Hence we shall consider further, for each cardi­
nality m of samples, only one representant, namely {1, ..., m}. The sense of Jtv

m,fm 

etc. is clear. 

1.8. How strong is the condition of recursivity? Consider now regular random 
{0, 1}-structures. U = <U, qu q2}. Each sample M and state c gives and 2 x 2 

b 
— (M„). We use, without any scruples, a statistic of the form 

- + - + - ] 
b c dj 

table 

+ - + 
b 

It is clearly continuous on its domain but not computable (since the values need 
not be rational). What is the mathematical property that enables us to use such 
statistics without any problems? 

1.9. Definition. Consider a regular set V, and a statistic/on JKv. A three argument 
recursive function b : N + x J?VnQ x N + -> Vn Q is called a computable numerical 



approximant ofjif, for each m e N + , the following conditions hold: 

b(m, - , -):J/m
nQ x N - » VnQ 

and 

(Vn 6 N + ) (VMe Jlv
m

nQ) \b(m, M, n) - f(M)\ < l/2n . 

(Cf. the notion of numerical approximant in [13]; note that our notion of approxi­

mation differs substantially from the notions used in the usual recursion theory, see 

[2]-) 

1.10. It is clear that, in many cases (V 4= Vn Q), it has no sense to speak about 
probabilistic properties of b. On the other hand, iff is, for example, an estimator 
(continuous statistic) then if we use b instead ofj we cannot make great errors. 

1.11. Notation. Let Vbe a regular set. Denote by B(V) its boundary, and denote Rv 

the relation on Q2 defined as follows: Rv(ru r2) iff [ru r2] £ V([rl5 r2] means the 
closed interval with end points ru r2). 

1.12. Remark, (l) Note that [ru r2] £ V iff [ru r2] n Q £ V. (2) The relation Rv 

is recursive iff it is recursively enumerable. (Note that 1 Rv is recursively enumerable 
in all cases: ~lRv(ru r2) iff (3r e Q ) ( r , ^ r ^ r2, r e Ve).) 

In the following we use freely notations of mathematical logic, particularly 1 for 
negation and & for conjunction. 

1.13. Definition* A regular set Vis called intervals recognisable set (ir-set) if Rv 

is recursive. 

1.14. Theorem. Consider regular sets V and V0 £ V and a statistic f on J/v. 
Let (1) f have a numerical approximant b, (2) f(JiVnQ) n B(V0) = 0 and (3) the sets 
V0 and V - V0 be ir-sets. Then f e V0 is decidable (i.e. the set {M e J4V^ f(M) e V0} 
is recursive). 

Proof. Consider an MeJ/VnQ. Two cases can occur: (i) f(M)e Vo - B(V0) 
or (ii)j(M) e V0

C - B(V0). In the case (i) there is an n e N + such that 

RVo(b(m, M, n) - l/2n , b(m, M, n) + \\2n) ; 

in the case (ii) there is an n e N + such that 

RVoc(b(m, M, n) - l/2« , b(m, M, n) + l/2n) . 

Hence both the sets {Me JlVnQ;f(M)e V0} and {Me J?VnQ;f(M)eVc} are recur­
sively enumerable. 0 



1.15. The above theorem can be applied in many cases. For example, use the 
statistics In (adjbc) and put V0 = [r, + oo) where r is a rational number. Note that 
for s rational In (s) is transcendental. 

In many cases, in which the condition j(-#KnQ) n B(V0) = 0 is not satisfied, we 
have a numerical approximant such that, i f j (M)e Q, it finds n0 that b(m, M, n0) = 
= f(M) and indicates this fact. (Think of functions of the form x1'", n e N + .) Then 
we obtain the decidability o f j e V0 again. 

In practice, we stop the work of each computable numerical approximant at 
a given nmax. Hence it can happen that f(M) e V0 but b(m, M, «max) $ V0, but only 
for point close to the boundary. 

1.16. What are the ir-sets? The following lemma shows some particular cases. 

Lemma. The following cases of regular sets are ir-sets: 
(1) Finite union of intervals of arbitrary kind. 
(2) Complement of countable union of intervals with given minimal length. 

(3) Such Vthat the sets B(V), {p e B(V); (3p' e B(V)) (p' > p)} and {Pl, p2 e B(V); 

(Pu < Pz)& ~l(3~ 6 B(v)) (Pi < P < Pi) a r e recursive. 

1.17. Lemma, (l) There is a ir-set Vt such that B(Vt) is not recursivelly enumerable. 

(2) There is a regular set V2 with B(V2) recursive which is not ir-set. 

Proof. Let the variables x, y, z, e vary over natural numbers. We use the usual 
enconding of Turing machines and their input words by natural numbers. Let now 
T(e, x, y) be the relation saying: the Turing machine e halts the computation on 
input word x exactly after y steps. This relation is recursive. Hence "1 T(e, x, y) is 
also recursive. 

(1) (Hajek) Define T(e, z) = (3JC, y) T(e, x,y)&z = (x, y}). Then {e; (3wz). 
.T(e, z)} is a universal i7° set and hence not recursively enumerable (cf. [18]; 
300 means — there is infinitely many . . . ) . Define now Iez = (e + l/(2z + 1), 
e + l/(2z)] and Vx =U{e,*:T<e>*»I«-Then V1 isan ir-set.But B(V) = {e + l/(2z + 1), 
e + \\2z; T(e, z)} u {e; (3cozj T(e, z)}. 

(2) The relation ~l T(e, e, z) is recursive, but (Vz) (~] T(e, e, z)) is not recursively 
enumerable ([12], § 46). Define Iez = (e + l/(z + 1), e + 1/z] and I* = {e} u 
u U f - n n . , . , . ) ) ^ Finally, put V2 = \Jel*. Note that 

Ry2(e, e + I) iff (Vz) (~1 T(e, e, z)) . 

Hence if Ryjfu r2) is recursive then RVl(e, e + 1/2) is and we obtain a contradiction. 
On the other hand 

B(V) = \Je{e} u \Je{e + \\z; T(e, e, z) v T(e, e, z ~ l)} 

and hence B(V) is recursive. • 



1.18. Discussion. Now we touch very briefly the question What functions have 
a compuiable numerical approximant? We shall now write je CNA for " j has9a nu­
merical approximant" (in the natural sense: ifjmaps R* into R we look for a recursive 
b: Qk x N + -» Q such that \b(r, n) - f(r)\ < l/2n for r rational). 

(1) Trivially, i f j i s recursive (on Q), t h e n j e C N A . Particularly all arithmetical 
operations on R + , — , . , ) are functions from CNA. Rational constants are func­
tions from CNA. 

(2) The following elementary functions are from CNA: In, exp, sin, cos, tg, 
arcsin, arctg (see [16], [4]). 

(3) If t(xu .,., xk) e CNA, t is continuous and g(xu ..., xk),..., gr(xu ..., xk) e 

e CNA, then the function h defined by the equality 

h(xu ..., xk) = t(g,(xu ..., xk),..., gk{xu ..., xk)) 

is in CNA. 

Ifjis now a statistic on Jiv and if each fm can be obtained by ( l ) - ( 3 ) then je CNA 

in the sense of 1.9. 

1.19. In the present section (namely 1.1 — 1.9) we required statistics to be con­
tinuous. This had a good reason — the representation of a statistic by its restriction 
to rational valued models and then by a computational procedure. As we shall see 
later, there are reasonable and substantially noncontinuous statistics. Hence we have 
one way of generalization — to cover these cases and satisfy desired properties 
of statistics. This is done in the following section. 

Another direction that has to be investigated is the problem of concrete re­
putation complexity and its influence on the choice of appropriate statistical proce­
dures. The importance of this question is obvious in connection with multiple usage 
of statistical procedures on computers, particularly in connection of Al-methods 
(cf. [10]). 

Its solution requires a good hierarchy of numerical procedures (e.g. based on the 
number of operations in floating point arithmetic, [17]). Then if we have two statisti­
cal procedures j0 , j1 ; j0 ^ . . . < / i in computational hierarchy and jx slightly better 
than j 0 in some statistical sense, we choose surely j 0 - Similarly i f j 0 , j i are results 
of two statistical approaches. Nevertheless, such good hierarchy has not yet been 
constructed. 

2. ALMOST CONTINUOUS COMPUTABLE STATISTICS 

2.1. As we shall see later, the condition of continuity of statistics is too restrictive. 
Before discussing this topic we must be more specific as to the form of theoretical 
sentences in question. 



We shall suppose, for the sake of simplicity, that our random structures are d-
homogeneous (distributionally homogeneous). This means the following: Consider 
a regular random V-structure U = (U, qu ..., qn}. Then the distribution function 
Dv „ of the n-dimensional random variate <#i(0, —), •••, q„(o, —)} is independent 
on o. Then the probabilistic properties of U can be described by the distribution 
function Dv (Dv = Dv 0 for any o 6 U). Our theoretical sentences have now in many 
cases the following property: U > <P and Dv = Dv, implies U' > <£ (for any U, U'). 
Such sentences are called distributional. 

2.2. Consider a random R-structure. Let $ be true in U = (U, qu q2} iff (a) qt is 
independent on a with probability 1, (b) Uis d-homogeneous and (c) the distribution 
function DVl of U2 = <U, q2} is absolutely continuous. Define a mapping / as 
follows: 

f(Ma) = 1 iff (q±(ou a) = 1 and qi(o2, o) < 1 implies q2(ou a) ^ q2(o2, a) for 
each ou o2 e M ) . / i s a statistic; it is the simplest example of a rank statistic. We see 
immediately that / i s computable but not continuous. 

2.3. We shall now speak about computable statistics, i.e. functions satisfying 
(a) and (c) from 1.3 and 

(bl): for each M finite, / |x J/M is Borel measurable. 
What is the probabilistic property desired from the point of wiev of hypotheses 

testing that our computable statistics have to satisfy? It can be formulated as follows: 
Let V be a regular set and $ a distributional sentence. Consider a class !F of com­

putable statistics such that, / f J4VnQ = g \ JiVnQ for each fge J4. We call & 
d-invariant (distributional invariant) if the following holds: If U > <£, then, for each 
/ , g € & and M finite, M £ U 

(*) P({°> f(Ma) e V0}) = P({a; g(Ma) e V0}) 

for each V0 £ V, V0 regular . 

2.4. It is clear that, under the frame assumption <P, the class of d-invariant (com­
putable) statistics is appropriate, e.g., as the class of optimal tests statistics for some 
problem. 

If U is a regular random structure and / a statistic on Jlv, then DfM denotes the 
distribution function of fM (for each finite sample M £ U). 

2.5. Lemma. The condition (*) is equivalent to: 

(VM)(*xeQnV)(Df'M(x) = Dl(X)). 

Proof. (<=): Use the regularity of V and left-side continuity of the distribution 
function to obtain the equality of distribution functions on V. Then use the fact 
that regular sets are Borel. 



(=*•): Let / be a statistic on Jiv. Use sets Vk = [-k,x), where xeQ, fceN. 
Then, under <P, P(fM e[-k,x)) = P(fM e[-k,x)nV)= P(gM e[-k,x)nV) = 
= P(gM e[-k,x)). Note that Du

fM(x) = lim P(fM e[-k, xj). D 
k-*oo 

2.6. Remark, (l) Naturally the condition (*) is equivalent to the following: for 
each V0 £ V, V0 Borel, P(fM e V0) = P(gM e V0). 

(2) Let <P be a distributional statement such that U P $ implies: for each finite 
sample M, P({<r; MCT $ Jiv

M
Q}) = 0. Then each system J^ is d-invariant w.r.t. $. 

(3) If statistics from &> are continuous then J* is d-invariant w.r.t. any distribu­
tional sentence. 

Now we can define a new kind of statistics that covers also rank statistics. 

2.7. Definition. Let <P be a distributional sentence and let V be a regular set of 
values. L e t / b e a computable statistic. / is called an almost continuous computable 
statistic (acc-statistic) w.r.t. <f> if/ satisfies the following condition: 

(ace): For each regular random F-structure U such that U > <P and for each 
finite sample M c JJ, f |x JiM is continuous on an open set Jicont £ Jiv

M such that 
TO; Mffe .#„„,) = 1. 

2.8. Remember that for each open set A £ R the set A n Q is dense in A. Thus 
if / is an acc-statistic, then for each M e J(cont, the value f(M) can be approximated 
by values of/ on rational models from Jtcont. 

, Note that the statistic / f rom 2.2 is an acc-statistic. 

2.9. Theorem. Let <P be a distributional sentence and V a regular set. Consider 
a class J*7 of statistics on ^#K such that (i) all statistics from J5" are acc-statistics 
w.r.t. <P and (ii) for each / , g e & we have / \ JiVnQ = g[ JlVnQ. Then & is d-
invariant w.r.t. each distributional sentence implying <£. 

Proof. Consider statistics / , g from #". Let a sample M be fixed. / ^ ,MV
M is con­

tinuous on Jt{ont, similarly for g \ Jlv
M and ^ c f f„ r . P({<r; Ma e .#,"„„,}) = P({(T; 

Ma e J/9
cont}) - 1, hence for ^ c o n r = ^ „ , n ^ o n t we have P({<r; Ma e J/cont) = 1. 

Jtcont n ^ # F n 0 is dense in Jicont. D 

2.10. Remark. (1) We have just proved that under <P we have P({a;f(M„) = 
= g(Ma)}) = 1 for each f,g e J5". Hence statistics from #" are determined with 
probability 1 by their values on rational models. (2) I f / e & and Me Jicont then/ (M) 
can be approximated by values on rational models from Jt'cont. 

2.11. One could ask whether the assumption of Borel measurability (cf. 2.3) in 
the definition of acc-statistics is necessary. 



Let U be a {I, 0t, P>-random F-structure. Then, for each M £ U, we have the 313 
induced probability measure \iP on Borel sets of (JtM, o}. Remember the notion 
of /^-measurable sets. The following theorem shows that the condition of the Borel 
measurability is, in fact, superflous. 

2.12. Theorem. If / is an arbitrary function satisfying conditions (a) and (c) from 
1.3 and the acc-condition w.r.t. a distributional sentence, then, for each sample 
M c [/, we have: for each X Borel, fM (X) is ^-measurable. 

Proof. If Jl0 £ Jiv
M is an open set such that HP(J40) = 1, then we have the 

following: 
For each B £ J(V

M, B is ^Up-measurable iff B n Jt0 is ^-measurable. (Note that, 
if \i*P is the outer measure generated by \iP, then n*(B) = nt(Jt0 n B).) Further, / is 
continuous on Jtcont £ Jty

M, nP(Jtcont) = 1. Hence, for each X Borel, f~*(X) n 
n -Mont — f~~(X <~f(J?cont)) is Borel, and, consequently, ^-measurable. • 

2.13. Consider the converse question: how much can a statistic be discontinuous? 
We obtain the following particular answer: 

2.14. Theorem. Let <P be a distributional sentence such that U > <P implies that fiP 

is absolutely continuous w.r.t. the Lebesgue measure X. Then each computable 
statistic is an acc-statistic w.r.t. <P. 

Proof. Let k be a natural number and Rfc the metric space of /c-tuples of reals 
with the metric Q. Then the Luzin theorem (cf. [14]) holds: 

A real function / on R* is Lebesgue measurable iff for each e > 0 there is an 
A £ R* such that X(A) < e a n d / e Rk — A is continuous. 

Hence, if nP is absolutely continuous w.r.t. X then the Borel measurability implies 
that for each n ^ 1 there is an A„ £ Jty

M such that \iP(An) >. 1 — \\n and / f A„ 
is continuous. Define Jtcont = U ^ I ^ H - Note that \iP(Ax u . . . u A„) > 1 - l/n, 
hence nP(Jtcont) = 1. • 

3. APPROXIMATING STATISTICS 

3.1. One can easily construct an acc-statistic / such that for each discontinuity 
point M there is no sequence {M„} of rational points such that/(M„) -»f(M). If we 
look more carefully to practically used rank statistics (which are the most important 
example of acc-statistics) we see that they have a property similar to the left-side 
continuity and/or the right-side continuity for univariate functions. 

Hence we define: a computable statistic / is approximating if for each disconti­
nuity point M there is an open subset 0(M) £ JtM such that M is in the closure of 
0(M) and / \" (0(M) u {M}) is continuous. If moreover, under U > $, (p); P({cr; 
Ma e 0(M)}) > 0, then we say t h a t / i s well approximating w.r.t. <P. 



3.2. Remark. Let „> be a distributional sentence, (l) If J^ is a class of d-invariant 
(w.r.t. _>) and approximating statistics, then if one of them is well approximating, then 
all of them are well approximating. (2) Neither each approximating acc-statistic 
(w.r.t. $ ) is well approximating nor each well approximating statistic is an acc-
statistic. 

An example to the second case in (2): Suppose M be fixed. Let {M„} be a countable 
set in JtM such that Q(M0, M„) = n. Put Rn = {M; Q(M0,M) < n}. Let {p;};eN 

be a countable set of real numbers such that YJ=\PI = 1- Let _> be such a sentence 
that, under £>, 

P(M0) = p0, P(MX) m P2, ..., P(Mn) -_ In, ... 

and on each of 

R, - {M0}, R2 - R, - { M j , ..., Rn - R„_! - {M„_J, ... 

we have a uniform distribution such that 

P({a;MaeR„ - R,,^ - {M„_J}) = p2n_, . 

Consider a statistic j such that it is discontinuous on hyperspheres Rn = 
= {M; Q(M0, M)} = n. Then j can be well approximating but not an acc-statistic. 

3.3. Theorem. Let $ be a theoretical sentence. If j is an approximating statistic 
and if U = <P implies that for each o e U, Dv 0 has positive density w.r.t. X on V, 
then j is a well approximating and acc-statistic w.r.t. _>. 

Proof. First, we prove that the set of discontinuity points of an approximating 
statistic has the Lebesgue measure zero. Let M be fixed and let Jld _; Jiv

M be the 
set of discontinuity points. Suppose l(Jld) > 0. Then Jid contains a closed cartesian 
product of intervals J. Each interior point of J is a discontinuity point not satisfying 
condition of the definition of approximating statistic. The rest of the proof is a matter 
of routine. • 

3.4. Remark. If f(Jiv
M) is finite then the condition (p) is equivalent to the fol­

lowing: 

for each discontinuity point M, we have: 

(i) (35 > 0) P({ . ; Ma e JtVnQ, Q(M,Ma)<3, f(M)*f(Ma)}) = 0 and (ii) 
P({a; Ma e 0(M)}), where Ma e-o(M) implies f(M) = f(Ma). These conditions show 
the proper power of an approximation to discontinuity points based on (i) only. 
If Dv 0 is continuous under _>, then (i) holds for each statistic. 

(Received December 18, 1975) 
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